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Abstract: Vav guanine nucleotide exchange factor 3 (Vav3), a Rho family GTPase, regulates multiple
cell signaling pathways including those of T- and B-cell receptors in vertebrates through mediating
the activities of the Rho family members. Whether the lamprey possesses Vav3 homolog and what
role it plays in immune response remain unknown. Gene cloning, recombinant expression, antibody
production and expression pattern analyses were performed to characterize the lamprey Vav3 in the
current study. The lamprey Vav3 is closer to jawed vertebrates’ Vav3 molecules (about 53% identities
in general) than to Vav2 molecules of jawless and jawed vertebrates (about 51% identities in general) in
sequence similarity. Conserved motif analysis showed that the most distinguished parts between Vav3
and Vav2 proteins are their two Src-homology 3 domains. The relative expression levels of lamprey
vav3 mRNA and protein were significantly up-regulated in lamprey lymphocytes and supraneural
myeloid bodies after mixed-antigens stimulation, respectively. In addition, lamprey Vav3 were
up-regulated drastically in lymphocytes and supraneural myeloid bodies after lipopolysaccharide
(LPS) rather than phytohemagglutinin (PHA) stimulation. Lamprey Vav3 distributed in the cytoplasm
of variable lymphocyte receptor B positive (VLRB+) lymphocytes, and the number of plasmacytes
(VLRB and lamprey Vav3 double positive) in blood lymphocytes also increased after LPS stimulation.
Our results proved that lamprey Vav3 was involved in the LPS-mediated immune reaction of lamprey
and provided a clue for the further study of the precise role lamprey Vav3 played in the signaling
pathway of lamprey VLRB+ lymphocytes.

Keywords: Lampetra japonica; Vav3; Phylogenetic relationship; Expression pattern; LPS-mediated
immune response

1. Introduction

Vav family proteins are a group of guanosine nucleotide exchange factors that contain Dbl
homology (DH) domains and possess catalytic activity specifically directed towards Rho- and
Rac-GTPases. In mammals, it is known that there are three members in Vav protein family, Vav1, Vav2
and Vav3 [1]. Although Vav1, Vav2 and Vav3 have identical structural domains, they are different in
their tissue distributions. Vav1 distributes specifically in hematopoietic system cells, while Vav2 and
Vav3 have broader patterns of expression [2,3]. Vav family members contain eight conserved domains:
calponin-homology (CH), acidic (Ac), Dbl-homology (DH), pleckstrin-homology (PH), zinc finger (ZF),
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N-terminal Src-homology 3 (NSH3), and Src-homology 2 (SH2) and C-terminal SH3 (CSH3) domains
from N- to C-terminals [2,4–7]. The CH domain is proven to be involved in both the regulation of
Vav guanosine nucleotide exchange factor activity and the pathway of Ca2+ mobilization. The Ac
domain, which contains three highly conserved tyrosine residues (Y), is an auto-inhibition mediator
of Vav guanosine nucleotide exchange factor activity. The DH domain of Vav3 can interact with Rac-
and Rho-GTPases to promote GDP exchange to GTP. The PH domain is the interaction site for Vav3
interacting with GTP binding protein, lipid and the phosphorylated serine/threonine residues. The ZF
domain, also known as C1 domain, is a cysteine rich domain, which is the key site for Vav3 binding
to protein kinase C or diacylglycerol kinase. As a single functional unit, the NSH3 domain of Vav3
can facilitate the interaction with its protein partners [8,9]. The SH2 domain possesses high affinity
with protein tyrosine phosphatase and is involved in the regulation of kinase activity and substrate
phosphorylation [10]. The CSH3 domains of Vavs are included in binding their interactive proteins,
and there are differences in the protein spectrum that they bind [11,12].

As a member of the Vav family, Vav3 has been studied extensively in recent years. Movila et
al. [4] first found Vav3 by using Expressed Sequence Tags (EST) technique in human placenta cDNA
library in 1999, and the vav3 gene was found mapped on human chromosome region 1p13.3 [2].
Human vav3 gene encodes a protein of 847 amino acids, which is also composed of the same conserved
functional domains as Vav1 and Vav2 [4]. Vav3 is widely distributed in various tissues and plays
important roles in the formation of cytoskeleton and cell differentiation, and also plays important
roles in the regulation of T and B cell signaling pathways. The vav3-deficient B cells exhibit similar
defects as the phosphatidylinositol 3-kinase (PI3K)-deficient B cells, suggesting that Vav3 and PI3K
may have interactive function [13]. Vav3 was further proved to be a positive regulator of PI3K in
the B cell receptor (BCR) signaling pathway and the up-regulation of PI3K activity is achieved by
Ras-related C3 botulinum toxin substrate 1 (Rac1) in a GTP-dependent manner [14]. Vav3 can be
rapidly phosphorylated after T cell receptor (TCR) activation, which requires SH2 domain-containing
leukocyte phosphoprotein of 76 kDa (SLP-76) association for its membrane translocation, indicating
that it can transduce signals from the receptor [15]. It was found that, if vav3 is lacking or impaired,
mature T cells proliferate poorly during T cell development, suggesting that Vav3 plays an important
role in signal transduction pathways of TCR [16]. In recent years, some studies showed that Vav3 has
the function of the proto-oncogene, and is involved in the formation of a variety of tumors [17,18].

