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Abstract: Previous studies indicate that breast cancer cells with high aldehyde dehydrogenase
(ALDH) activity and CD44 expression (ALDHhiCD44+) contribute to metastasis and therapy
resistance, and that ALDH1 correlates with poor outcome in breast cancer patients. The current
study hypothesized that ALDH1 functionally contributes to breast cancer metastatic behavior and
therapy resistance. Expression of ALDH1A1 or ALDH1A3 was knocked down in MDA-MB-468 and
SUM159 human breast cancer cells using siRNA. Resulting impacts on ALDH activity (Aldefluor®

assay); metastatic behavior and therapy response in vitro (proliferation/adhesion/migration/colony
formation/chemotherapy and radiation) and extravasation/metastasis in vivo (chick choroiallantoic
membrane assay) was assessed. Knockdown of ALDH1A3 but not ALDH1A1 in breast cancer
cells decreased ALDH activity, and knockdown of ALDH1A1 reduced breast cancer cell metastatic
behavior and therapy resistance relative to control (p < 0.05). In contrast, knockdown of ALDH1A3
did not alter proliferation, extravasation, or therapy resistance, but increased adhesion/migration
and decreased colony formation/metastasis relative to control (p < 0.05). This is the first study to
systematically examine the function of ALDH1 isozymes in individual breast cancer cell behaviors that
contribute to metastasis. Our novel results indicate that ALDH1 mediates breast cancer metastatic
behavior and therapy resistance, and that different enzyme isoforms within the ALDH1 family
differentially impact these cell behaviors.
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1. Introduction

Breast cancer is a leading cause of death in women, due primarily to ineffective treatment of
metastatic disease. In order to reduce mortality from breast cancer, it is therefore essential to learn more
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about the metastatic process, and in particular, mechanisms that may contribute to therapy resistance
and disease progression [1,2].

Metastasis is a complex process that involves tumor dissemination from the primary tumor to
distant sites throughout the body, arrest and extravasation at secondary organ sites, and initiation
and maintenance of growth of metastatic lesions [1,3,4]. Given the multi-step nature of this
process, it is not surprising that metastasis is highly inefficient, with the main rate-limiting steps
being initiation of growth at the secondary site from single tumor cells to micrometastases, and
maintenance of that growth into clinically detectable macrometastases [1,3–5]. Given the heterogeneous
nature of breast cancer, this metastatic inefficiency suggests that only a small subpopulation of
tumor cells can successfully navigate the entire metastatic process to successfully form metastases.
We have previously identified such a subset of breast cancer cells with high aldehyde dehydrogenase
(ALDH) activity and expression of CD44, and demonstrated that these ALDHhiCD44+ cells have
enhanced tumor-initiating and metastatic abilities both in vitro and in vivo [6]. Subsequent studies by
Charafe-Jauffret et al. (2009, 2010) supported our findings, indicating that ALDHhiCD44+ cells may
have a role as metastasis-initiating cells [7,8]. We have also demonstrated that these ALDHhiCD44+

cells are significantly more resistant to chemotherapy and radiation therapy, and that the observed
therapy resistance may occur, at least in part, via ALDH-dependent mechanisms [9].

The ALDH superfamily of enzymes is involved in detoxification and/or bioactivation of various
intracellular aldehydes in a NAD(P)+-dependent manner [10,11]. Of particular biological importance,
the ALDH1 family of enzymes (namely ALDH1A1 and ALDH1A3) plays an important role in oxidizing
vitamin A (retinal) to retinoic acid (RA) through an alcohol intermediary. RA functions as a ligand for
nuclear retinoid receptors and leads to transactivation and transrepression of target genes, and is finally
degraded by CYP26 enzymes [12]. ALDH activity has been shown to be involved in self-protection
of normal stem cells and in resistance to the chemotherapeutic drug cyclophosphamide [13]. In the
treatment of acute promyelocytic leukemia (APL), the differentiation agent all-trans retinoic acid
(ATRA) is used clinically in combination with chemotherapy [14,15]. Increased levels of RA signaling
from ATRA treatment have been shown to indirectly suppress ALDH1 promoter activity in liver
cells [16], as well as driving the differentiation of promyelocytes into neutrophils, causing enhanced
cell-cycle arrest and apoptosis [17]. Additionally, ATRA has been shown to modulate cell growth,
apoptosis, and differentiation of breast cancer cells [18]. In terms of therapy resistance, Tanei et al.
(2009) conducted a clinical study looking at 108 breast cancer patients who received neoadjuvant
paclitaxel and epirubicin-based chemotherapy [19]. When ALDH1A1+ and CD24−CD44+ expression
was compared between core needle biopsies (pre-treatment) and subsequent excision (post-treatment),
there was a significant increase in ALDH1A1 positive cells, but no change in CD24−CD44+ cells,
indicating that ALDH1A1+ cells may play a significant role in resistance to chemotherapy.

