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Abstract: The dynamic potentials of highly excited vibrational states of deuterated phosphaethyne
(DCP) in the D–C and C–P stretching coordinates with anharmonicity and Fermi coupling are studied
in this article and the results show that the D-C-P bending vibration mode has weak effects on D–C
and C–P stretching modes under different Polyad numbers (P number). Furthermore, the dynamic
potentials and the corresponding phase space trajectories of DCP are given, as an example, in the
case of P = 30. In the end, a comparative study between deuterated phosphaethyne (DCP) and
phosphaethyne (HCP) with dynamic potential is done, and it is elucidated that the uncoupled mode
makes the original horizontal reversed symmetry breaking between the dynamic potential of HCP (q3)
and DCP (q1), but has little effect on the vertical reversed symmetry, between the dynamic potential
of HCP (q2) and DCP (q3).
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1. Introduction

Resonance coupling between the different vibrational modes of molecules, which typically
increases with energy, makes triatomic molecules quite intricate [1]. The ways of studying the
resonance coupling effect between the different modes in a triatomic molecule are ab initio calculations
and semi-classical methods [2–4]. In recent years, a new semi-classical method, named dynamics
potential [5–7], has been proposed and has been applied to study highly excited molecular vibrational
states. This method could, not only verify the conclusions given by ab initio calculations, but also show
visual physical pictures, including molecular isomerization [8,9], chaotic dynamics [10,11], dissociation
dynamics [12], and other information.

The internal interaction between D–C stretching and C–P stretching in DCP (deuterated
phosphaethyne) has attracted a great deal of attention, since the information involved in the interaction
is significant for understanding the mechanisms of chemical reactions. In previous articles, we analyzed
the dynamic features of deuterated phosphaethyne (DCP) and phosphaethyne (HCP) using dynamic
potentials [5]. Because of the drastic change of atomic masses of DCP compared with HCP, instead of
the resonance between C–P stretching and D–C–P bending, a 2:1 D–C stretching and C–P stretching
resonance governs the DCP spectrum. It is shown that there is dynamic symmetry between DCP and
HCP systems, which is significant to analyze the features of homologous compounds.
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In this work, the dynamic potentials of highly excited vibrational states and phase space
trajectories of DCP are studied. The effect of the D–C–P bending vibration mode on the D–C and C–P
stretching modes, under different Polyad numbers, are also investigated. Finally, a comparative study
between DCP and HCP is done to clarify the symmetry breaking of dynamic potentials in DCP and
HCP systems with the effects of uncoupled modes, respectively.

2. The Semi-Classical Hamiltonian of the DCP

The dynamic properties of DCP molecules’ highly-excited vibrational states, in the energy region
1.97 ˆ 104–2.35 ˆ 105 cm´1, are essential [5,9], and the corresponding Hamiltonian could be obtained
as following:
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The corresponding coefficients of the DCP Hamiltonian are shown in Table 1, where subscripts
1, 2, and 3, correspond to the D–C stretching vibration mode, D–C–P bending vibration mode, and
C–P stretching vibration mode, respectively. We will use n to denote the corresponding vibration
mode, which will be indicated with qi in the position coordinate, and the momentum coordinate
indicated with pi. ωi is the corresponding harmonic vibration coefficient, while Xij, yijm, zijmn denote
the nonlinear coupling coefficients of different modes (Xij ~coefficient of the two nonlinear coupling
modes, yijm ~coefficient of the three nonlinear coupling modes, zijmn ~coefficient of the four nonlinear
coupling modes). k, λ1, λ3, and µ11 represent the Fermi resonance strength coefficient, with regard to
the quantum numbers of the three vibrational modes. Besides n2, there is another conserved action
called Polyad number P = 2n1 + n3 (P number). Equation (1) is used to study the dynamic properties
of highly excited vibrational states in the region of n1 ď 4, P ď 30 [9].

Table 1. The coefficients of vibration Hamiltonian of deuterated phosphaethyne (DCP).

Parameter Name Parameter Values
(cm´1) Parameter Name Parameter Values

(cm´1)

ω1 2494.0412 y223 0.0482
ω2 539.1611 y233 0.2535
ω3 1237.0955 y333 ´0.2447
X11 ´24.0769 z1111 0.0510
X12 ´11.1041 z1112 0.0806
X13 ´4.6276 z1222 ´0.0055
X22 ´3.5142 z1233 0.0280
X23 ´2.2082 z2222 ´0.0014
X33 ´2.2082 z2233 ´0.0067
y111 ´0.8896 z2333 ´0.0132
y112 ´0.4928 z3333 0.0092
y113 ´0.5407 k 12.3422
y122 0.2167 λ1 0.5786
y123 ´0.3655 λ3 0.1212
y133 ´0.2167 µ11 ´0.2990
y222 0.0884
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The coset space SU(2)/U(1) [13,14] could be used as the representing space of Hamiltonian and it
could be rewritten in the coordinates (q1, p1) indicates with semi-classical representations as follows:
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With the coordinate (q3, p3), the Hamiltonian can be written as:
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The semi-classical Hamiltonian, mentioned above, could further be used to obtain dynamic
potentials, which are necessary for studying the dynamic nature of the DCP’s highly excited
vibrational states.

