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Abstract: Growth hormone (GH) resistance may develop as a consequence of inflammation during
conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However,
the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences
of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor
(GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10
knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the
effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also,
the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation
induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression
and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven
by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as
confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1
and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high
transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal
GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general
growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal
healing during colitis when using long-acting GH therapy.

Keywords: experimental colitis; GH resistance; GHR; IGF-1; inflammation; long acting human GH;
ulcerative colitis

1. Introduction

Resistance to the actions of growth hormone (GH) is classically focusing on hepatic GH resistance.
This condition is characterized by normal or elevated levels of GH with corresponding decreased
insulin-like growth factor-1 (IGF-1) levels resulting from an impaired hepatic response to GH. GH
resistance is naturally occurring as a mean to regulate the anabolic actions of GH to limit energy
expenditure. Malnutrition, anorexia nervosa [1,2], poorly controlled type I diabetes [3], and disorders
in the liver (e.g., chronic liver disease [4] or nonalcoholic fatty liver disease [5]) are associated with
GH resistance. Additionally, states of systemic inflammation such as rheumatoid arthritis [6] or
inflammatory bowel diseases (IBD) [7] may also induce GH resistance. Patients with IBD may,
depending on the disease severity and intestinal location, experience combined inflammation and
malnutrition, which additively impacts GH responsiveness [7,8].
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IBD is comprised by the two main entities of ulcerative colitis (UC) [9] and Crohn’s disease
(CD) [10], both showing rising global incidence rates [11]. Intestinal inflammation in UC, the main
focus of this study, is confined to the epithelial lining and the lamina propria of the colon [12].

Epithelial restitution, or “mucosal healing”, is today considered the major success criteria in the
treatment of IBD [13,14]. When evaluating the impact of inflammation on the cellular responsiveness
to GH in patients with IBD, the effect on the mucosal layer and consequently the potential impact
on mucosal healing is of central importance. Accordingly, our study focuses on the lamina propria
and epithelial lining (where the inflammatory process is located) and aims at evaluating the effects of
inflammation on local GH resistance in patients with UC.

Mechanistically, GH responsiveness and the GH–IGF-1-axis are subject to regulation, both in terms
of negative feedback on GH and IGF-1 secretion, but also in terms of GH receptor (GHR) and IGF-1
receptor (IGF1R) signalling. During inflammation, mediators may impact the GHR in two distinct ways
to induce GH resistance [15]. First, in vitro studies have shown that the mediators tumor necrosis factor
(TNF)-α and interleukin (IL)-1β both impair liver GHR expression, causing blunting of the GH response,
an effect which is potentiated when the mediators are used in combination [16–19]. Second, factors
such as IL-6 and lipopolysaccharide (LPS) can regulate GH-induced signal transduction by inducing the
expression of suppressor of cytokine signalling (SOCS) proteins, especially SOCS1 and SOCS3 [17–21].
These are negative regulators of Janus kinase (JAK)/Signal transducer and activator of transcription (STAT)
dependent growth factor- and cytokine receptors and are important for down-regulation of cognate ligand
induced intracellular signalling [22]. Additionally, IL-6 might inhibit GH-induced promoter/enhancer
activity, by reducing STAT5 DNA binding and consequently inhibiting the effects of GH [20].

Ample evidence suggests that inflammation directly impacts GH-induced signalling and hence
induces GH resistance. The majority of previous studies of inflammation-induced resistance have
used hepatic GHR expression and IGF-1 expression/secretion as the primary readout. Therefore,
the direct effects of inflammation on GHR signalling in peripheral tissues, especially the inflamed
intestine, are still largely unexplored, even though intestinal GHR RNA and protein expression has
been documented in the intestine [23,24].

Animal studies have shown that STAT5 signalling (induced by GH) enhances intestinal barrier
function and mucosal healing [25,26]. Additionally, it was shown that GH boosts epithelial proliferation
and has a beneficial effect on colonic histopathology scores in spontaneous colitis in IL-10 knock out
(k.o.) mice. Also, GH responsiveness was reduced during active inflammation—an effect that is
alleviated by treatment with anti-TNF-α. This indicates that systemic inflammation negatively impacts
GHR signalling leading to GH resistance both systemically and locally in the colon [27,28].

Despite the positive effects of GH observed in animal models, clinical studies in IBD have,
however, not shown the same convincing data. In human studies, no improvement of disease activity
scores was observed following GH treatment [29–33]. Nevertheless, one study revealed an effect of
GH administration in CD patients, where improved Crohn’s disease activity index (CDAI) scores were
found following 4 months of treatment compared to placebo controls [34].

In this study we investigated the colonic GHR gene expression in humans and mice to reveal
how it is affected by intestinal inflammation. Additionally, circulating inflammatory mediators were
measured in the patients, and their impact on GHR function was evaluated using primary murine
enteroids. The study focuses on the intestinal mucosa and evaluates the therapeutic effects of murine
GH and long-acting pegylated human GH (PEG-hGH) on disease progression and mucosal healing.
Collectively, the study sheds light on the intestinal GH/GHR biology during intestinal inflammation.

2. Results

2.1. Growth Hormone Receptor (GHR) Expression Is Reduced in Patients with Active Ulcerative Colitis (UC)

In a cohort of patients with UC and non-IBD controls (Table 1), the expression of GHR was
evaluated in intestinal biopsies as determined by qPCR. RPLP0 (ribosomal protein, large, P0) was used



Int. J. Mol. Sci. 2017, 18, 2046 3 of 20

as reference gene as it was not influenced by the presence of inflammation. Patients with moderate
and severe UC showed significantly reduced GHR expression compared to both non-IBD controls and
patients in remission (Figure 1a). As human GH also interacts with the prolactin receptor (PRLR), we
analyzed its expression as well, which showed a similar significant reduction during moderate and
severe inflammation compared to controls (Figure 1b).

Table 1. Demographic data and disease characteristics of ulcerative colitis (UC) patients and controls.