High ALDH1 expression has been shown to correlate with poor prognosis in breast cancer
patients [20], and has been associated with early relapse, metastasis development, therapy resistance
and poor clinical outcome [7,8,21–23]. The ALDH1A1 isozyme has been shown to have increased
expression in breast cancer patients who present with positive lymph nodes and in patients who
succumb to their disease [24]. In a meta-analysis that looked at almost 900 breast cancer cases
compared to over 1800 control samples, Zhou et al. (2010) found that ALDH1A1 expression was
significantly associated with a high histological grade, ER/PR negativity, HER2 positivity, and worse
overall survival [25]. Furthermore, when ALDHbright cells in various tumors, including breast, are
treated with ALDH1A1-specific CD8+ T cells which target and eliminate ALDH1A1-positive cells,
inhibition of tumorigenic and metastatic growth is observed [26]. In contrast, Marcato et al. (2011)
demonstrated that ALDH1A3 (but not ALDH1A1) expression in patient breast tumors correlates
significantly with tumor grade, metastasis, and cancer stage, indicating that even within the ALDH1
family, alternate isozymes may function differently [27]. Thus, in addition to the classical role of ALDH
as a detoxification enzyme, growing evidence suggests that it may also be playing an additional role in
disease progression.
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The goal of the current study was to test the hypothesis that ALDH1 is not simply a marker of
highly aggressive breast cancer cells and poor patient prognosis, but that it also contributes functionally
to metastatic behavior and therapy resistance. Importantly, we wanted to begin to elucidate the
differential roles of ALDH1 isozymes, namely ALDH1A1 and ALDH1A3. The novel findings presented
here indicate that ALDH1 is functionally involved in breast cancer metastasis and therapy resistance,
and that different isozymes within the ALDH1 family differentially impact these cell behaviors.

2. Results

2.1. Treatment with DEAB (Diethylaminobenzaldehyde) Reduces Breast Cancer Cell Proliferation, Adhesion,
Migration, and Colony Formation In Vitro

We first investigated whether treating cells with previously established chemical inhibitors of
ALDH would have a functional effect on malignant breast cancer cell behavior in vitro, including
proliferation, adhesion, migration, and colony formation. This included treatment with a direct
competitive substrate of ALDH (diethylaminobenzaldehyde (DEAB)) [28]), as well as the differentiation
agent ATRA which has been shown to reduce ALDH promoter activity [9,16]. We observed that cells
treated with either ATRA or DEAB demonstrated decreased growth in normal culture relative to
respective vehicle control (EtOH) treated cells (p < 0.05) (Figure 1A). MDA-MB-468 cells treated with
DEAB were significantly less adherent (Figure 1A) and migratory (Figure 1C) than vehicle control
cells, and DEAB-treated SUM159 cells also demonstrated a significant decrease in migration (p < 0.05)
(Figure 1C). In contrast, MDA-MB-468 and SUM159 cells treated with ATRA were observed to be
significantly more adherent (p < 0.01) (Figure 1B) and migratory (Figure 1C) than respective control
cells (p < 0.05). Finally, in keeping with the proliferation results, cells treated with either ATRA or
DEAB demonstrated decreased colony formation in soft agar relative to vehicle control cells (p < 0.05)
(Figure 1D).
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Figure 1. Treatment with diethylaminobenzaldehyde (DEAB) reduces breast cancer cell (A) proliferation,
(B) adhesion, (C) migration, and (D) colony formation in vitro. MDA-MB-468 (left panels) and SUM159
(right panels) human breast cancer cells were treated with 5 µM all-trans retinoic acid (ATRA), 100 µM
DEAB or ethanol (EtOH) as a vehicle control (CON). In all cases, data represents the mean ± standard
error of the mean (SEM) normalized to vehicle control. * = significantly different than respective vehicle
control treatment (p < 0.05).

2.2. Decreased Expression of ALDH1A3 but Not ALDH1A1 Reduces ALDH Activity as Measured by the
ALDEFLUOR® Assay

Rather than being direct inhibitors of ALDH isozyme expression, DEAB is a competitive substrate
of ALDH [28] and ATRA inhibits ALDH promoter activity indirectly through the retinoic acid pathway.
In support of this, we did not observe any significant effect of these inhibitors on directly reducing
ALDH1A1 or ALDH1A3 protein expression (Figure S1). However, given that previous studies have
demonstrated that expression of ALDH1A1 versus ALDH1A3 isozymes have differential correlation
with tumor grade, metastasis, and cancer stage in breast cancer patients [27], we wanted to test the
hypothesis that directly inhibiting ALDH using the alternative approach of targeted knockdown of
ALDH1A1 or ALDH1A3 would also reduce proliferation, adhesion, migration, and colony formation
of breast cancer cells.

siRNA was used to knockdown expression of two ALDH1 isozymes (ALDH1A1 and ALDH1A3)
in MDA-MB-468 and SUM159 breast cancer cells and generate the following cell populations: 468CON,
468ALDH1A1low, 468ALDH1A3low, 159CON, 159ALDH1A1low, and 159ALDH1A3low. Knockdown
of RNA and protein expression was confirmed by quantitative real-time polymerase chain reaction
(RT-PCR) and immunoblotting respectively (Figure 2A–C).