Lampreys belong to the Cyclostomata, which comprises a group of the most primitive vertebrates.
For a long time, lampreys have been regarded as key species for studying the evolution of vertebrates,
which are ideal model animals in the research fields of comparative anatomy [19], developmental
biology [20], ecology [21], immunology [22,23], etc. They were found not only to bear a number
of primitive characteristics similar to the innate immune system of higher vertebrates, but also to
exhibit immunological memory similar to adaptive immune system of higher vertebrates [22]. Instead
of B cell receptor (BCR) and T cell receptor (TCR), which possess combinatorial diversity in the
adaptive immune system of jawed vertebrates, variable lymphocyte receptor A (VLRA), VLRB, and
VLRC were discovered successively in jawless vertebrates as the counterparts of the BCR and TCR
to recognize the external pathogens [24–26]. In addition, VLRB positive (VLRB+) lymphocyte subset
is mainly distributed in periphery blood, and it can proliferate and differentiate to plasmacyte-like
cells that express VLRB tetramers or pentamers after pathogen stimulation, which is equivalent to
immunoglobulin M expressed by plasmacytes [27,28]. VLRA+ and VLRC+ lymphocyte subsets are
mainly distributed in lamprey “thymoid” gill region, and express their specific VLR molecules only on
their cell-surface. VLRA+ and VLRC+ lymphocyte subsets also express orthologous genes which are
used by αβ and γδ T cells of jawed vertebrates for their differentiation, respectively [26,29].

Compared with the deep understandings of the Vav3 functions in the adaptive immune system
of jawed vertebrates, it is still a blank about the existence and function of vav3 plays in the adaptive
immune system of jawless vertebrates. Previously, we performed next-generation sequencing
approach to explore transcriptomic responses of lamprey (Lampetra japonica) lymphocyte-like cells to
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immune-stimuli, and a Vav3 homologous sequence was found. In the present study, we report on the
molecular cloning and characterization of the lamprey Vav3 for the first time.

2. Results

2.1. Identification of Lamprey Vav3 Sequence

A cDNA fragment of lamprey vav3 was amplified by PCR method from peripheral lymphocytes
cDNA library of L. japonica. The open reading frame (ORF) of lamprey vav3 is 2568-bp in length
and encodes a protein containing 855 amino-acid residues with a theoretical molecular weight of
94.1-kDa. The lamprey Vav3 sequence was submitted to the GenBank database with an accession
number of KX911208. By searching the combination of specific domains with online tool SMART,
it was found that lamprey Vav3 also has the same combination of eight domains that are structure
characteristics of Vav family, namely CH, Ac, DH, PH, ZF, NSH3, SH2 and CSH3 domains from
N- to C-terminal. The sequence alignment result revealed that lamprey Vav3 possesses about 53%
identity in general with Vav3 molecules of jawed vertebrates, but shares only 51.5% identity with a
lamprey Vav2 (EMBL:AIN44441.1) and about 51% identity in general with Vav2 molecules of jawed
vertebrate, respectively (Figure 1). In addition to the high sequence similarity between lamprey Vav3
and Vav3 molecules, lamprey Vav3 also shares two tyrosine residues (Y278 and Y716) that are only
conserved among Vav3 sequences of jawed vertebrates. Considering there are also only two partial
sequences that are homologous to Vav2 (Transcript: ENSPMAT00000002100.1) and Vav3 (Transcript:
ENSPMAT00000002350.1), respectively, in the genome of Petromyzon marinus, it means that probably
only two Vav family members, lamprey Vav2 and lamprey Vav3, exist in jawless vertebrates.
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Figure 1. Multiple sequence alignment analyses of lamprey Vav3 protein sequence with several Vav3 
and Vav2 molecules of jawed vertebrates. The accession numbers of these protein sequences are 
listed below. Homo sapiens-Vav3: AAD20349.1; Mus musculus-Vav3: NP_065251.2; Gallus gallus-Vav3: 
NP_996745.1; Chelonia mydas-Vav3: XP_007055271; Danio rerio-Vav3: NP_001119865.1; Lampetra 
japonica-Vav3: KX911208; Lampetra japonica-Vav2: gbAIN44441; Danio rerio-Vav2: XP_009293636.1; 
Chelonia mydas-Vav2: XP_007061074; Gallus gallus-Vav2: NP_989473.1; Mus musculus-Vav2: 
XP_006497921.1; and Homo sapiens-Vav2：NP_003362.2. The calponin homology (CH), acidic (Ac), 
Dbl-homology (DH), pleckstrin homology (PH), zinc finger (ZF), N-terminal SRC homology  3 
(NSH3), SRC homology 2 (SH2) and C-terminal SH3 (CSH3) domains are marked with solid line, 
dashed line, long dash-dot line, long dashed line, dotted line, long dash-dot-dot line, double dashed 
line and double long dashed line, respectively. The conserved tyrosine residues between Vav3 and 
Vav2 molecules are indicated by arrows. The conserved tyrosine residues specific to Vav3 or Vav2 
are marked by triangles and inverted triangles, respectively. The Clustal Consensus 1, 2 and 3 
indicate the identical (*), highly homologous (:) and homologous (.) residues between lamprey Vav3 
and Vav3 molecules of jawed vertebrates, between lamprey Vav3 and lamprey Vav2, or between 
lamprey Vav3 and Vav2 molecules of jawed vertebrates, respectively. 

Figure 1. Multiple sequence alignment analyses of lamprey Vav3 protein sequence with
several Vav3 and Vav2 molecules of jawed vertebrates. The accession numbers of these
protein sequences are listed below. Homo sapiens-Vav3: AAD20349.1; Mus musculus-Vav3:
NP_065251.2; Gallus gallus-Vav3: NP_996745.1; Chelonia mydas-Vav3: XP_007055271; Danio rerio-Vav3:
NP_001119865.1; Lampetra japonica-Vav3: KX911208; Lampetra japonica-Vav2: gbAIN44441;
Danio rerio-Vav2: XP_009293636.1; Chelonia mydas-Vav2: XP_007061074; Gallus gallus-Vav2: NP_989473.1;
Mus musculus-Vav2: XP_006497921.1; and Homo sapiens-Vav2: NP_003362.2. The calponin homology
(CH), acidic (Ac), Dbl-homology (DH), pleckstrin homology (PH), zinc finger (ZF), N-terminal SRC
homology 3 (NSH3), SRC homology 2 (SH2) and C-terminal SH3 (CSH3) domains are marked with
solid line, dashed line, long dash-dot line, long dashed line, dotted line, long dash-dot-dot line, double
dashed line and double long dashed line, respectively. The conserved tyrosine residues between Vav3
and Vav2 molecules are indicated by arrows. The conserved tyrosine residues specific to Vav3 or Vav2
are marked by triangles and inverted triangles, respectively. The Clustal Consensus 1, 2 and 3 indicate
the identical (*), highly homologous (:) and homologous (.) residues between lamprey Vav3 and Vav3
molecules of jawed vertebrates, between lamprey Vav3 and lamprey Vav2, or between lamprey Vav3
and Vav2 molecules of jawed vertebrates, respectively.
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2.2. Phylogenetic Analysis of the Vav Family