Clinical Variables
Controls Remission Mild Moderate Severe p-Value
n = 20 n = 21 n = 11 n = 24 n = 10

Gender (male/female) 7/13 12/9 4/7 11/13 3/7 =0.52 ◦

Age, years (median, IQR) 49 (20) 52 (27) 31 (15) 40 (22) 30 (14) <0.01 ∆

Mayo score (median, IQR) 0 (0) 0 (1) 4 (2) 8 (3) 12 (1) <0.001 ∆

Mayo endoscopic score
(median, IQR) 0 (0) 0 (0) 1 (0) 2 (0) 3 (0) <0.001 ∆

Geboes score (mean, IQR) § 0.4 (1) 1.0 (1) 5.3 (14) 13.0 (10) 19.0 (4.5) <0.001 ∆

Smoking/non-smoking 4/16 3/18 0/11 0/24 4/6 <0.05 ◦

Daily medication: <0.05 ◦

- Steroids (oral or topical) 0 0 2 10 4
- 5-ASA (oral or topical) 0 19 7 22 8
- Thiopurines 0 4 2 8 0
- Infliximab 0 3 0 1 2
- Antibiotics 0 0 1 2 3
- None 40 1 2 0 2

The patients were divided based on the Mayo disease score into remission (0–2, no subscore > 1), mild (3–5),
moderate (6–10) or severe (11–12). IQR: interquartile range; ◦ Chi-square test; All groups included except controls
group when comparing daily medication. ∆ Ordinary one-way analysis of variance (ANOVA) with Dunn’s
correction; all groups included. § The histopathological Geboes score is used as a linear accumulative score ranging
from 0 to 22; 5-ASA: 5-aminosalicylic acid.
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Figure 1. Gene expression levels (qPCR) of human growth hormone receptors (hGHR) (a) and human 
prolactin receptor (hPRLR) (b) in colonic biopsies from healthy controls (black), ulcerative colitis (UC) 
patients in remission (grey) or with active disease (white). A significant reduction in both RNA 
transcripts was observed for UC patients with moderate and severe disease compared to controls. Data 
presented as mean ± SD. Statistics: Kruskal–Wallis, Dunn’s correction, comparing all groups to control. 

In situ hybridization (ISH) was conducted on biopsies from UC patients and controls to evaluate 
GHR expression in situ (Figure 2a,b). Validation of the applied probes is shown in Supplementary 
Materials Figure S1a. Evaluation of the stains focused on the epithelium and the lamina propria to 
which layers the inflammatory process is restriction in active UC. Generally, a low signal was 
obtained from the human biopsy material and, because of inconsistent orientation of the tissues, it 
was difficult to compare and quantitate staining intensity across samples. As a general trend, we 

Figure 1. Gene expression levels (qPCR) of human growth hormone receptors (hGHR) (a) and human
prolactin receptor (hPRLR) (b) in colonic biopsies from healthy controls (black), ulcerative colitis
(UC) patients in remission (grey) or with active disease (white). A significant reduction in both RNA
transcripts was observed for UC patients with moderate and severe disease compared to controls. Data
presented as mean ± SD. Statistics: Kruskal–Wallis, Dunn’s correction, comparing all groups to control.

In situ hybridization (ISH) was conducted on biopsies from UC patients and controls to evaluate
GHR expression in situ (Figure 2a,b). Validation of the applied probes is shown in Supplementary
Materials Figure S1a. Evaluation of the stains focused on the epithelium and the lamina propria to
which layers the inflammatory process is restriction in active UC. Generally, a low signal was obtained
from the human biopsy material and, because of inconsistent orientation of the tissues, it was difficult
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to compare and quantitate staining intensity across samples. As a general trend, we observed that the
GHR transcript was mostly expressed in the epithelial layer in non-inflamed samples, whereas less
epithelial staining and more staining in cells in the lamina propria was observed during active disease
(Figure 2a,b).
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Expression of the inflammatory mediators TNF-α, IL-1β and IL-6, were measured in the colonic 
biopsies from patients with UC and controls. All showed a statistically significant inverse correlation 
to the GHR expression levels (Figure 2c). Additionally, the GHR expression correlated inversely with 
both the endoscopic disease evaluation, histopathological evaluation and the global disease 
assessments using the Mayo score (Supplementary Materials Figure S2a–c). A higher coefficient of 
determination (R2) was observed between GHR expression and expression of the TNF-α and IL-1β 

Figure 2. Expression of hGHR in human colon visualized by in situ hybridization in non-inflamed
(a) and inflamed (b) UC specimens. Arrows indicate positively stained cells; (c) Correlation between
the expression level of hGHR versus the expression of tumor necrosis factor (TNF)-α, interleukin
(IL)-1β and IL-6 in colonic biopsies from the patient cohort (microarray data, log2-scale); (d) Serum
measurements of TNF-α, IL-1β and IL-6 from non-inflammatory bowel disease (IBD) controls and
patients with active UC. Data presented as mean ± SD. ISH: in situ hybridization. N.S.: not statistically
significant. Statistics: simple linear regression and Mann–Whitney U test.

2.2. Systemic and Local Inflammatory Mediators Correlate Inversely with Colonic GHR Expression

Expression of the inflammatory mediators TNF-α, IL-1β and IL-6, were measured in the colonic
biopsies from patients with UC and controls. All showed a statistically significant inverse correlation
to the GHR expression levels (Figure 2c). Additionally, the GHR expression correlated inversely
with both the endoscopic disease evaluation, histopathological evaluation and the global disease
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assessments using the Mayo score (Supplementary Materials Figure S2a–c). A higher coefficient of
determination (R2) was observed between GHR expression and expression of the TNF-α and IL-1β
(Figure 2c) compared to the correlation between GHR expression and the standard clinical Mayoscore
(Supplementary Materials Figure S2a). This indicates that specific inflammatory pathways and the
local inflammatory process have a more pronounced impact on colonic GHR expression than the
overall disease severity. Systemically, we measured the short lived inflammatory mediators TNF-α,
IL-1β and IL-6 (Figure 2d). In the patients with active UC, IL-1β was significantly elevated, IL-6
showed a borderline insignificant change and TNF-α was unchanged.