There has been some debate over which ALDH1 isozyme is responsible for the ALDH enzymatic
activity measured in the ALDEFLUOR® assay. (StemCell Technologies, Vancouver, BC, Canada), with
some groups suggesting that ALDH1A1 is responsible, while others believe that it is ALDH1A3 [27,29].
Compared to respective siRNA scrambled controls, we observed that 468ALDH1A3low and
159ALDH1A3low cell populations did demonstrate a significant decrease in ALDH activity (p < 0.001),
while 468ALDH1A1low and 159ALDH1A1low cell populations did not exhibit a change in ALDH
activity (p > 0.05) (Figure 2D). This data is further supported by the observation that ALDH1A3
mRNA expression is higher than ALDH1A1 mRNA expression in sorted ALDHhi versus unsorted cell
populations (Figure S2). Our data also supports previous observations by Marcato et al. (2011), and
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indicates that the ALDH1A3 isozyme is the major contributor to ALDH activity in breast cancer cells
as measured by the ALDEFLUOR® assay [27].
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Figure 2. Decreased expression of ALDH1A3 but not ALDH1A1 reduces ALDH activity as measured
by the Aldefluor® assay. MDA-MB-468 (left panels) or SUM159 (right panels) human breast cancer
cells were transfected with 100 pmol siRNA pool targeted towards ALDH1A1, ALDH1A3, or a
scrambled control using Lipofectamine to generate the following cell lines: 468CON, 468ALDH1A1low,
468ALDH1A3low, 159CON, 159ALDH1A1low, and 159ALDH1A3low. After 4 days, RNA, cell lysates, or
cells were collected and (A,B) qRT-PCR, (C) immunoblotting, or (D) Aldefluor® assays were performed
to assess ALDH1 gene expression, ALDH1 protein expression, and ALDH enzyme activity (respectively).
Data represents the mean± SEM. * = significantly different than respective siCON, 468CON, or 159CON
scrambled control cells (p < 0.05).

2.3. Decreased Expression of ALDH1A1 Reduces Breast Cancer Cell Proliferation, but Adhesion and Migration
of Human Breast Cancer Cells Is Differentially Influenced by ALDH1A1 versus ALDH1A3 In Vitro

Malignant breast cancer cell behavior in vitro was assessed in response to direct knockdown of
ALDH1A1 or ALDH1A3 by siRNA (Figure 3). 468ALDH1A1low and 159ALDH1A1low cells demonstrated
significantly decreased growth in normal culture relative to respective control cells (p < 0.05), whereas
468ALDH1A3low and 159ALDH1A3low cells showed no difference in proliferation compared to control
cells. Lag times (time to reach exponential growth phase) were also observed to be longer for
468ALDH1A1low and 159ALDH1A1low cells versus respective control cells (9 days vs. 5 days for
MDA-MB-468 cells; 5 days vs. 3 days for SUM159 cells) (Figure 3A). We next assessed the influence
of ALDH1A1 and ALDH1A3 knockdown on breast cancer cell adhesion and migration in vitro
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(Figure 3B,C). 468ALDH1A1low and 159ALDH1A1low cells were observed to be significantly less
adherent (Figure 3B), and less migratory (Figure 3C) than respective control cells (p < 0.05). In contrast,
468ALDH1A3low and 159ALDH1A3low cells were observed to be significantly more adherent and more
migratory (Figure 3B,C) than respective control cells (p < 0.05), suggesting that adhesion and migration
of human breast cancer cells is differentially influenced by ALDH1A1 versus ALDH1A3. Knockdown
of either ALDH1A1 or ALDH1A3 resulted in reduced colony formation in soft agar relative to control
cells (p < 0.05) (Figure 3D). It should be noted that the adhesion and migration assays (Figure 3B,C)
are performed over time periods of 24 h or less when siRNA knockdown is strong. However, in
the proliferation and colony-forming assays (Figure 3A,D), the studies extend well past when the
knockdown would be expected to persist. This suggests that the influence of ALDH1 on proliferation
and colony formation is an early but important effect that then has a “feed-forward” or downstream
effect on the ability of breast cancer cells to proliferate or form established/persistent colonies.
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Figure 3. Decreased expression of ALDH1A1 reduces breast cancer cell proliferation, but adhesion and
migration of human breast cancer cells is differentially influenced by ALDH1A1 versus ALDH1A3
in vitro. MDA-MB-468 (left panels) and SUM159 (right panels) human breast cancer cells were treated
with control siRNA (siCON) or ALDH-specific siRNA (siALDH1A1 or siALDH1A3) for 96 h to generate
the following cell lines: 468CON, 468ALDH1A1low, 468ALDH1A3low, 159CON, 159ALDH1A1low,
159ALDH1A3low. (A) Proliferation; (B) adhesion assays; (C) migration; and (D) colony formation. In all
cases, data represents the mean ± SEM normalized to respective scrambled control. * = significantly
different than respective scrambled control (p < 0.05).
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2.4. Decreased Expression of ALDH1A1 and ALDH1A3 Reduces In Vivo Metastatic Ability of Breast Cancer
Cells in the Chick Chorioallantoic Membrane (CAM) Assay