A Neighbor-Joining phylogenetic tree was reconstructed based on 42 sequences of Vav1 (-like),
Vav2 (-like) and Vav3 (-like) by using the Clustal X and MEGA4 programs (Figure 2). The homologous
sequences identified in invertebrates such as Hydra vulgaris-Vav1-like, Biomphalaria glabrata-Vav2-like
and Aplysia californica-Vav3-like were used as the out-group. Phylogenetic analysis showed that
Vav1, Vav2 and Vav3 sequences from fishes to mammals were mainly grouped into three big clusters,
respectively. In Figure 1, it can be deduced that the first split of Vav family members happened between
the Vav3 ancestor and the common ancestor of Vav1 and Vav2, and that the second split happened
between the ancestors of Vav1 and Vav2, which probably derived from gene duplication events.

Lamprey Vav3 is grouped together with lamprey Vav2 as two single branches in the cluster of
Vav2 sequences, and the genetic distance between lamprey Vav3 and the common ancestor of Vav2
molecules and lamprey Vav2 is closer than that between lamprey Vav3 and the ancestor of Vav3
molecules. These results indicate that lamprey Vav3 might originate from a common ancestor who
was close to Vav2 in genetic distance through a gene duplication process.

2.3. The Sequence Differences between Vav3 and Vav2 Subfamily

To investigate the essential differences between Vav3 and Vav2 sequences, the distribution pattern
of conserved motifs (recurring, fixed-length patterns) was analyzed by the online tool MEME with
14 sequences (lamprey Vav2, lamprey Vav3, six Vav3 molecules and six Vav2 molecules) from lamprey
to mammals as described in Materials and Methods Section. Because the CH, Ac, DH and PH domains
are highly conserved between Vav2 and Vav3 sequences (Figure 1), the conserved motifs were searched
only among their ZF, NSH3, SH2 and CSH3 domains. Totally, 21 conserved motifs were found among
these sequences (Table 1). The arrangements of 11 conserved motifs in ZF, NSH3 and SH2 domains are
identical between Vav2 and Vav3 molecules (Figure 3). It is easy to find that the differences between
Vav2 and Vav3 molecules are in their two CSH3 domains. Motif 19 (SKIGGDQ) and motif 20 (EEEGV)
are the specific motifs of lamprey Vav2 and Vav2 molecules, while motif 21 (TKMSA) is the specific
one of Vav3 molecules (Figure 3). The divergence on their CSH3 domains, which play important roles
in substrates binding, indicated that Vav2 and Vav3 members diversified into two groups of functional
independent genes through short deletion, insertion and substitution processes under the selection
pressure of substrate specificity.

Table 1. Conserved motifs discovered between Vav3 and Vav2 molecules from different species using
the MEME software.

Motifs Width Best Possible Match Motifs Width Best Possible Match

1 20 QGWWKGEVNGRVGWFPSTYV 2 20 TNCKACQMLLRGTFYQGYLC
3 20 FCARDMRELSLREGDVVKIY 4 20 LVEYYQHHSLKEGFRQLDTT
5 20 YAISIKFNNEVKHIKIVTKD 6 20 DYSAYPWFAGNMERQQADNE
7 20 WWQGRNLQTQKVGYFPSDAV 8 20 SKCGAGAHKECLEIIDNCKM
9 20 PPLHFQTGDVIELLRGDPHS 10 20 DPGLPKMQAIQNYHGIPAPP
11 20 RTRSPVFTPRVIGIAIARYD 12 20 LINHVNGTYLIRHRTAEAEE
13 16 NWFHITENKKFKSLME 14 12 LQYPYKERENST
15 9 HNFQMHTFD 16 9 KPCPCDPKP
17 9 HPHDMDTNG 18 7 IRPPSRE
19 7 SKIGGDQ 20 5 EEEGV
21 5 TKMSA
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Figure 2. Phylogenetic analysis of lamprey Vav3 with Vav3, Vav2 and Vav1 homologs based
on the neighbor-joining (NJ) method. The number at each node presents the percentage
of bootstrapping after 1000 replications. Vav3, Vav2 and Vav1 homologs from lampreys,
teleosts, amphibians, reptiles, birds, mammals and invertebrates are marked on the right side.
The genetic distance is indicated by the ruler below the tree. The protein accession numbers
not listed in Figure 1 are as follows: Ovisaries musimon-Vav3: XP_011979369; Orcinus orca-Vav3:
XP_004263156; Ficedula albicollis-Vav3: XP_016155749; Pelodiscus sinensis-Vav3: XP_006119853;
Xenopus tropicalis-vav3: XP_012817964; Esox lucius-Vav3: XP_010889475; Sturnus vulgaris-Vav3:
XP_014740857.1; Aplysia californica-Vav3-like: XP_012934911; Biomphalaria glabrata-Vav2-like:
XP_013065355; Esox lucius-Vav2: XP_010892236; Xenopus tropicalis-Vav2: NP_001039156; Pelodiscus
sinensis-Vav2: XP_006123811; Ficedula albicollis-Vav2: XP_016157973; Orcinus orca-Vav2: XP_004285057;
Ovisaries musimon-Vav2: XP_011973373; Sturnus vulgaris-Vav2: XP_014728763; Orcinus orca-Vav1:
XP_004277328; Ovis aries-Vav1: XP_012034581; Homo sapiens-Vav1: NP_005419; Mus musculus-Vav1:
NP_035821; Struthio camelus-vav1: XP_009668692; Pseudopodoces humilis-vav1: XP_014117547;
Nipponia nippon-Vav1: XP_009465925; Alligator mississippiensis-Vav1: XP_006265667; Pelodiscus
sinensis-Vav1: XP_006131759; Chelonia mydas-Vav1: XP_007070109; Xenopus tropicalis-Vav1:
XP_002940062; Poecilia latipinna-Vav1: XP_014889433; Takifugu rubripes-Vav1: XP_011611118; and
Hydra vulgaris-Vav1-like: CDG71338.
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2.4. The Expression Pattern of Lamprey Vav3 mRNA and Protein after Antigen Stimulation