2.3. Characterisation of GHR Expression in Experimental Colitis

We used IL-10 k.o. mice with piroxicam accelerated colitis (PAC), to evaluate the influence of
active colonic inflammation on GHR expression in vivo (see experimental setup #1 in Section 4.6).
The PAC model showed decreased GHR expression levels after both 10 and 18 days compared to
healthy controls and IL-10 k.o. mice. No decrease was observed in the IL-10 k.o. background animals
compared to healthy controls (Figure 3a). In the PAC model, an inverse correlation was observed
between GHR expression and both TNF-α, IL-1β and SOCS3 as well as the histopathology score
(Supplementary Materials Figure S3). Similarly, expression of PRLR (Figure 3b) revealed a profile
mirroring GHR expression (Figure 3a).
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GHR expression in the PAC model was further validated by ISH staining (Figure 3c–f). The in situ 
staining was analysed using quantitative image analysis based on a previously validated method [35], 
which confirmed the observed decrease in GHR expression at day 10 compared to healthy controls 
(Figure 3c). In the murine colonic tissue, GHR expression was observed primarily in the epithelial 

Figure 3. Colonic samples from the piroxicam accelerated colitis (PAC) model analyzed for expression
of mouse growth hormone receptor (mGHR) (a) and mouse prolactin receptor (mPRLR) (b) by RNA
seeq. Samples were obtained from healthy controls, IL-10 k.o. animals and after the indicated number
of days following induction of disease using piroxicam; (c) Quantification of the in situ hybridization
performed in the PAC model at day 10 (d–f). Arrows indicate positively stained cells. Data presented
as mean ± SD. Statistics: Ordinary one way ANOVA with Holm Sidak’s correction comparing healthy
control to all other groups.

GHR expression in the PAC model was further validated by ISH staining (Figure 3c–f). The in situ
staining was analysed using quantitative image analysis based on a previously validated method [35],
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which confirmed the observed decrease in GHR expression at day 10 compared to healthy controls
(Figure 3c). In the murine colonic tissue, GHR expression was observed primarily in the epithelial
lining of the intestine but also in single cells in the lamina propria in both healthy controls and
during inflammation.

2.4. Inflammation Impacts Epithelial GHR Expression and Signalling

To evaluate the impact of inflammation on GHR expression in the intestinal epithelium, epithelial
enteroid cultures from mice were established. We evaluated the direct effects of inflammation on both
GHR expression and its function by assaying downstream STAT5 phosphorylation. Based on prior
publications, we decided to evaluate the effects of TNF-α and IL-1β collectively and IL-6 separately, as
these mediators impact GHR expression and signalling through separate mechanisms [15].

We chose to culture murine small intestinal enteroids as their cellular differentiation is not
hampered by exogenous Wnt3a addition through activation of the stem cell promoting Wnt pathway.
Enteroid experiments were initiated by epidermal growth factor (EGF) starvation to limit basal STAT5
phosphorylation prior to inflammatory stimulation and expression analysis by PCR (Figure 4a,b).
TNF-α and IL-1β (1 nM) induced a significant decrease in GHR expression, while IL-6 (1 nM) did
not affect GHR expression (Figure 4a). A combination of the three mediators showed a synergistic
repressive effect on the GHR expression (Figure 4a). IL-6 induced expression of SOCS3, both alone and
in combination with TNF-α and IL-1β (Figure 4b), pointing to separate mechanisms being utilized by
the different inflammatory mediators. STAT5 phosphorylation induced by mouse GH (mGH) in the
enteroids was also repressed by an 8 h pre-incubation with 1 nM of each of the inflammatory mediators
in combination as shown by western blotting (Figure 4c,d). Phosphorylation of STAT5 was induced
through the GHR as enteroids derived from GHR k.o. mice did not respond to mGH (Figure 4d).
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Figure 4. qPCR measuring mGHR (a) and mouse suppressor of cytokine signalling (mSOCS)3
(b) expression in murine enteroids. The cells were grown under standard conditions (black) or being
stimulated with either TNF-α and IL-1β, with IL-6 or with all three mediators, 1 nM for 8 h, n = 8;
(c) Western blotting of phosphorylated STAT5 and β-actin in murine enteroids to evaluate the effect
of mGH alone and following pre-incubation with inflammatory mediators (TNF-α, IL-1β and IL-6)
(1 nM of each in combination); (d) Quantification of western blots (n = 4). Intestinal organoids from
gene disrupted mice (GHRKO) were also included. ∆ only two samples—therefore not included in
statistics. Data presented as mean ± SD. Statistics: Kruskal-Wallis, Dunn’s correction, comparing all
groups to Control/Unstimulated.

2.5. Gene Expression Signature Similarities between Human UC and Murine Experimental Colitis

To investigate the specific mechanisms governing the impact of inflammation on GHR
functionality, gene expression signatures of relevant transcripts were compared between the UC
patients, the murine PAC model and the murine enteroid system and presented in Table 2.

The results show a number of similarities in the cellular response to inflammation. Besides similar
regulation of GHR and PRLR as described, all three systems show a similar inflammation-dependent
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increase in SOCS1 and SOCS3, expected to occur during inflammation (Table 2). The inflammatory
mediators, TNF-α, IL-1β and IL-6 were up-regulated in UC and PAC at day 10. SOCS2 showed an
inflammation-dependent decrease in UC and PAC at day 10, which is in contrast to SOCS1 and SOCS3.
No changes in colonic IGF-1 expression were observed in any of the systems. IGF1R expression was
decreased in both UC and PAC day 10, whereas IGF1R expression in murine enteroids was increased
upon inflammation.

Table 2. Comparison of transcripts across model systems.