In order to assess the metastatic ability of ALDH-deficient cell populations in vivo, GFP-labeled
MDA-MB-468 cell populations (468CON, 468ALDH1A1low, 468ALDH1A3low cells) or CMFDA-labeled
SUM159 cell populations (159CON, 159ALDH1A1low, 159ALDH1A3low cells) were inoculated on the
CAM of 9- or 12-day-old chicken embryos, and the percentage of breast cancer cell extravasation
into the CAM and formation of micrometastases in the chicken embryo were analyzed (Figure 4).
468ALDH1A1low and 159ALDH1A1low cells demonstrated a significant decrease in extravasation
compared to respective control cells (p < 0.05), whereas there was no significant difference observed
in the extravasation of 468ALDH1A3low or 159ALDH1A3low cells compared to control (Figure 4A).
In contrast, Both ALDH1A1low and ALDH1A3low cell populations from both MDA-MB-468 and
SUM159 cell lines demonstrated a significant decrease in the number of micrometastatic tumors that
were able to form compared to control (p < 0.05) (Figure 4B).
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Figure 4. Decreased expression of ALDH1A1 and ALDH1A3 reduces in vivo metastatic ability of
breast cancer cells in the chick CAM assay. GFP-labeled MDA-MB-468 or CMFDA-labeled SUM159 cell
populations were transfected with 100 pmol (MDA-MB-468) or 400 pmol (SUM159) siRNA targeted
towards ALDH1A1, ALDH1A3, or scrambled control using Lipofectamine to generate the following
cell lines: 468CON, 468ALDH1A1low, 468ALDH1A3low, 159CON, 159ALDH1A1low, 159ALDH1A3low.
After 4 days, 1 × 105 (extravasation assay) or 2 × 105 (micrometastasis assay) cells were injected into
chicken embryos and (A) cell extravasation was observed after 24 h, or (B) micrometastatic formation
was observed after 7days. Data represents the mean± SEM normalized to control cells. * = significantly
different than respective 468CON and 159CON cells (p < 0.05).

2.5. Decreased Expression of ALDH1A1 but Not ALDH1A3 Sensitizes Breast Cancer Cells to Chemotherapy
and Radiation In Vitro

Finally, we have previously observed that breast cancer cells with high ALDH activity and
CD44 expression (ALDHhiCD44+ phenotype) are significantly more resistant to chemotherapy and
radiation therapy, and that this therapy resistance may occur, at least in part, via ALDH1-dependent
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mechanisms [9]. Taken together with the known role of ALDH activity in cellular self-protection
and detoxification [30], we hypothesized that a siRNA-mediated reduction in ALDH1 expression
would sensitize MDA-MB-468 and SUM159 cells to chemotherapy and radiation. We observed that
knockdown of ALDH1A1 caused a significant sensitization of both MDA-MB-468 and SUM159 cells to
paclitaxel (Figure 5A), doxorubicin (Figure 5B), and radiation therapy (Figure 5C) (p < 0.05). In contrast,
ALDH1A3 knockdown did not reduce therapy resistance compared to control cells (Figure 5A–C).
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Figure 5. Decreased expression of ALDH1A1 but not ALDH1A3 sensitizes breast cancer cells to
chemotherapy and radiation. MDA-MB-468 cells (left panels) and SUM159 cells (right panels)
were treated with control siRNA (siCON) or ALDH-specific siRNA (ALDH1A1 or ALDH1A3) for
96 h to generate the following cell lines: 468CON, 468ALDH1A1low, 468ALDH1A3low, 159CON,
159ALDH1A1low, 159ALDH1A3low. Cell populations were treated with (A) paclitaxel (0.2 µg/mL),
(B) doxorubicin (0.2 µg/mL), or (C) radiation (2 × 5Gy; MDA-MB-468 or 2 × 15Gy; SUM159).
Data represents the mean ± SEM normalized to respective control cells. * = significantly different than
respective 468CON or 159CON cells treated with paclitaxel, doxorubicin, or radiation (p < 0.01).
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3. Discussion

Breast cancer is a leading cause of death in women, primarily due to ineffective treatment of
metastatic disease [1,2]. Our group has previously demonstrated that stem-like ALDHhiCD44+ cells play
a key role in breast cancer metastasis [6] and are highly resistant to chemotherapy and radiation compared
to their ALDHlowCD44− counterparts, potentially as a result of ALDH-dependent mechanisms [9].
Additionally, it has been shown that ALDH1 expression is correlated with early recurrence, worse
prognosis, and a higher incidence of metastasis in breast cancer patients [7,20,21,27]. While this suggests
that ALDH is an important player in breast cancer metastasis; the actual functional contribution of
ALDH1 (in particular its isozymes ALDH1A1 and ALDH1A3) in breast cancer metastasis requires
further elucidation, and this was the goal of the current study.

Although the Aldefluor® assay is often used to isolate ALDHhi cancer cells [6–9,20,31,32], the
specific ALDH isozymes that contribute to this activity remain a subject of debate. In this assay, cells
are incubated in a buffer containing a fluorescent aldehyde substrate (bodipy-aminoacetylaldehyde).
The aminoacetylaldehyde is taken up into the cells via passive diffusion. Once inside the cell,
intracellular ALDH oxidizes the aminoacetylaldehyde into aminoacetate, which is negatively charged,
and therefore retained inside the cell, causing the cells to fluoresce [32]. When ALDH1A1 was
knocked down in both MDA-MB-468 and SUM159 cell lines, there was no observable change in ALDH
activity as measured by the Aldefluor® assay; however, when ALDH1A3 was knocked down, there
was an approximate 50% reduction in ALDH activity measured by the Aldefluor® assay. This is
consistent with breast cancer studies done by Marcato et al. (2011), who observed that ALDH1A3
knockdown was better correlated with a decrease in Aldefluor® activity compared to ALDH1A1 and
ALDH2 [27]. Additional studies have reported that ALDH1A1, ALDH7A1, ALDH2 and/or ALDH1A2
are responsible for driving Aldefluor® activity in other tumor types [32–34], indicating that the ALDH
isoform(s) responsible for Aldefluor® activity may be tumor-specific. Furthermore, in the present
study, even after ALDH1A3 knockdown, there was still approximately 50% normal ALDH activity,
indicating that other ALDH isozymes might be involved in the context of breast cancer. Taken together,
these results suggest that many ALDH isozymes may contribute to the ALDH activity measured by the
Aldefluor® assay, and potentially that different isozymes may contribute to ALDH activity in different
tumor types.