The real-time quantitative PCR (Q-PCR) was performed to investigate the expression pattern
of lamprey vav3 mRNA in immune-related tissues after antigen stimulation. As shown in Figure 4,
lamprey vav3 mRNA was ubiquitously expressed in lymphocytes, gills, supraneural myeloid bodies,
kidneys and hearts in the control group. The strongest mRNA expression was detected in supraneural
myeloid bodies. In the mixed-antigens-stimulated group, the relative expression level of lamprey
vav3 mRNA was significantly up-regulated in lymphocytes (p < 0.05). Moreover, the relative expression
level of lamprey vav3 mRNA in supraneural myeloid bodies was extremely significantly increased
more than two folds in mixed-antigens-stimulated group relative to that of control group (p < 0.01).
Although the relative expression level of lamprey vav3 mRNA was obviously increased in gills after
stimulation, the difference between the two groups was not significant (p > 0.05).Int. J. Mol. Sci. 2017, 18, 2035  9 of 21 
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Figure 4. The relative expression levels of the lamprey vav3 mRNA in immune-related tissues
before and after challenged by mixed-antigens. The lamprey vav3 mRNA levels were determined in
immune-related tissues by using real-time quantitative PCR (Q-PCR) with an internal control, lamprey
gapdh. The stimulated group was challenged with the mixed pathogens. The significant differences
in lamprey vav3 mRNA expression between the stimulated and the corresponding control groups are
indicated with asterisks, *: p < 0.05, **: p < 0.01.
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Western blotting was performed with the anti-recombinant lamprey Vav3 polyclonal antibody
(pAb) to detect the expression patterns of lamprey Vav3 in immune-related tissues after challenged
by mixed-antigens. The internal control, β-actin of L. japonica, was detected as a band at
42-kDa (Figure 5a). The endogenous lamprey Vav3 was detected as a band at about 90-kDa in the
samples of lymphocytes, supraneural myeloid bodies, hearts, gills and kidneys in control group. In the
mixed-antigens-stimulated group, the relative expression levels of lamprey Vav3 in lymphocytes and
supraneural myeloid bodies were about 10-fold more up-regulated than those of their corresponding
control groupsy (Figure 5b). The fact that the relative expression levels of lamprey vav3 mRNA
and protein were significantly increased in lymphocytes and supraneural myeloid bodies after
mixed-antigens stimulation indicates that lamprey Vav3 plays an important role in the immune
response of lamprey lymphocytes.
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Figure 5. The relative expression levels of lamprey Vav3 in lamprey immune-related tissues after
challenged with mixed-antigens. Total protein samples were isolated from immune-related tissues.
(a) Western blotting analysis was performed to detect the expression levels of lamprey Vav3 with β-actin
of L. japonica as an internal control; (b) A column chart created using data from three independent
Western blotting analysis results. Data are presented as mean ± S.D. The significant difference p < 0.01
is shown with asterisks **.

The expression properties of lamprey Vav3 in response to the stimulation of lipopolysaccharide
(LPS) and phytohemagglutinin (PHA) were also evaluated by Western blotting methods in tissues of
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lymphocytes and supraneural myeloid bodies. As shown in Figure 6, the relative expression levels
of lamprey Vav3 in lymphocytes and supraneural myeloid bodies did not change much after PHA
stimulation, but they were up-regulated 100% and 250% after 24-h LPS stimulation in lymphocytes
and supraneural myeloid bodies, respectively. Our results reveal that lamprey Vav3 is involved in the
LPS-mediated immune responses of lymphocytes and supraneural myeloid bodies.
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Figure 6. The expression property of lamprey Vav3 in response to the stimulation of lipopolysaccharide
or phytohemagglutinin. Two groups of animals were stimulated with lipopolysaccharide (LPS) or
phytohemagglutinin (PHA). Lymphocytes and supraneural myeloid bodies were isolated from the
animals stimulated with LPS, PHA or not for extracting total protein samples. (a) Western blotting
analysis was used to detect the expression levels of lamprey Vav3 as described in Materials and
Methods Section; (b) A column chart created using data from three independent Western blotting
analysis results. Data are presented as mean ± S.D. The significant differences p < 0.05 or p < 0.01 are
shown with asterisks * or **, respectively.