Gene
Human (Array)
n = 19 (H), 32 (I)

Enteroids (qPCR)
n = 8 (H), 8 (I)

PAC (mRNA Seq)
n = 3 (H), 12 (I)

Mean (SD) p-Value Mean (SD) p-Value Mean (SD) p-Value

GHR H: 55.27 (30.21)
I *: 13.94 (4.70) ↓ <0.0001 H: 3.31 (0.47)

I ◦: 1.54 (0.36) ↓ <0.001 H: 10.06 (0.39)
I ∆: 5.37 (1.40) ↓ <0.01

PRLR H: 20.18 (4.77)
I *: 10.69 (2.51) ↓ <0.0001 H: 11.21 (2.24)

I ◦: 5.50 (1.46) ↓ <0.001 H: 1.45 (0.13)
I ∆: 0.28 (0.23) ↓ <0.01

TNF-α H: 25.63 (7.07)
I *: 49.19 (31.74) ↑ <0.0001 - H: 0.57 (0.15)

I ∆: 12.60 (9.03) ↑ <0.01

IL-1β H: 48.20 (49.94)
I *: 643.1 (952.2) ↑ <0.0001 - H: 1.37 (0.32)

I ∆: 38.04 (40.41) ↑ <0.01

IL-6 H: 8.32 (4.33)
I *: 29.41 (81.64) ↑ <0.0001 - H: 0.027 (0.046)

I ∆: 1.014 (1.008) ↑ <0.05

SOCS1 H: 8.86 (2.86)
I *: 35.18 (18.08) ↑ <0.0001 H: 2.43 (0.24)

I ◦: 3.21 (0.25) ↑ <0.001 H: 2.93 (0.84)
I ◦: 51.76 (32.83) ↑ <0.01

SOCS2 H: 64.65 (14.17)
I *: 43.42 (11.96) ↓ <0.0001 - H: 9.56 (0.91)

I ∆: 4.02 (0.87) ↓ <0.01

SOCS3 H: 4.89 (1.17)
I *: 9.90 (5.66) ↑ <0.0001 H: 6.14 (0.72)

I ◦: 7.47 (0.80) ↑ <0.01 H: 6.50 (2.01)
I ∆: 76.34 (36.57) ↑ <0.01

IGF-1 H: 32.23 (7.57)
I *: 32.21 (10.49) =0.9 (ns) H: Below detection limitI ◦:

Below detection limit
H: 2.20 (0.72)
I ∆: 3.05 (1.20) =0.3 (ns)

IGF1R H: 28.25 (4.18)
I *: 23.01 (4.53) ↓ <0.0001 H: 1.18 (0.17)

I ◦: 1.56 (0.32) ↑ <0.05 H: 3.34 (0.22)
I ∆: 2.34 (0.31) ↓ <0.01

GH1 Below detection limit (pcr) - Below detection limit

GH2 H: 8.35 (1.34)
I *: 7.91 (0.92) =0.5 (ns) H: 0.02 (0.02)

I ◦: 0.02 (0.02) =0.9 (ns) ND §

Comparison of gene expression profiles of selected transcript across the three model systems; human ulcerative
colitis, mouse enteroids and murine PAC (colitis model). H: “healthy” samples with no inflammation. I: Samples
with inflammation present. Statistics are Mann–Whitney U-test, two-tailed. * Comparing non-IBD controls with
patients having moderate-severe colitis. ◦ Comparing non-treated enteroids with enteroids treated with TNF-α,
IL-1β and IL-6. ∆ Comparing C57BL/6j controls with PAC animals at day 10. ↓means down-regulated, ↑means
up-regulated upon inflammation. § Not available from sequencing data.

2.6. Therapeutic Treatment with High Dose Mouse GH (mGH) in Piroxicam Accelerated Colitis

Therapeutic treatment using high dose mGH in experimental colitis was initially evaluated in
the PAC model (see experimental setup #2 in Section 4.6). A therapeutic study design was selected to
prevent the effects that GH-treatment may induce on eating behaviour, size and metabolism of the
animals, which bias the disease induction when using piroxicam containing chow.

As expected, high dose mGH (30 mg/kg) given twice daily by s.c. injection induced a significant
weight gain (Supplementary Materials Figure S4a,b) and increased serum IGF-1 (Supplementary
Materials Figure S4c) compared to vehicle- and anti-IL-12p40-treated animals. Thus, we confirm
that mGH was biological active in vivo during active experimental colitis. No treatment effect
on body weight following anti-IL-12p40 (monoclonal antibody) administration could be detected
(Supplementary Materials Figure S4b). Treatment effects on the colon were also evaluated
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by histopathology score and colon weight:length ratio (Supplementary Materials Figure S4d,e).
No treatment effect of mGH could be observed, whereas in anti-IL-12p40 treated mice a decreased
disease severity was seen as previously described [36,37].

Disease induction in this study seemed to be mild with an average weight loss around 2% at the
time of first treatment. Moreover, several mice in the vehicle treated group did not display evident
signs of colitis at the time of euthanization.

2.7. Therapeutic Treatment with a Long Acting PEG-hGH in Piroxicam Accelerated Colitis

In a follow-up study, we modified the experimental design so that only mice with a weight loss of
7.5% were included in the treatment randomization. Additionally, high dose mGH was replaced by
high dose long acting PEG-hGH in order to test chronic exposure of GH in the intestine to increase the
direct GH-mediated effects on disease resolution (see experimental setup #3 in Section 4.6). Accordingly,
we expected to increase the chances of observing an effect of PEG-hGH on mucosal healing.

Similar to the initial treatment study using mGH, therapeutic PEG-hGH treatment resulted
in a significant body weight increase compared to vehicle treated mice, and an increase in IGF-1
concentration for 3 days compared to predose levels (Figure 5a,b). No significant effect of anti-IL-12p40
could be observed (Figure 5a). Treatment with PEG-hGH showed no effect on the colonic inflammation,
i.e., no effect on colonic weight:length ratio or histopathology (Figure 5c–e). Thus, neither mGH nor
PEG-hGH affected colonic inflammation in the PAC IL-10 k.o. mouse model.
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established colitis. Arrows indicate dosing with PEG-hGH. (a) Weight change (% relative to pre-dosing
with piroxicam) during the study with indications of dosing with PEG-hGH. The four treatment groups
are indicated; (b) Plasma IGF-1 profile from the PEG-hGH treated group. Following PEG-hGH injection
a sustained IGF-1 response is observed the following days; (c) Colonic weight:length ratio of the
treated groups measured at day 10; (d) Representative colonic HE stains of the 4 treatment groups;
(e) Histopathological scoring of colonic disease severity evaluated at day 10. Mean values are presented
with SEM in (a). rIgG: rat IgG antibody.