We previously reported that ALDHhiCD44+ cells demonstrated enhanced proliferation, adhesion,
and migration [6]. Additional work in lung and liver cancer cells has suggested that a decrease in
ALDH expression can result in a decrease in proliferation [35–37]. In the current study, we treated
breast cancer cells with DEAB (a direct competitive substrate of ALDH [28]) and observed a decrease
in cell proliferation, as well as in adhesion and migration in vitro compared to control cells, suggesting
that ALDH may potentially contribute to these processes. In order to determine whether ALDH1
isozymes were also involved in these processes, we used siRNA to specifically knockdown ALDH1A1
or ALDH1A3 and observed that ALDH1A1low cells demonstrated decreased proliferation, adhesion,
and migration in vitro. In contrast, cells in which ALDH1A3 had been knocked down showed no
change in proliferation and in fact demonstrated increased levels of adhesion and migration in vitro.

ALDH1 expression has been clinically correlated with an increased incidence of metastasis [7,20,27].
We used the chick CAM assay to elucidate whether ALDH1A1 and/or ALDH1A3 functionally
contributed to metastasis. Cells with decreased ALDH1A1 expression demonstrated decreased abilities
to invade/extravasate; whereas cells with decreased ALDH1A3 expression demonstrated no change
in invasive capabilities compared to control cells in vivo. However, in terms of the actual formation of
metastases in vivo; both ALDH1A1low and ALDH1A3low cells demonstrated a decrease in metastatic
potential, with an approximate 50% reduction in the number of micrometastases that were able to form
in the chick CAM compared to control cells.

Finally, we have previously observed that that ALDHhiCD44+ cells demonstrate high levels of
therapy resistance, and that pre-treatment targeting of ALDH activity using DEAB or ATRA can
sensitize these resistant cells to both anthracycline and taxane chemotherapy, as well as radiation [9].
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In the current study, we directly targeted specific ALDH1 isozymes using siRNA and tested the effect
on therapy response. Notably, when ALDH1A1 expression was decreased, there was a significant
sensitization of the cancer cells to both chemotherapy and radiation. Cells with decreased ALDH1A3
expression, however, showed no change in therapy resistance to either chemotherapy or radiation.
These results suggest that the ALDH1A1 isozyme is an important contributor to therapy resistance in
breast cancer cells, not only to cyclophosphamide chemotherapy (as previously reported [13,38]), but
also to other classes of chemotherapy and radiotherapy.

Our study is the first in the literature to systematically examine the functional roles of ALDH1
isozymes on individual breast cancer cell behaviors that collectively contribute to the metastatic process.
The combined in vitro and in vivo data presented in this study suggests that ALDH1A1 and ALDH1A3
both contribute functionally to various steps in the breast cancer metastatic cascade; however, they
may do so in different ways (summarized in Table 1). For example, it appears that ALDH1A1 may
mediate the adhesion, migration, extravasation, and initial colonization steps; whereas ALDH1A3 may
only participate in colonization and sustainment of metastatic growth. This data both supports and
contradicts previous work by Marcato et al. (2011), who reported that ALDH1A3 and not ALDH1A1
correlated with metastatic disease in breast cancer patients [27]. More recent work by this group led to
the observation that overexpression of ALDH1A3 in MDA-MB-231 human breast cancer cells increases
in vitro invasion and in vivo primary tumor growth and lung metastasis in mice, likely due to changes
in RA signaling [39]. Although they observed that knockdown of either ALDH1A1 or ALDH1A3 in
MDA-MB-231 cells did not have an effect on malignant behavior, this was not surprising given that
this cell line has very low levels of these isozymes to begin with [27]. In contrast, it was somewhat
surprising that their knockdown of ALDH1A1 in MDA-MB-468 cells (one of the cell lines used in the
present study) actually increased primary tumor growth in mice, which is somewhat in contrast with
our observed reduction in proliferation, colony-formation, and in vivo metastasis data presented in
the current study. Overall, Marcato et al. [39] observed cell line-specific differences with regards to
ALDH1A3 function in malignancy and metastasis. In contrast, our data shows that knockdown of
ALDH1A1 consistently reduces most steps in the metastatic cascade except for basic proliferation in
two different human breast cancer cell lines with different genetic backgrounds and differing metastatic
ability. These experimental findings are supported by clinical data, which demonstrates that ALDH1A1
expression is often associated with worse prognosis in breast and other cancers [7,20,24,40–43].