2.5. The Distribution Pattern of Lamprey Vav3 in VLRB+ Lymphocytes after Stimulation with
Lipopolysaccharide (LPS) and Phytohemagglutinin (PHA)

To determine the distribution pattern of lamprey Vav3 in peripheral blood lymphocytes,
an immunofluorescence assay was performed according to the description in Materials and Methods
Section. As shown in Figure 7, the VLRB+ lymphocytes were stained in red color, and lamprey
Vav3 (stained in green color) were detected with nearly all distributed in the cytoplasm of VLRB+

lymphocytes in all three groups. From merged photos, it is easy to see that the amount of some big
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and round VLRB and lamprey Vav3 positive lymphocytes in total VLRB+ lymphocytes were increased
in LPS-stimulation groups (14.6%) compared to in control (2.9%) and PHA-stimulation (4.1%) groups
according to the calculation method mentioned in Materials and Methods Section. According to the
description of Alder et al. [28], these big and round VLRB+ lymphocytes are plasmacytes that can
secrete multimeric antigen-specific VLRB antibodies. Thus, the increasing of effector VLRB+ cells
further proved that lamprey Vav3 was involved in the LPS-mediated immune response of lamprey.Int. J. Mol. Sci. 2017, 18, 2035  12 of 21 
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Figure 7. The distribution pattern of lamprey Vav3 in VLRB+ lymphocytes after stimulation with
LPS and PHA. Lymphocytes were isolated from animals before and after treated with LPS or PHA.
The cells were first incubated with the rabbit anti-recombinant lamprey Vav3 poly-clonal antibody and
the mouse anti-VLRB mono-clonal antibody and then were incubated with Alexa Fluor 555-conjugated
goat anti-mouse IgG (red) and Alexa Fluor 488-conjugated goat anti-rabbit IgG (green), as described in
Materials and Methods Section. The nuclei were stained with Hoechst 33258 dye (blue). Cells were
examined by a Zeiss LSM710 confocal laser scanning microscope. The bar represents 10 µm. The big
and round cells (VLRB and lamprey Vav3 double positive) marked with arrows are plasmacytes.
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3. Discussion

The Vav family members, which play important roles in cell signaling and development, are
a group of signaling molecules with oncogenic potential. The most typical function of Vav family
members is to activate the nuclear factor of activated T-cells (NFAT) in lymphocytes, e.g., Vav2 and
Vav3 can trigger NFAT activation only in B-cells but Vav1 can do so in both T- and B-cells [30,31].
It was found that the phosphorylation of Vav family members is mediated by some transmembrane
or cytosolic protein tyrosine kinases such as Syk, Janus, Tec, Abl, and Src family kinases [11,32].
Although there is neither TCR nor BCR mediated adaptive immune system, lamprey lymphocytes
were found not only to express homologous genes involved in some immunological activities relevant
to mammalian lymphocytes [33], but also to express VLRs as the basis for antigen recognition [24].
Thus, it was proven that there is not only the innate immune system, but also an alternative adaptive
immune system in jawless vertebrates [34]. Thus far, there are no reports on what constitutes the
molecular basis of the signal transduction mechanisms of the lamprey lymphocytes. In this study, we
have isolated and characterized a vertebrate Vav3 homologous molecule from L. japonica for the first
time. The existence of this signaling molecule in lamprey lymphocytes makes us curious about the
evolution of Vav family and the potential role it plays in lamprey.

To find other Vav homologs in lamprey, sequence alignment by BLAST tools in various databases
was performed. Finally, only two Vav2 (accession number: gbAIN44441, ENSPMAT00000002100.1) and
a Vav3 homologous sequences (accession number: ENSPMAT00000002350.1) were found in lamprey,
and no Vav1 homologous sequence was found in various lamprey related databases. The existence
of Vav2 and Vav3 homologs and the absence of Vav1 homolog in lampreys indicate that the ancestor
gene of Vav family has split only once in lampreys through gene duplication event. The diversification
of the lamprey Vav2 and Vav3 was further revealed by conserved motif analysis. As shown in Figure 3,
their CSH3 domains diversified most. Lamprey Vav2 possesses motifs 19 and 20 which are well
conserved among all Vav2 molecules in its CSH3 domain but absent in lamprey Vav3 and other Vav3
molecules. Lamprey Vav3 does not possess motif 21 which exist only in CSH3 domain of amniotes’
Vav3 molecules. Thus, it can be deduced that lamprey Vav2 is probably more primitive than lamprey
Vav3 in evolution. This conclusion is supported by the result of phylogenetic analysis in a certain
degree. Lamprey Vav2 and lamprey Vav3 are grouped together in the Vav2 cluster, and the genetic
distance between the common ancestors of Vav2 subfamily and Vav family is the shortest, indicating
that the Vav2 subfamily originated earlier than Vav3 and Vav1 subfamilies.

The similar structure between lamprey Vav3 and mammalian Vav3 implied that they may
have similar functions (Figure 1). Lamprey vav3 was proven to be transcribed and distributed
widely in several immune-related tissues, and this widely distribution pattern is in accordance with
that of vertebrate vav3 [2,3]. Lamprey vav3 mRNA was found significantly up-regulated in the
lymphocytes, and extremely up-regulated in supraneural myeloid bodies after stimulated by mixed
antigens (Figure 4). It was further confirmed by Western blot analysis that the relative expression level
of lamprey Vav3 in the mixed-antigens-stimulated group was also up-regulated in the lymphocytes
and supraneural myeloid bodies (Figure 5). The above results showed that the lamprey Vav3 is
functionally involved in the immune response of lamprey. Further deep investigations, such as the
binding and function of lamprey Vav3 to RhoA, RhoG and Rac1, are needed to clarify the precise role
of lamprey Vav3 played in immune response.

New evidence suggested that the similar organizations of thymus are discovered in the gill
filament tips of lampreys, and VLRA+ cells develop in this thymoid region. In some functional
regards, VLRA+ lymphocytes can be proliferated as T cells after PHA (a kind of T cell mitogen)
stimulation [25,35]. In the present study, PHA and LPS (a kind of B cell mitogen) were also used
to examine the lamprey Vav3 expression property. Intriguingly, the relative expression levels of
lamprey Vav3 neither changed obviously in lymphocytes and supraneural myeloid bodies after PHA
stimulation (Figure 6), nor changed in gills after mixed-antigen stimulation (Figure 5). In addition,
the number of plasmacytes was not changed obviously in VLRB and lamprey Vav3 double positive
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lymphocytes after PHA stimulation (Figure 7). This suggests that lamprey Vav3 may not be involved
in the PHA-mediated immune response of lamprey, but further studies are still needed to verify the
exact relationship of lamprey Vav3 with VLRA+ or VLRC+ lymphocytes.