3. Discussion

Inflammation is a known inducer of GH resistance, exemplified by growth retardation in up
to one-third of pediatric cases of CD [38]. Development of growth retardation and GH resistance
during inflammation likely serves a purpose of retaining energy during times of excessive catabolism
and malnutrition. Accordingly, this is a result of a complex mechanism including both the effects of
malnutrition and the impact of inflammatory mediators that affect parameters downstream of GH.

In the current study, we aimed at evaluating the physiological responses of inflammation on
GH action in the intestine. Also, the potential impact of GH on the process of mucosal healing was
evaluated. We focused on UC, as the inflammatory process in this condition is restricted to the
epithelial lining and the lamina propria, which is represented in intestinal biopsies. Additionally, we
compared the findings to animal models of experimental colitis in which we tested the therapeutic
potential of GH.

Patients with active UC show a severity-dependent decrease in colonic GHR expression (Figure 1a
and Supplementary Materials Figure S2a) which was also observed in our experimental PAC colitis
model (Figure 3a). Besides a general inflammation-induced reduction in intestinal GHR expression,
cell-type specific changes were also observed using ISH. Decreased epithelial expression and increased
numbers of GHR positive cells in the lamina propria was observed in inflamed human intestines,
which points to the induction of local epithelial GH resistance and infiltration of GHR positive immune
cells into the lamina propria (Figure 2a). This is underlined by previous reports showing high GHR
expression by immune cells, notably macrophages, neutrophils and B-cells [39–41]. Based on PCR
analysis of human biopsies, the loss of GHR expression by epithelial and stromal cells is greater than
the gain introduced by infiltrating immune cells during active UC. A similar pattern was observed in
the PAC model where inflammation significantly reduced GHR expression (Figure 3c–f).

The best studied inflammatory mediators involved in GH resistance formation are TNF-α, IL-1β
and IL-6. Only IL-1β was up-regulated in serum from the UC patients (Figure 2d), whereas local
expression of all three was increased in both active UC and in PAC mice (Table 2), which additionally
inversely correlated with human GHR expression (Figure 2c). Combined with the consistent changes
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in gene expression patterns between UC patients and the PAC model, GH resistance appears to have
been introduced (Table 2), where local TNF-α, IL-1β and IL-6 induce SOCS1 and SOCS3 and decrease
GHR expression.

During inflammation SOCS proteins function as inhibitors of various cytokine receptors thus
limiting hyper activation of inflammation-related cytokine-induced signalling through the JAK/STAT
pathway. Consequently, GHR/JAK2/STAT5 signalling is collaterally targeted by the SOCSs as
confirmed in vitro using the enteroid system (Figure 4c,d). A similar pattern with both up-regulation of
SOCS1 and SOCS3 has been described among UC patients [42,43] and increased SOCS3 was reported
in experimental colitis [27].

Change in colonic IGF-1 mRNA was not observed, whereas IGF1R expression was decreased
in vivo (Table 2). The mechanism for this is unknown, but could be a consequence of either the
inflammation per se or reduced IGF-1 levels resulting from induced hepatic GH resistance [44–46].
Chesnokova et al. [47] have reported enhanced intestinal GH protein levels in active UC based on
immunohistochemical staining. By qPCR we detected no expression of GH1 in human and mice
intestines, while GH2 was expressed based on array analyses in humans (Table 2). No changes in the
expression was observed in non-inflamed versus inflamed samples neither in UC or PAC, indicating
that local GH production is not influenced by intestinal inflammation.

Mucosal healing is the primary treatment goal in IBD and is defined as the reestablishment
of the epithelial barrier. To evaluate the effects of inflammation and GH on the epithelial lining,
we established primary epithelial cultures from mice [48]. Separate effects of TNF-α and IL-1β or
IL-6, respectively, on regulation of GHR functions were observed. The effects on GHR and SOCS3
expression, already observed in vivo, combined with a negative impact on STAT5 phosphorylation
indicates the induction of GH resistance in the cultured cells.

Previous studies have reported proliferative and anti-apoptotic effects of GH on murine intestinal
epithelium and in human duodenal explant cultures [27,49,50]. In intestinal epithelium, activation of
STAT5 has additionally been shown to be important for maintaining stem cell renewal and for crypt
regeneration during intestinal inflammation, which further underlines the potential roles of GHR
activation during mucosal healing [51].

To evaluate the therapeutic potential of GH, we used the PAC model. The model generally
displays a more synchronized disease development compared to IL-10 k.o. mice on a C57BL/6J
background, and shares many features with CD and UC as previously described [36,37]. The treatment
design was inspired by previous reports showing that GH overexpressing mice, had increased survival,
induction of remission and mucosal healing in dextran sulfate sodium (DSS) treated animals [52].
Moreover, Denson et al., and Williams et al., have previously evaluated the effects of GH on intestinal
inflammation in pre-clinical models of colitis [27,28,52,53].

Contrary to previous studies, our model design was based on an accelerated disease using
piroxicam. GH treatment was initiated after disease induction to evaluate its effects on established
inflammation in a therapeutic model [36,37]. Additionally, we treated the mice with higher doses of
GH compared to previous studies. The intention was to be able to override the induced GH resistance
in the animals to observe an effect of GH on intestinal inflammation.

Twice daily treatment with high dose mGH significantly increased body weight and plasma IGF-1
but did not affect histopathological disease evaluation or colon weight:length ratio (Supplementary
Materials Figure S4). In the initial study inconsistent disease penetration was observed, with low initial
weight loss, where several animals did not show signs of colitis (Supplementary Materials Figure S4d,e).
Treatment of the animals with anti-IL-12p40 did ameliorate the disease (Supplementary Materials
Figure S4d,e). Accordingly, the model was adjusted to ensure homogenous disease severity and group
assignment was initiated when the animals reached a 7.5% weight loss (Figure 5). Additionally, long
acting PEG-hGH was used to increase the exposure to GH persistently during the treatment and to
reduce the number of injections. PEG-hGH induced weight gain and increase in IGF-1 concentration
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in the treated animals, but histologically, the animals did not benefit from PEG-hGH treatment and the
colonic weight:length ratio was not improved either.