Overall, the results of this study support the concept that ALDH1 plays a functional role in both
breast cancer metastasis and therapy resistance; although the ALDH1A1 and ALDH1A3 isozymes
seemed to contribute to these behaviors in different ways. In order to determine the underlying reasons
for the differential influence of ALDH1 on different malignant behaviors, in-depth mechanistic studies
will need to be carried out in the future. In addition, the observation that ALDH1A3 knockdown only
caused a 50% reduction in ALDH activity suggests that other ALDH isozymes must be involved in
Aldefluor® activity in breast cancer cells. It would therefore be interesting in the future to determine
the functional role of other ALDH isozymes in breast cancer metastasis (i.e., ALDH7A1, ALDH1A2,
and/or ALDH2) [33], as well as to assess corresponding changes in genes, transcription factors,
and epigenetic modifiers that may ultimately be driving the process of metastasis. Elucidation of
the mechanisms by which ALDH1A1, ALDH1A3 and other ALDH isozymes contribute to disease
progression could have potentially important implications for the management and treatment of breast
cancer in the future. Furthermore, additional investigation of ALDH1A1-specific therapy resistance
mechanisms is required, and translating this knowledge into the clinic through development of either
a direct, specific ALDH1A1 inhibitor or an ALDH1A1-related inhibitor that is safe for human use
could have important implications for the management of both primary and metastatic breast cancer.
Finally, it is well known that treating breast cancer before metastasis is observed (i.e., in the adjuvant
setting) is significantly correlated with better patient survival [6,9,44]. Given that ALDH1 has been
both correlated with metastatic disease and shown to functionally contribute to metastasis, it may be
beneficial to use assessment of ALDH1 expression in the primary tumor as a clinical tool for identifying



Int. J. Mol. Sci. 2017, 18, 2039 11 of 18

breast cancer patients with a high risk of metastasis and stratifying them for aggressive therapy to
prevent disease recurrence or progression.

Table 1. Summary of functional consequences of ALDH1A1 and ALDH1A3 knockdown in
MDA-MB-468 and SUM159 human breast cancer cells.

Functional Behavior/Activity ALDH1A1 Knockdown ALDH1A3 Knockdown

ALDH Activity (Aldeflour) No effect ↓
Proliferation ↓ No effect

Adhesion ↓ ↑
Migration ↓ ↑

Colony Formation ↓ ↓
Extravasation ↓ No effect

Metastasis ↓ ↓
Therapy Resistance ↓ No effect

↑ = increase in respective functional behavior/activity; ↓ = decrease in respective functional behavior/activity.

4. Materials and Methods

4.1. Cell Culture, Reagents, and Therapy Conditions

MDA-MB-468 cells were a kind gift from Dr. Janet Price, M.D. Anderson Cancer Center,
(Houston, TX, USA) [45], and were maintained in αMEM +10% fetal bovine serum (FBS).
The 468 subline expressing green fluorescent protein (GFP) was generated previously as described [46].
SUM159 cells [47] were obtained from Asterand (Detriot, MI, USA) and maintained in Hams: F12 + 5%
FBS. CellTracker™ 5-chloromethylfluorescein diacetate (CMFDA; Invitrogen, Carlsbad, CA, USA)
was used to label SUM159 cells for the CAM assay. All cell lines were authenticated via third party
testing of 9 short tandem repeat (STR) loci on 11 April 2103. (CellCheck, RADIL, Columbia, MO,
USA). All media was obtained from Invitrogen. FBS was obtained from Sigma (St. Louis, MO, USA).
Tissue culture plastic was obtained from NUNC (Roskilde, Denmark).

All-trans retinoic acid (ATRA) and diethylamino-benzaldehyde DEAB (Sigma) were constituted in
100% ethanol and diluted in either Hams:F12 (SUM159 cells) or α-MEM (MDA-MB-468 cells) at 5 µM
(ATRA) or 100 µM (DEAB). Doxorubicin (Novopharm Limited, Toronto, ON, Canada) and paclitaxel
(Biolyse Pharma Corporation, St. Catherines, ON, Canada) were diluted in either Hams: F12 or α-MEM
to the concentrations noted below. Radiation was administered at the doses noted below using a
Cobalt-60 irradiator (Theratron 60, Atomic Energy of Canada Limited, Chalk River, ON, Canada).
All treatment doses were selected based on LC50 values determined in previous experiments [9].

4.2. Cell Proliferation Assays

Breast cancer cells were counted and plated at a density of 5.0 × 104 cells/60 mm plate (n = 3
per time point) and maintained in regular growth media. Every 48 h for 14 days, cultures (n = 3) were
trypsinized and counted using a hemocytometer. Doubling time of each cell population was estimated
during the exponential growth phase according to Td = 0.693t/ln (Nt/N0), where t is time (in hours),
Nt is the cell number at time t, and N0 is the cell number at initial time.