3. The Dynamic Features of the Highly Excited Vibration States of DCP

Two main parts would be addressed in the following: (1) the influences of bending modes to
D–C and C–P stretching modes; (2) the phase space trajectories for each energy levels in the dynamic
potentials when P = 30 (as a case study); and (3) the comparative study between DCP and HCP in the
sense of symmetry of dynamic potential.

3.1. The Dynamic Potentials Corresponding Typical Polyad Number with Different Quantum Number n2

The case of small P number will be firstly discussed. We take P = 18 as instance and the dynamic
potential is shown as Figure 1 (the rule of marking fixed points is the same with the literature [5,6,9]).
Figure 1 shows that when n2 = 0,1,2,3, the dynamic potentials of q1 coordinates are simple inverse
Morse potential. It is known that corresponding to a certain P, the stability of the lowest energy level
in an inverse Morse potential is the worst, while that of the highest one is the best, which is totally
different from the concept in general potential that the lower the energy level is, the worse the stability
is. Furthermore, the shapes of dynamic potentials of q1 and q3 coordinates under different n2 are
almost same, which elucidates that D-C-P bending has no effect on the stability of the highly excited
vibrational states in DCP under the small P number. On the other hand, the dynamic potentials of
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q3 show that the three modes corresponding to the highest three energy levels are localized and this
conclusion is consistent when n2 = 0,1,2,3. The dynamic potentials of q1 and q3 corresponding to
different n2 is basically the same and all the fixed points are remained when n2 is different, which
indicate that the effect of D-C-P bending mode has weak interaction with the two coupling modes,
which are different from former studies of HOCl and HOBr systems [6,12].Int. J. Mol. Sci. 2016, 17, 1280 5 of 11 
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Figure 1. Dynamic potentials of DCP (P = 18) with n2 = 0,1,2,3, and the energy levels included in the
dynamic potential are shown by the lines.

Figure 2 shows the dynamic potentialins of q1 and q3 and it is shown that the results are different
when P is large. For example, when P = 30, the dynamic potential of q1 becomes much more complex.
There are three new fixed points emerging, rR13˚s, rr1s and rr1s in the dynamic potential and the shape
of dynamic potential of q1 becomes the combination of Morse and inverse Morse potentials. It is found
that there is a phenomenon of fixed point-splitting in the dynamic potential of q3 . The original rr3s

(the dynamic potentialins of q3 when P = 18 in Figure 1) becomes rR13˚s and rr3s , which are similar
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with the results of HOBr and HOCl [6,12]. On the other hand, though the dynamic potentials of q2 and
q3 when P = 30 are much more complex than the case of P = 18, but the shape of dynamic potentials of
q2 and q3 remain the same when n2 = 0,1,2,3, respectively, which is consistent with the case of P = 18.

Int. J. Mol. Sci. 2016, 17, 1280 6 of 11 

 

than the case of P = 18, but the shape of dynamic potentials of 2q  and 3q  remain the same when 

2n  = 0,1,2,3, respectively, which is consistent with the case of P = 18.  

 

 

 

 
Figure 2. Dynamic potentials of DCP (P = 30) with 2n  = 0,1,2,3, and the energy levels included in the 

dynamic potential are shown by the lines. 

Through the above study, it is found that the D–C–P bending mode weakly affects the resonant 
coupling of D–C and C–P stretching modes, thereby weakly affecting the dynamics features of DCP. 
It is shown that the geometrical shapes of the dynamic potentials and the corresponding fixed points 
are not sensitive to the D–C–P bending mode, but are sensitive to the P number, which are different 
to our previous studies [6,12]. Though the cases of P = 18 and P = 30 are shown here, these 
conclusions are also suitable for other cases. The reasons we address the cases of P = 18 and P = 30 

Figure 2. Dynamic potentials of DCP (P = 30) with n2 = 0,1,2,3, and the energy levels included in the
dynamic potential are shown by the lines.