In our study GH treatment (mGH and PEG-hGH) showed no effects on intestinal healing
although the animals were exposed to high dose GH, indicated by increased body weight and IGF-1
concentration. It should be noted that the observed body weight increase likely is a combination of
“growth” of the animals but also an effect of GH on sodium and water retention, a known effect of
GH [54]. Similar to previous studies, we confirmed that inflammation induces GH resistance. However,
in contrast to previous studies where prophylactic treatment or GH overexpression did ameliorate
inflammation [27,28,52], we used a therapeutic setup, where GH resistance was established prior to
treatment. It is likely that GH administration alone is not sufficient to circumvent established GH
resistance resulting in limited GH actions at the site of active inflammation.

Whereas a number of studies have shown an effect of GH on experimental colitis, only one
study has reported an effect of GH on CD colitis. In that study, Slonim et al. [34] observed reduced
disease scores as well as a decreased need for concomitant medication following 4 months of GH
supplementation as compared to placebo.

Malnutrition is an important factor in the formation of GH resistance, especially during intestinal
inflammation, where nutritional uptake is likely impaired. The nutritional state was not possible to
evaluate in the current study. However, prolonged disease duration and severity are risk factors for
development of malnutrition in IBD in general [55,56]. Among UC patients included in our study, a
decline in appetite and general well-being was observed, especially among patients with moderate
and severe disease stages. Some degree of malnutrition must be expected in some of these patients.
Likewise, severely diseased animals also consume less food although the study setup did not focus on
this aspect.

In conclusion, no effects of GH on intestinal mucosal healing were observed during inflammation,
even though an effect on weight gain was observed showing a systemic biological effect of GH.
Therefore, we believe that ongoing intestinal inflammation induces both global and local intestinal
GH resistance.

4. Materials and Methods

4.1. Bioethics

All murine experiments were carried out in accordance with the legislation of the European
Communities Council Directive 2010/63/EU for the protection of animals used for experimental
purposes and approved by the Danish Animal Experiments Inspectorate, Ministry of Food, Agriculture
and Fisheries, Denmark, as well as the internal Ethical Review Committee at Novo Nordisk A/S.
Animal experiment permit numbers are: 2008/561-1510 and 2013-15-2934-00816/BES. Mice were
sacrificed by cervical dislocation if their weight loss exceeded 20% within the study or if they showed
signs of decreased well-being or a morbid appearance.

4.2. Patient Material and Ethical Considerations

The enrolled individuals were all contacted in relation to an already scheduled endoscopic
examination at Herlev University Hospital, University of Copenhagen, Denmark. Signed informed
consent was obtained from each individual before inclusion. Healthy volunteers consisted of patients
with irritable bowel syndrome [57] or patients undergoing a scheduled control visit following a
previous polypectomy. Demographics and clinical characteristics are described in details in Table 1
and have also been described previously [58,59]. Multiple intestinal biopsies were sampled from
each patient within a 5 cm radius. The sampling was done from the sigmoid colon from the most
inflamed area. The Scientific Ethics Committee of the Copenhagen Capital Region approved this study
(H-2-2012-026 and H-15009463). The procedures applied were in accordance with the Declaration of
Helsinki of the World Medical Association.
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4.3. Clinical Disease Scoring of IBD Patients

Patients were evaluated during the visit at the endoscopy unit based on the Mayo score [60].
Three neighboring biopsies from each patient were evaluated by the staff pathologist and scored
according to the histopathological Geboes-system [61]. This scoring system was used as a cumulative
sum-score of the individual grades, thus ranging from 0 to 22. Based on the Mayo score (scores 0–12),
the patients were graded as being in remission (0–2, no subscore > 1) or having mild (3–5), moderate
(6–10) or severe (11–12) disease.

4.4. Animal Studies and Procedures

B6.129P2-Il10138tm1Cgn/J (IL-10 k.o.) mice and C57BL/6J wild type (WT) mice were obtained from
Charles River Laboratories (Sulzfeld, Germany) in accordance with a license agreement with MCG
(MCG-stiftung Hercogstrasse 64, 80803 Murnich, Germany). 8–12 week old mice, all of them female,
were used in the studies due to the impracticalities of randomizing and housing male mice. The mice
were housed at Novo Nordisk A/S, Maaloev, Denmark, under barrier protected conditions as described
previously [37]. The animals were not exposed to agents listed in the FELASA (Federation of Laboratory
Animal Science Associations) guidelines [62]. They were housed under a 12-h light/dark cycle with
10–12 mice per cage. 90 percentage of the cage bedding was changed weekly, and 10 percentage of
the cage bedding were transferred between cages to ensure a homogenous microbial environment.
The clinical status of the mice was evaluated three times weekly by visual inspection, percentage
weight change and fecal consistency.

4.5. Induction of Piroxicam Accelerated Colitis (PAC)

For induction of the PAC IL-10 k.o. model, IL-10 k.o. mice had unrestricted access to piroxicam
(Sigma Aldrich, Broendby, Denmark) containing 200 ppm homogenized in 1324 Altromin diet
(Altromin, Lage, Germany) from day 0 of study initiation until day 10 (first and second experiment,
see Figure 6), and from day 0 until they reached 7.5% weight loss (third experiment). Subsequently,
mice were switched to normal Altromin 1324 chow as previously described [36,37].

In the second experiment, PAC mice were treated with mouse growth hormone (mGH) (30 mg/kg)
or vehicle twice daily. The control treatment groups received anti-IL-12p40 (25 mg/kg) or rat IgG2a
(25 mg/kg) three times a week after termination of piroxicam treatment.

In the third experiment, PAC mice were treated with long-acting PEG-hGH (30 mg/kg), vehicle,
anti-IL-12p40 (25 mg/kg) or rat IgG2a (25 mg/kg) day 1, 3, 6 and 9 after termination of piroxicam
treatment. Anti-IL-12p40 and rat IgG2a were purchased from BioXcell (West Lebanon, NH, USA) and
mGH and PEG-hGH were produced in-house by Novo Nordisk (Bagsværd, Denmark).

4.6. Study Design

A graphical presentation of the three applied study designs is shown in Figure 6.
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Figure 6. Graphical presentation of the in vivo protocols used in the study. Experiment 1 was used
for gene expression profiling with arrows indicating euthanization of the animals (see Figure 4 and
Table 2). Experiment 2 and 3 are dosing studies with mGH (see Supplementary Materials Figure S4)
and PEG-hGH (Figure 5), respectively, with arrows indicating dosing with the described compounds.