4.3. Cell Adhesion Assays

Breast cancer cells were plated onto sterile 96-well non-tissue culture plates (Titertek, Flow
Laboratories Inc.; McLean, VA, USA) that had been treated with one of: 20 µg/mL of human laminin
(Sigma; SUM159 cells), 5 µg/mL of human vitronectin (Sigma; MDA-MB-468 cells), or PBS (negative
control), using 1 × 104 cells/well (n = 3) for each cell population. Laminin and vitronectin were chosen
based on previous experiments in our laboratory that have demonstrated that SUM159 and MDA-MB-468
cells differentially express integrin receptors for vitronectin and laminin respectively [48,49]. Cells were
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allowed to adhere for 5 h, after which non-adhered cells were rinsed away. Adhered cells were fixed
with 2% gluteraldehyde and stained using Harris’ hematoxylin. Five high powered fields (HPF) (200×)
were counted for each well, and mean numbers of adhered cells/field were calculated and normalized
to control cell populations.

4.4. Cell Migration Assays

Transwell plates (8 µm pore size, 6.5 mm; Becton Dickinson; Franklin Lakes, NJ, USA) were coated
with 6 µg/well of gelatin (Sigma) [50,51]. Chemoattractant (5% FBS) or control (0.01% BSA) media was
placed in the bottom portion of each well. For each cell population, 5 × 104 cells were plated on top of
the transwells. After 24 h, the upper transwell was removed, inverted, fixed with 1% gluteraldehyde,
and stained with Harris’ hematoxylin. A cotton swab was used to carefully remove non-migrated cells
on the inner surface of the transwell. For each well, five HPF were counted and mean numbers of
migrated cells/field were calculated and normalized to control cell populations.

4.5. Colony Forming Assays

Dishes (60 mm) were coated with 1% agarose (Bioshop; Burlington, ON, Canada) in normal
growth media and allowed to solidify for 1 hr. Breast cancer cell suspensions (1.0 × 104 cells/60 mm
plate) were prepared using 0.6% agarose in normal growth media and plated on top of the base agarose
base layer (n = 4 for each time point). Normal growth media was added on top of the cell layer and
changed every 3–4 days for 4 weeks, after which the media was removed and plates were fixed in 10%
neutral-buffered formalin (EM Sciences, Gladstone, NJ, USA). For each dish, 5 HPF were counted and
mean number of colonies per field were calculated and normalized to control cell populations.

4.6. siRNA Knockdown of ALDH1A1 and ALDH1A3

ON-TARGET plus SMART pool small interfering RNAs (siRNA) (Dharmacon Thermo Scientific,
Lafayette, CO, USA) were used to transiently transfect human ALDH1A1 and ALDH1A3 into
MDA-MB-468 and SUM149 cells. All siRNAs were suspended in sterile RNAse-free water at a
concentration of 25 µM. Scrambled control (20–50 µL/mL), ALDH1A1 (20 µL/mL), ALDH1A3
(50 µL/mL) siRNAs and Lipofectamine RNAiMax reagent (20 µL/mL; Invitrogen) were diluted into
serum-free Opti-MEM (Invitrogen). Lipofectamine and siRNA concentrations were determined based
on preliminary experiments which indicated the greatest knockdown of the proteins of interest [49].
The transfections yielded the following cell populations used in further experiments: 468CON,
468ALDH1A1low, 468ALDH1A3low, 159CON, 159ALDH1A1low, and 159ALDH1A3low.

4.7. RNA Isolation and Quantitative RT-PCR

Total RNA was extracted using TRIzol (Invitrogen) according to the manufacturer’s protocol.
Total RNA was reverse transcribed using Superscript III (Invitrogen) and the Eppendorf Mastercycler
Gradient (Eppendorf, Hamburg, Germany). Primers and cycling conditions used for ALDH1A1,
ALDH1A3, and GAPDH are provided in Table 2. Relative quantification of ALDH1A1 and ALDH1A3
gene expression in MDA-MB-468 and SUM159 breast cancer cells was determined by quantitative PCR
using Brilliant® II SYBR® Green qPCR Low ROX Master Mix (Agilent Technologies, Eugene, OR, USA)
and the delta Ct method. GAPDH was used for normalization.
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Table 2. Primers and qPCR conditions.

Gene Primer Sequence qPCR Cycling
Conditions Number of Cycles Product Size (bp)

ALDH1A1 Fwd: 5′-CGT TGG TTA TGC TCA TTT GGA A-3′

Rev: 5′-TGA TCA ACT TGC CAA CCT CTG T-3′
60 s 55 ◦C
60 s 72 ◦C
60 s 95 ◦C

45 22 bp

ALDH1A3 Fwd: 5′-ATG TGG GAA AAC CCC CTG TG-3′

Rev: 5′-GAA TGG TCC CAC CTT CAC CT-3′
60 s 57 ◦C
60 s 72 ◦C
60 s 95 ◦C

45 20 bp

GAPDH Fwd: 5′-CAT GTT CGT CAT GGG TGT GAA CCA-3′

Rev: 5′-ATG GCA TGG ACT GTG GTC ATG AGT -3′
45 s 60 ◦C
45 s 72 ◦C
60 s 95 ◦C

40 24 bp

4.8. Immunoblotting

Cell lysates were extracted and protein (10 µg) was subjected to sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE, 12%) and transferred onto polyvinylidene difluoride
membranes (PVDF; Immobilon™, Millipore; Bedford, MA, USA). Blocking and antibody dilution was
done using 5% skim milk in Tris-buffered saline with 0.1% Tween-20 (TBST). Anti-human primary
antibodies included mouse monoclonal ALDH1A1 (clone IG6; 1:1000) and rabbit polyclonal ALDH1A3
(1:500) (Abcam, Cambridge, MA, USA). Secondary antibodies included goat anti-mouse and mouse
anti-rabbit antibodies conjugated to horseradish peroxidase (Calbiochem, Gibbstown, NJ, USA)
(1:2000). Protein expression was visualized using Amersham ECL Plus (GE Healthcare, Baie d’Urfe,
QC, Canada) using β-actin (Sigma, 1:5000) as a loading control.