Recently, Btk, Blnk and Syk homologs which are involved in vertebrates’ BCR signaling pathway
have also been identified in lamprey [36–39]. They were found un-regulated in lymphocytes and
supraneural myeloid bodies after LPS or mixed-antigens stimulation. In the current study, we also
found that lamprey Vav3 distribute in VLRB+ lymphocytes and are up-regulated in the lymphocytes
and supraneural myeloid bodies after LPS or mixed-antigens stimulation. Amemiya et al. [23] found
that lamprey supraneural myeloid body presents every type of blood cells in all stages of maturity
including their precursors after hematopoietical stimulation, a property seems to be highly similar
to “bone marrow” in higher vertebrates. The consistent reaction of these signaling molecules (Syk,
Btk, Blnk and lamprey Vav3) in lamprey lymphocytes and supraneural myeloid bodies indicated
that they may play important roles in the immune response of lamprey VLRB+ lymphocytes (effector
B-like cells). These suggest that although the transmembrane adaptor of VLRB is still unknown, VLRB
and BCR have conserved molecular basis in their intracellular signaling pathways.

4. Materials and Methods

4.1. Handing of Animals

The care of laboratory animal and the animal experimental operation have conformed to the
guidelines of Administration Rule of Laboratory Animal of Chinese government and were permitted by the
Liaoning Normal University Animal Welfare and Research Ethics Committee (issued on 6 March 2011).
Lampreys were bought from a market of Tongjiang Valley (Jiamusi City, Heilongjiang, China) and kept
in laboratory aquarium which equipped with a physical and biological filtration system under 4 ◦C.
The animals in the stimulated and control groups were intraperitoneal injected with 100 µL antigens
or normal saline, respectively. In the current study, three kinds of antigens (the mixed-antigens,
lipopolysaccharide (LPS, Sigma-Aldrich Co. LLC, Saint Louis, MO, USA, 30 µg/100 µL in normal
saline) and phytohemagglutinin (PHA, Sigma-Aldrich, 30 µg/100 µL in normal saline)) were used
to immune lampreys. The mixed-antigens contained equal amount heat-inactive three microbial
strains (1 × 107 cfu/mL, in normal saline) including the representatives of gram-negative (Escherichia
coli DH5α), gram-positive (Staphylococcus aureaus) and fungi (Saccharomyces cerevisiae). The animals
were immunized twice at 7-day intervals and were sacrificed for taking tissues 24 h after the second
immunization [40].

4.2. Amplification of the Lamprey vav3 cDNA Fragment

The lymphocyte-like cells were isolated from peripheral blood by using Ficoll density gradient
centrifugation method as described by Liu et al. [41]. Total RNAs were extracted from lymphocyte-like
cells of L. japonica by using RNAiso reagent bought from TaKaRa Biotechnology (Kusatsu, Japan)
CO., LTD. (Dalian, China) and kept in RNase-free water. Total RNA samples were reverse transcribed to
cDNA sequences by using PrimeScriptTM II First Strand cDNA Synthesis Kit (TaKaRa Biotechnology).
The ORF of lamprey vav3 was amplified by using PCR method with a pair of sense and antisense
primers listed in Table A1.

4.3. Real-Time Quantitative PCR

Total RNA samples were isolated separately from lymphocytes, supraneural myeloid bodies,
gills, kidneys and hearts. The supraneural myeloid bodies were isolated according to the description
of George et al. [42]. The cDNA sequences were synthesized from total RNA samples by reverse
transcription with PrimeScript™ RT Reagent Kit (TaKaRa Biotechnology). The TaKaRa SYBR®

PrimeScript™ RT-PCR Kit was used to perform Q-PCR according to the manufacturer’s instruction.
The starting quantity of RNA was normalized by the internal control, the gapdh of L. japonica (accession
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number KU041137). The primers for amplifying gapdh and lamprey vav3 cDNA fragments were listed
in Table A1. The cycling system was the same as described by Zhang et al. [43]. Triplicate experiments
for each sample were carried out and the results were shown as mean ± standard deviation (S.D.).

4.4. Analyses of Sequence Similarity and Conserved Motifs and Phylogenetic Tree Reconstruction

The protein sequences of Vav3, Vav2 and Vav1 molecules were searched from NCBI database
(Available online: http://www.ncbi.nlm.nih.gov/) to conduct sequence similarity, conserved motifs
and phylogenetic analyses. Multiple sequence alignments of Vav-like with some jawed vertebrates
Vav3 and Vav2 molecules were conducted using BioEdit 7.0 software (Micro Focus, Newbury, United
Kingdom). The protein conserved domains were identified by the Simple Modular Architecture
Research Tool (SMART, available online: http://smart.embl-heidelberg.de/). The phylogenetic
tree was reconstructed by software MEGA 4.0 (Available online: http://www.megasoftware.net/
mega4/)with neighbor-joining (NJ) method [37]. The conserved motifs (recurring, fixed-length
patterns) were discovered by the Multiple Em for Motif Elicitation tool (MEME, available online:
http://meme-suite.org/tools/meme) [44]. The number and the widths of conserved motifs were set
to 25 and 5–20 amino acids, respectively.