4.7. Monitoring of Disease in Mice

Body weight was monitored three times weekly, and mice were sacrificed at weight loss >20%.
Fecal consistency was evaluated before the start of treatment and subsequently 3 times a week using
a semi-quantitative score (normal stool = 0; slightly soft = 1; soft but formed = 2; not formed = 3;
liquid stools or no feces in colon at sacrifice = 4). Disease activity index (DAI) score was calculated as
previously described [38,39].

4.8. IGF-1 Measurements in Mice

Blood samples were drawn at predesignated time points pre- and post-dosing using a sparse
sampling schedule. At each time point blood samples were drawn from 3 mice, whereas each mouse
was bled 1–2 times during each study. Blood samples were drawn from the orbital vein plexus of
animals anaesthetized by Isofluran/O2/N2O. At each sampling time 150 µL blood was drawn in
an Eppendorff tube containing 8 mM EDTA. Plasma was collected after centrifugation at 1500× g
at 4 ◦C for 10 min. A plasma sample of 25 µL was used to determine the IGF-1 concentrations by a
commercial ELISA assay (OCTEIA IGF-I, IDS Ltd., Boldon, UK). The assay was a sandwich ELISA
using a highly IGF-I specific polyclonal antibody as catcher, and a horseradish peroxidase labelled
high affinity monoclonal antibody as detector. The limit of detection for IGF-I was 63 ng/mL.
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4.9. Post Mortem Analyses on Mouse Tissue

As described previously [63] mice were sacrificed by cervical dislocation. Caecum, colon and
rectum were obtained and the colon length was measured from the caeco-colonic junction to the anus.
After rinsing with PBS the colon was weighed and the weight:length (W:L) ratio (cm/g) was calculated.
This was used as an objective parameter indicating the presence of established colitis, as it is known to
correlate with histopathology [36]. The proximal 1/3 of the colon was removed and the remaining
2/3 of colon was bisected or trisected longitudinally. The dissected colon biopsies were processed for
histological analysis and RNA profiling as previously described [63].

4.10. Histological Analysis of Tissues

Tissue for histology was fixed in 4% paraformaldehyde (VWR—Bie & Berntsen, Herlev, Denmark)
for approximately 24 h at 4 ◦C. Subsequently, the samples were transferred to 70% ethanol and stored at
4 ◦C until processed for histopathology. Paraffin embedded tissue blocks were sectioned at a nominal
thickness of 3 µm, and mounted on Superfrost®Plus microscope slides. Subsequently, the slides were
stained with haematoxylin (Ampliqon, Skovlunde, Denmark) and eosin (Sigma-Aldrich, Broendby,
Denmark) (H&E) for light-microscopic examination, using an Olympus AX70 microscope. The severity
of the histopathological lesions of colon segments was examined in a blinded manner, using the criteria
previously described [63].

4.11. In Situ Hybridization

Tissues were prepared as described above. Two sets of RNAscope® (Advanced Cell Diagnostics,
ACD, Newark, CA, USA) probes were designed to target exon 9 and 10 of either the human or the
mouse GHR transcript. Stains were performed on the Ventana Discovery Ultra (Ventana Medical
Systems, Inc., Tucson, AZ, USA) with probes targeting bacterial gene dapB as negative control.
Development was performed using Fast Red.

4.12. Image Analysis and Quantification of Stains

Scanning of ISH stains was done on the Nanozoomer 2.0 (Hamamatsu Photonics K.K., Hamamatsu
City, Japan). Using an original magnification of 40× the images were digitally analysed using the
software Visiopharm Integrator System (VIS, Visiopharm, Hoersholm, Denmark), as we have described
previously [35]. We performed a threshold analysis using an intensity interval of 0–180.

4.13. RNA Extraction from Human Biopsies, Murine Intestine and Cell Cultures

Human biopsies and murine intestines were kept in RNAlater (Ambion, Austin, TX, USA) 24–48 h
before storage at −80 ◦C. RNA from human biopsies was extracted by mechanical homogenization
using a rotor-stator. RNA purification was performed by column purification (Nucleospin miRNA,
Macherey–Nagel, Düren, Germany, ref: 740971.250) including DNAse I treatment according to the
recommendations of the manufacturer.

Murine colonic samples for RNAseq were lysed in QIAzol (Qiagen, Valencia, CA, USA) or
in RLT lysis buffer added β-mercaptoethanol (BME) (Qiagen, Valencia, CA, USA). Following
sample homogenization the samples in QIAzol or RLT plus BME were added chloroform or acid
phenol:chloroform, respectively. Following centrifugation the sample supernatant were added 70%
ethanol and total mRNA was isolated the Qiagen RNeasy Mini kit protocol (Qiagen, Valencia, CA,
USA) including DNase treatment (Ambion, Austin, TX, USA).

The RNA concentration from human and murine tissues was quantified using a NanoDrop
spectrometer (Thermo Fisher Scientific, Wilmington, DE, USA). For samples with <10 ng/mL the
Ribogreen® RNA assay Kit (Life Technologies, Carlsbad, CA, USA) was used. The Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) was used to assess RNA quality. Samples with a resulting RNA
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Integrity Number (RIN) value below 6 were excluded. RNA from cell cultures was extracted using the
GeneJET-kit (Thermo Fisher, K0732) according to the manufacturer’s recommendations.

4.14. mRNA Sequencing Analysis and qPCR (Murine)

For preparation of the mRNA sequencing libraries, we sequenced a total of 100 ng RNA per sample
using the HiSeq 2000 system (Illumina, San Diego, CA, USA) and the Illumina TruSeq Sample Prep Kit
according to the manufacturer’s recommendations. The analyses were run as multiplexing sequencing
sufficient to obtain 10–25 million reads per sample. The reference mouse genome (NCBI Build 37,
mm9) was used for alignment using the Tuxedo suite [64,65]. Using R (version 3.2.3, available online:
http://www.r-project.org), the ShortRead package as well as the Fastx toolkit were used for quality
control of the obtained sequencing data [66]. Counts of reads mapping to each gene were calculated
from the aligned reads using HTseq [66].