4.9. ALDEFLUOR® Assay

The ALDEFLUOR® assay (StemCell Technologies, Vancouver, BC, Canada) was used to assess
ALDH activity as described previously [52–54]. Briefly, cells were harvested, placed in ALDEFLUOR®

assay buffer (2 × 106/mL), and incubated with ALDEFLUOR® substrate for 45 min at 37 ◦C to allow
substrate conversion. As a negative control for all experiments, an aliquot of ALDEFLUOR®-stained
cells was immediately quenched with 1.5-mM diethylaminobenzaldehyde (DEAB), a specific ALDH
inhibitor. Cells were analyzed using the green fluorescence channel (FL1) on a Beckman Coulter EPICS
XL-MCL flow cytometer.

4.10. Chick Embryo Chorioallantoic Membrane (CAM) Assay

For assessment of in vivo extravasation and metastasis, chick embryo chorioallantoic membrane
(CAM) assays were used as described previously [55,56]. Briefly, fertilized chicken eggs (McKinley
Hatchery, St. Mary’s, ON, Canada) were removed from their shell, placed in covered dishes, and
maintained ex ovo at 37 ◦C with 90% humidity. Embryos were used at day 9 (micrometastasis assay) and
day 12 (extravasation assay). Green-fluorescent protein (GFP) labeled MDA-MB-468 or CellTracker™
CMFDA-labeled SUM159 cell populations were injected intravenously (i.v.) into the CAM as described
previously [55,56] using 1 × 105 (extravasation assay) or 2 × 105 (micrometastasis assay) cells/egg
(n = 8–17 eggs per treatment group). For the extravasation assay, a portion of the CAM was sectioned off
using aluminum foil and the number of cells arrested in the sectioned-off area was manually counted
using a fluorescence microscope at 20×magnification. Embryos were then returned to the incubator
for 24 h, after which time the number of extravasated cells in the sectioned off area were manually
counted using a fluorescence microscope. Percent extravasation was calculated by dividing the number
of initial cells by the number of successfully extravasated cells in the CAM. For the micrometastasis
assay, embryos were returned to the incubator for 7 days after cell injection to allow the formation
of metastases. After 7 days, the number of micrometastatic tumors that developed following the i.v.
injection were manually counted using a fluorescence microscope at 4×magnification.
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4.11. Chemotherapy and Radiation Treatment

Cell populations were plated at a density of 5 × 105 cells in 6-well plates (n = 3/treatment group)
and maintained in normal growth medium for 24 h. Cells were then treated with either normal
media alone (control), chemotherapy (paclitaxel (0.2 µM); doxorubicin (0.4 µM)), or radiation (2 × 5Gy,
MDA-MB-468; or 2 × 15Gy, SUM159) and cultured for a further 72 h. Cells were then harvested and
viable cells were quantified using trypan blue exclusion and manual counting on a hemocytometer
using light microscopy.

4.12. Statistical Analysis

All experiments were performed following at least three separate siRNA transfections with
at least 3 biological replicates included within each experiment. In all cases, quantitative data was
compiled from all experiments. Statistical analysis was performed using GraphPad Prism 4.0 software©
(San Diego, CA, USA) using either t-test (for comparison between 2 groups) or analysis of variance
(ANOVA) with Tukey post-test (for comparison between more than 2 groups) when groups passed
both a normality test and an equal variance test. When this was not the case, the Mann-Whitney
Rank-Sum test was used. Unless otherwise noted, data is presented as the mean ± SEM. In all cases,
p values of ≤0.05 were regarded as being statistically significant.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2039/s1.
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ANOVA Analysis of variance
APL Acute promyelocytic leukemia
ATRA All-trans retinoic acid
BSA Bovine serum albumin
CAM Choroiallantoic membrane assay
CD Cluster of differentiation
CMFDA 5-chloromethylfluorescein diacetate
CYP Cytochrome P450
DEAB Diethylaminobenzaldehyde
ECL Enhanced chemiluminescence
ER Estrogen receptor
EtOH Ethanol
FBS Fetal bovine serum
GAPDH Glyceraldehyde 3-phosphate dehydrogenase

www.mdpi.com/1422-0067/18/10/2039/s1


Int. J. Mol. Sci. 2017, 18, 2039 15 of 18

GFP Green fluorescent protein
Gy Gray
HPF High-powered field
LC50 Lethal concentration (50%)
NAD(P) Nicotinamide adenine dinucleotide phosphate
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PR Progesterone receptor
PVDF Polyvinylidene fluoride
RA Retinoic acid
RT Reverse transcriptase
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM Standard error of the mean
siRNA Small interfering RNA
STR Short tandem repeat
TBST Tris-buffered saline + Tween-20
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