4.5. The Expression and Purification of Rlamprey Vav3

The expression and purification of recombinant lamprey Vav3 were conducted by following
the description of Han et al. [38]. Briefly, the ORF region of lamprey vav3 was sub-cloned into the
expression vector pET-32a (+) by introduction of two restriction sites (EcoR I and Hind III) as ligation
sites. The recombinant lamprey Vav3 was overexpressed in E. coli BL21 (DE3), and the insoluble fraction
of inclusion body was collected by centrifugation, and the pellet was dissolved in 6M urea solution
and purified with Ni affinity chromatography (GE Healthcare, New York, NY, USA). The purified
recombinant lamprey Vav3 was concentrated to about 0.5 mg/mL by dialysis against 20% polyethylene
glycol 6000 solution (Sangon Biotech, Shanghai, China) and stored at −20 ◦C.

4.6. Mass Spectrometry of Recombinant Lamprey Vav3 Protein

Recombinant lamprey Vav3 protein was identified by peptide mass fingerprinting technique
with an autoflex™ speed MALDI-TOF mass spectrometer (Bruker Daltonics Inc., Billerica, MA, USA).
The purified recombinant lamprey Vav3 was analyzed by 12% sodium dodecylsulfate -polyacrylamide
gel electrophoresis (SDS-PAGE). The bands were excised from coomassie stained SDS-PAGE gel and
digested with sequencing grade modified trypsin (Catalog No: V5111, Promega Corporation, Madison,
WI, USA) after removal of coomassie staining. The digested peptides in the gel slices were extracted by
the method described by Shevchenko et al [45]. The matrix-assisted laser desorption/ ionization time
of flight (MALDI-TOF) mass spectrometry was operated in the positive ion mode with the following
acquisition cycle: a full scan (m/z 750) recorded in the orbitrap analyzer at resolution R 60,000 and
then followed by MS/MS of the 20 most intense peptide ions in the LTQ analyzer. All MS raw data
were searched against all lamprey sequences available in the NCBI database using the MS-Mascot
searching algorithm. Search criteria used were as follows: oxidation of Met, carbamidomethylation of
Cys, Trypsin, 0.5 Da peptide mass to tolerance, 1 Max missed cleavage sequence coverage >10%.

4.7. Production of Polyclonal Antibody

The rabbit anti-recombinant lamprey Vav3 polyclonal antibody (pAb) was generated according
to the description of Han et al. [38]. The titer of the pAb against recombinant lamprey Vav3 was
checked by enzyme-linked immunosorbent assay (ELISA). The pAb was verified using Western blot
method with purified recombinant lamprey Vav3 as standard protein samples. The pAb was purified
by chromatography method with a CNBr-activated sepharose 4B column (GE Healthcare) and stored
at −20 ◦C.

http://www.ncbi.nlm.nih.gov/
http://smart.embl-heidelberg.de/
http://www.megasoftware.net/mega4/
http://www.megasoftware.net/mega4/
http://meme-suite.org/tools/meme
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4.8. Western Blotting Analysis

Total protein samples were extracted from five immune-related tissues mentioned above with
a cell lysis buffer (Beyotime, Beijing, China). The cell debris was removed from lysate by centrifugation
at 12,000 rpm for 15 min at 4 ◦C. Total protein samples or the purified recombinant lamprey Vav3 were
separated by 12% SDS-PAGE, and then transferred on the polyvinylidene fluoride (PVDF) membranes.
The following procedures of Western blotting were done according to the description of Li et al. [40].
The signal intensity data were obtained and calculated from three independent experiments.

4.9. Immunofluorescence Assay

Lymphocyte cells were isolated from animals before and after treated with LPS or PHA, and were
suspended in 1.5 mL Eppendorf tubes and fixed with paraformaldehyde solution (4% in phosphate
buffer saline (PBS)) for 20 min at room temperature. Then, Immunofluorescence assay was performed
according to the description of Han et al. [38] with a rabbit anti-recombinant lamprey Vav3 poly-clonal
antibody (1000-fold) and a mouse anti-VLRB mono-clonal antibody (1000-fold) [46]. Cells were
observed by a Zeiss LSM710 Confocal Laser Scanning Microscope (Oberkochen, Germany) and each
type of cells (including big and round VLRB+ plasmacytes and small VLRB+ lymphocytes) were
counted and analyzed in 5 microscope fields by using Zeiss ZEN LE software.

4.10. Statistical Analysis

Data were shown as mean ± S.D. The significance of the difference between two groups was
evaluated by SPSS statistical software package with a Student’s t test. Differences were considered
statistically significant or extreme significant at p < 0.05 or p < 0.01, respectively.

5. Conclusions

In conclusion, a Vav3 homolog was characterized in lamprey; the divergence of lamprey Vav2 and
lamprey Vav3, the only two members of Vav family identified in lampreys, is in their CSH3 domains.
Lamprey vav3 mRNA and protein were significantly up-regulated in lymphocytes and supraneural
myeloid bodies after mixed-antigens and LPS stimulation, indicating that lamprey Vav3 should be
involved in the LPS-mediated immune response of lamprey. The distribution of lamprey Vav3 in the
cytoplasm of VLRB+ lymphocytes and the increased number of effector VLRB+ lymphocytes after LPS
stimulation provided a clue for the further study of the precise role of lamprey Vav3 played in the
signaling pathway of lamprey VLRB+ lymphocytes.
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Abbreviations

Vav Vav guanine nucleotide exchange factor
TCR T-cell receptor
BCR B-cell receptor
LPS Lipopolysaccharide
PHA Phytohemagglutinin
SH Src-homology
VLR Variable lymphocyte receptor
ORF Open reading frame
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NJ Neighbor-Jointing
MEME Multiple Em for Motif Elicitation
Q-PCR The real-time quantitative PCR
pAb Polyclonal antibody
NFAT The nuclear factor of activated T-cells
SMART Simple Modular Architecture Research Tool
ELISA Enzyme-linked immunosorbent assay
PVDF Polyvinylidene fluoride
IPTG Isopropyl β-D-1-thiogalactopyranoside

Appendix A. The Expression and Purification of the Recombinant Lamprey Vav3 Protein