Through the above study, it is found that the D–C–P bending mode weakly affects the resonant
coupling of D–C and C–P stretching modes, thereby weakly affecting the dynamics features of DCP.
It is shown that the geometrical shapes of the dynamic potentials and the corresponding fixed points
are not sensitive to the D–C–P bending mode, but are sensitive to the P number, which are different to
our previous studies [6,12]. Though the cases of P = 18 and P = 30 are shown here, these conclusions
are also suitable for other cases. The reasons we address the cases of P = 18 and P = 30 are that the
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connotations of corresponding dynamic potentials are abundant and the shapes of dynamics potentials
are typical.

3.2. The Trajectories of Phase Space Study for the Energy Levels under Specific Polyad Number (P = 30)

For further quantitative analyzing the dynamic features of DCP, the representative trajectories
of phase space in pi ´ qi for each energy level is studied when P = 30. The dynamic potentials and
corresponding energy levels when P = 30 and n2 = 0 are shown in Figure 3.
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The trajectories of phase space for different energy levels in dynamic potentials of q1 and q3 are
shown in Figures 4 and 5.
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Based on previous studies, the envelope area of the trajectory in phase space shows the quantum
environment of a series of energy levels [8,10]. In Figure 4, for L0–L13, it is found that the envelope area
of the trajectory of phase space increases with the reduction of energy level because these energy levels
lie in inverse Morse potential. In contrast, For L14–L15, the envelope area of the trajectory of phase
space increases with the increase of energy level because these energy levels lie in Morse potential.
Furthermore, because the L0 (L15) is tangential with the top (bottom) of the dynamic potential, the
envelope area of the trajectory is zero. Particularly, the trajectories of L8 and L9 are divided into two
separate trajectories, which show that these two energy levels are located in at a double-wells dynamic
potential. The conclusions are similar in Figure 5. Because all energy levels (except L0 and L15) are in
Morse potential of q3 so the envelope area of the trajectory in phase space increases with the increase
of energy level.

3.3. Comparative Study between DCP and HCP with Dynamic Potential

In previous work [5], it was shown that the dynamic potential of DCP in q3 coordinate is similar
to the inverse of that of HCP in q2 coordinate and the dynamic potential of DCP in q1 coordinate is
similar to that of HCP in q3 coordinate with ´q3 transformation, which is called “dynamic symmetry”.
This conclusion is available when the quantum number of the uncoupling mode (H–C stretching mode
for HCP and D–C–P bending mode for DCP) is equal to 0. However, the dynamic symmetry will be
broken when the quantum number of the uncoupling mode (nun, nun = n1 for HCP and nun = n2 for
DCP [5]) is not equal to 0.

From ergodic analysis of the P number, it is found that when nun > 0, the original horizontal
reversed symmetry between the dynamic potentials of HCP (q3) and DCP (q1), mentioned in
Reference [5], does not exist; however, for large P number (P > 22), the clockwise 180 ˝C rotation
symmetry between the dynamic potentials of HCP (q3) and DCP (q1) emerge. This symmetry is not
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strict but it still could be recognized from the shapes of dynamic potentials and the above conclusion
is consistent for nun = 1, 2, 3 (as shown in Figure 6, for instance). In contrast, the results of the
dynamic potentials of HCP (q2) and DCP (q3) are different. As shown in Figure 7, for instance, the
vertical reversed symmetry could remain for a small P number (10 < P < 20) but it is broken when P
becomes large.

From the above results, it is shown that the uncoupled mode has an effect on the dynamic
symmetry. It is obvious that the nun makes the original horizontal reversed symmetry break between
the dynamic potential of HCP (q3) and DCP (q1) but has little effect on the vertical symmetry breaking
between the dynamic potential of HCP (q2) and DCP (q3). It is elucidated that the stability of dynamic
symmetry is different under the effect of the uncoupling mode.
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4. Conclusions

In this study, the dynamic potentials of highly excited vibrational states of DCP with an
harmonicity and Fermi coupling are studied. The results show that the D–C–P bending mode has
weak effects on D–C and C–P stretching mode under different Polyad numbers. Just like previous
studies, it is found that the vibrational energy levels could be classified by the quantum environments.
From comparative studies, it shows that the uncoupled modes make the original horizontal reversed
symmetry breaking between the dynamic potential of HCP (q3) and DCP (q1), but has little effect on
the vertical symmetry between dynamic potential of HCP (q2) and DCP (q3). Considering the effect of
n2 in DCP and n1 in HCP, the original dynamic similarities in these two systems disappear and the
characteristics of symmetry become much more complex. The above results show that the method
which enables us to understand the DCP dynamics simply from those of HCP without repeated
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elaboration are only available in some special conditions, and, on the other hand, there are some new
dynamic symmetries appearing when the conditions are different, which indicate that the homologous
compounds are intrinsically similar only if the coupling patterns of two systems are analogous.
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