For qPCR on primary murine cell cultures, 200 ng RNA was converted to cDNA using the
High-Capacity cDNA Reverse Transcription Kit (4368814, Thermo Fisher). Mastermix (4369514,
Thermo Fisher) and Taq-Man probe-primer sets were from Thermo Fisher. The analysis was performed
using the (StepOnePlus™ Real-Time PCR system (Applied Biosystems, Foster City, CA, USA).
Calculation of expression levels are based in the ∆∆Ct method using Rplp0.

4.15. mRNA qPCR and Array Analysis (Human)

Quantitative real time PCR (qPCR) of human patient samples were conducted using the Fluidigm
Biomark™ System (Fluidigm, South San Francisco, CA, USA) with standard Taq-Man probe-primer
sets from Thermo Fisher. Calculation of expression levels are based in the ∆∆Ct method using RPLP0.

RNA form human biopsies was further analysed using the Affymetrix (Santa Clara, CA, USA)
HGU219 arrays on 96-PEG plates. The average expression level of 2 individual biopsies were calculated
and used in the later analysis. 100 ng of RNA was labelled using the 3-IVT expression kit (Affymetrix)
and hybridized to the HGU219 chip according to the Affymetrix protocol. The chips were scanned on
the GeneTitan platform (Affymetrix).

The Affymetrix raw data (.cel files) were normalized using the robust multichip average (RMA)
algorithm [67] in R environment. Quality assurance was performed using the Bioconductor package
arrayQualityMetrics in R [68], leading to removal of 2 biopsies prior to data analysis. Probe set
annotation files were obtained form from Affymetrix NetAffx website (NA35, available online: https:
//www.affymetrix.com/analysis/index.affx).

4.16. Serum Measurements

TNF-α, IL-1β and IL-6 in patient serum was measured using a plasmonic resonance protein
microarray developed at Stanford University [69,70].

4.17. Cell Culture Procedures and Western Blotting

Small intestinal enteroid/organoid cultures were established from wild type C57/Bl6 mice and
from Ghr-disrupted littermates [71]. The cultures were established and propagated as described
previously [48] including mR-spondin (10% v/v, ~500 ng/mL, homemade), mEGF (50 ng/mL,
Peprotech (Rocky Hill, NJ, USA), 315-09), mNoggin (100 ng/mL, Peprotech, 250-38), N-Acetylcysteine
(1 mM, Sigma-Aldrich, A9165) and 1× B27 supplement without insulin (Gibco (Gaithersburg, MD,
USA), A18956-01). Y-27632 (10 µM, Sigma-Aldrich, Y0503) was added for two days after passaging,
except when the matrigel was changed prior to stimulation the following day. The cultures were
treated with murine forms of TNF-α, IL-1β and IL-6 (1 nM, R&D Systems (Minneapolis, MN, USA),
401-ML, 406-ML, CS1315031-ML); the concentrations of 1 nM used in these experiments are assumedly
a reachable local intestinal concentration during inflammation based on ELISA measurements of
inflamed rodent intestines [72,73]. Murine GH (200 ng/mL) was produced in-house by Novo Nordisk.

http://www.r-project.org
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For gene expression analysis, the cells were gently extracted manually from the matrigel 18 h
before the experiment and placed in fresh matrigel and media without EGF and R-spondin. The cells
were added the inflammatory mediators in basal medium only added N-Acetylcysteine for 8 h and
RNA was extracted and analysed as described above.

For detection of phosphorylated STAT5 by western blotting, the cells were initially treated as for
PCR analysis. After incubation with inflammatory mediators cells were extracted using Cell Recovery
Solution (Corning (Tewksbury, MA, USA), 354253) on ice, washed with basal medium and added
pre-warmed basal medium containing 200 ng/mL mGH for 40 min before wash and lysis using Cell
lysis buffer (Cell signalling technology (Danvers, MA, USA), 9803) added protease and phosphatase
inhibitors (Thermo Scientific, 186209) (Cell signalling technology, 5870). The lysate was sonicated
and cleared by centrifugation and loaded on homemade 8% SDS-PAGE gels following boiling and
reduction. 15 µg of protein was loaded and the following antibodies from Cell Signalling Technologies
were used; p-STAT5 (1:1000, 9351), β-Actin (1:2000, 4970) and α-Rb-HRP (1:2000, 7074). Development
was performed using SuperSignal™ West Femto Maximum Sensitivity Substrate (Thermo Fisher,
34095) and X-ray film (Bioland (Paramount, CA, USA), A03-01).

4.18. Statistical Analyses

GraphPad Prism version 7.0 (GraphPad Software, Inc., La Jolla, CA, USA) was used for all
statistical analyses. Non-Gaussian distribution was assumed for the human patient data and
the enteroid studies. Therefore, multiple group comparisons were done using non-parametric
Kruskal-Wallis with Dunn’s correction for multiple testing. Mann-Whitney U tests were used when
comparing only two groups. Based on normality testing Gaussian distribution was assumed in data
generated form the PAC model, where ordinary one-way ANOVA w. Holm-Sidak’s correction was
used when comparing multiple relevant groups. Error bars represent mean ± SD, except SEM is
shown in weight change curves for the in vivo studies. Correlation analyses were done using simple
linear regression. Significance was assumed with p-values < 0.05.

5. Conclusions

Expression analyses of human UC patients and the PAC experimental colitis model revealed
similarities among deregulated transcripts involved in GH signalling and the formation of GH
resistance. Resistance appears to be a result of increased SOCS1 and SOCS3 expression and
down-regulated GHR expression, mediated by the inflammatory mediators TNF-α, IL-1β and IL-6.
These results were confirmed in cultured primary epithelial cells. Consequently, inflammation
likely has a direct impact on mucosal healing during intestinal inflammation by impairing local
GH action. Therapeutic treatment of murine colitis using mGH and PEG-hGH did increase body
weight, but no effects were observed on mucosal healing. Accordingly, GH does not reduce intestinal
inflammation in our mouse models, potentially due to established GH resistance. Treatment of the
underlying inflammation may therefore be important in order to sensitize the intestinal cells to regain
responsiveness to GH.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2046/s1.
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