The ORF region of lamprey Vav3 was amplified with expression primers, which contained EcoR I and
Hind III restriction sites listed in Table A1. The amplified cDNA fragment was ligated with pET-32a (+)
plasmid after double digestion with EcoR I and Hind III endonucleases. The recombinant expression vector
was successfully transformed into E. coli BL21 (DE3) strain. The recombinant lamprey Vav3 was overexpressed
by induction with 1 or 0.1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) as a His-tag fused inclusion body
protein (Figure A1a). After purification with Ni2+-affinity chromatography, the SDS-PAGE was used to check the
purity of the product. There are two bands on the gel, a 120-kDa band that is in accordance with the recombinant
lamprey Vav3 molecular mass, and a weak 67-kDa band (Figure A1B). The peptide mass fingerprint of the
67-kDa band (Figure A1C) was identified the same as that of the 120-kDa band (Figure A1D) by MALDI-TOF
mass spectrometry analysis with significant protein scores (p < 0.05). Both peptide peaks at m/z 1817.837 were
identified as R.AVQDDSQVFELAQVLR.D, which is a partial sequence of the lamprey Vav3 (Figure 1). The purified
recombinant lamprey Vav3 was adjusted to about 0.5 mg/mL for antibody generation.

Table A1. The sequences of primers used in this study.

Name Sequences

Primers designed for Lja-Vav3 open reading frame (ORF) cloning

Forward-Lja-vav3 5′-ATGGAGGAAGAGGGCAGGTT-3′

Reverse-Lja-vav3 5′-CGTGGAAGAAGAAATGCTCTGA-3′

Primers designed for real-time PCR

Lja-vav3 (upstream) 5′-ACCTGCGTCAACAGATTCGG-3′

Lja-vav3 (downstream) 5′-CACCGATGCCTTTTTTCTGC-3′

gapdh (upstream) 5′-ACCAACTGCCTGGCTCCT-3′

gapdh(downstream) 5′-TCTTCTGCGTTGCCGTGT-3′

Primers for subcloning Lja-vav3 ORF into the pET-32a vector

Upstream 5′-ATGCCTGATATCGGATCCGAATTCATGGAGGAAGAGGGCAGGTTGTGGC-3′

Downstream 5′-GTGCTCGAGTGCGGCCGCAAGCTTGAGCATTTCTTCTTCCACGTAGGAG-3′
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The recombinant lamprey Vav3 was separated by 12% SDS-PAGE and stained with coomassie 
brilliant blue R-250. (a) The recombinant lamprey Vav3 was overexpressed in E. coli BL21 (DE3) 
strain by 1 and 0.1 mM IPTG induction. M: protein marker; 1: crude lysate of E. Coli BL21 (DE3) 
transformed by pET-32a (+) vector with 1mM IPTG induction; 2: crude lysate of E. Coli BL21 
transformed by pET-32a (+lamprey Vav3) vector without IPTG induction; 3: crude lysate of E. Coli 
BL21 transformed by pET-32a (+lamprey Vav3) vector with 1mM IPTG induction; 4: crude lysate of 
E. Coli BL21 transformed by pET-32a (+lamprey Vav3) vector with 0.1mM IPTG induction; (b) The 
recombinant lamprey Vav3 his-tag fusion protein was purified by using affinity chromatography 
method with Ni-NTA His-Bind® Resin. M: protein marker; 1: target protein eluted with 25 mM 
imidazole elution buffer; 2: target protein eluted by 100 mM imidazole elution buffer; (c,d) Peptide 
mass fingerprinting analysis of recombinant lamprey Vav3 protein bands 1 and 2 by an autoflex™ 
speed MALDI-TOF mass spectrometer. 

Figure A1. The expression, purification and identification of recombinant lamprey Vav3 his-tag
fusion protein. A pET-32a (+) vector was used as the expression vector for expressing lamprey Vav3
open reading frame (ORF) region in Escherichia coli BL21 (DE3) as a fusion protein with 6× His-tag.
The recombinant lamprey Vav3 was separated by 12% SDS-PAGE and stained with coomassie brilliant
blue R-250. (a) The recombinant lamprey Vav3 was overexpressed in E. coli BL21 (DE3) strain by 1
and 0.1 mM IPTG induction. M: protein marker; 1: crude lysate of E. Coli BL21 (DE3) transformed by
pET-32a (+) vector with 1mM IPTG induction; 2: crude lysate of E. Coli BL21 transformed by pET-32a
(+lamprey Vav3) vector without IPTG induction; 3: crude lysate of E. Coli BL21 transformed by pET-32a
(+lamprey Vav3) vector with 1mM IPTG induction; 4: crude lysate of E. Coli BL21 transformed by
pET-32a (+lamprey Vav3) vector with 0.1mM IPTG induction; (b) The recombinant lamprey Vav3
his-tag fusion protein was purified by using affinity chromatography method with Ni-NTA His-Bind®

Resin. M: protein marker; 1: target protein eluted with 25 mM imidazole elution buffer; 2: target protein
eluted by 100 mM imidazole elution buffer; (c,d) Peptide mass fingerprinting analysis of recombinant
lamprey Vav3 protein bands 1 and 2 by an autoflex™ speed MALDI-TOF mass spectrometer.
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Appendix B. The Production and Verification of Polyclonal Antibody

The pAb against recombinant lamprey Vav3 was generated as described in Materials and Methods Section.
The titer of rabbit anti-recombinant lamprey Vav3 pAb was checked by ELISA method and it was higher than
1:32,000 (Figure A2a). The pAb was then purified by affinity chromatography method from rabbit antiserum
and its specificity against recombinant lamprey Vav3 was verified by Western blot method. Two bands could be
detected by the pAb, one 120-kDa band corresponding to the full-length recombinant lamprey Vav3, and another
67-kDa band corresponding to a partial synthesized recombinant lamprey Vav3 (Figure A2b).
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