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Abstract: The environmental damage caused by cadmium (Cd) pollution is of increasing concern in
China. While the overall plant response to Cd has been investigated in some depth, the contribution
(if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is
uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised
rice seedlings exposed to 10 µM and 100 µM Cd2+ stress. An analysis of the seedlings’ quantitative
phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of
these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number
of proteins affected in this way was six times greater in the 100 µM Cd2+ treatment than in the
10 µM treatment. A functional analysis of the differentially phosphorylated proteins implied that a
significant number was involved in signaling, in stress tolerance and in the neutralization of reactive
oxygen species, while there was also a marked representation of transcription factors.
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1. Introduction

The heavy metal cadmium (Cd) is phytotoxic; the exposure of roots to relatively low
concentrations of Cd2+ are sufficient to suppress enzyme activity, inhibit photosynthesis, block stomatal
movement and interfere with transpiration, then result in leaf roll, growth inhibition and chlorosis [1,2].
Cd, as a non-essential element of plant, is readily taken up by the root through the action of transporters
used by the plant to import various essential micro- and macroelements, thereby reducing the plant’s
capacity to take up, transport and utilize these essential elements [3,4]. The presence of Cd2+ ions
disturbs the plant’s water balance [5], inhibits oxidative mitochondrial phosphorylation [6], interferes
with normal H+/K+ exchange, down-regulates the activity of plasma membrane ATPase [7] and
indirectly increases the level of oxidative stress [8]. Plants have evolved a range of protective measures,
including the pumping of ions into the apoplast, their extracellular immobilization, their chelation
in the cytosol and their sequestration into the vacuole [9,10]. The products of a number of genes
have been implicated in these defense and tolerance processes [11–13]. More recently, transcriptomic,
proteomic and metabolomic platforms have been applied to characterize the Cd response. For example,
a comparison in pakchoi (Brassica chinensis) between varieties which contrast for their uptake of Cd
was able to show that the timing of certain transcriptional responses was variety dependent [14].
In cotton, Cd stress boosts the production of enzymes involved in the neutralization of reactive oxygen
species (ROS), in mitochondrial respiration and in lignification [15]. A combined transcriptomic and
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metabolomic analysis of radish roots exposed to Cd has revealed effects on the plants’ amino acid
metabolism, energy production and oxidative phosphorylation [16].

It is well understood that post-translational modification is exploited in order to regulate protein
activity. Over 300 types of such modifications are known, the major ones being glycosylation,
acetylation, phosphorylation and nitrosylation. The contribution of phosphorylation is the most
fully explored of these, thanks to its relatively high stability, abundance and functional importance.
Phosphorylation affects most commonly the hydroxyl group in threonine, serine and tyrosine [17].
A large number of signaling pathways involved in the response of rice to Cd stress are known
to be mediated by phosphorylation/dephosphorylation events [18–20], although the level of
understanding of these events is limited by the universal focus on a single phosphoprotein [20,21].
Technological developments in phosphoproteomics now offer novel opportunities to identify
phosphosites more globally. Thus, large scale scans of induced phosphoproteins have been carried out
with a view to characterizing the plant response to drought [22], exogenous hormone treatment [23,24],
salinity [25] and high temperature [26], although not as yet to heavy metal exposure. The current paper
presents a comprehensive analysis of phosphorylation induced in rice seedlings by their exposure to
Cd, conducted using an iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative
phosphoproteomic approach.

2. Results

2.1. The Phenotypic and Physiological Effects of Exposure to Cd2+ Stress

Increasing the concentration of Cd2+ present in the hydroponics solution had a suppressive
effect on the growth of rice seedlings (Figure 1A–E). Compared to the performance of non-stressed
(control, NC) seedlings, seedling height after a 12 day exposure to Cd was reduced by 42.9% in
the 10 µM Cd2+ treatment (M10) and by 60.8% in the 100 µM Cd2+ treatment (H100). Whereas the
control seedlings had accumulated 0.39 g of dry matter by the time of harvest, the dry weight of
the stressed seedlings was only 0.30 g (M10) and 0.21 g (H100) (Figure 1D). Both Cd treatments
significantly decreased the seedlings’ chlorophyll content (Figure 1E). In addition, the shoots’ Cd
content of seedlings in both M10 and H100 were also very significantly raised (Figure 1F).

2.2. The Identification of Phosphorylated Proteins and Phosphosites

The contribution of protein phosphorylation to the response of rice seedlings to Cd stress
was derived by conducting an iTRAQ-based phosphoproteomic analysis. A total of 2681 unique
phosphopeptides (Figure 2A; Table S1) was identified, associated with 1244 proteins (Table S2). Some
68.8% of the peptides were modified at a single site, 26.1% were altered at two and the remainder at
three sites (Figure 2A). A total of 3647 phosphosites detected, of them, 3349 (91.8%) involved a serine
residue, 293 (8.0%) a threonine and just five (0.1%) a tyrosine (Figure 2B). Our research found a similar
distribution pattern of the phosphorylation types with other reports in Triticum aestivum, rice and
Brachypodium distachyon [27,28].

2.3. Predicted Subcellular Localization of Phosphoproteins

The putative subcellular localization of the phosphoproteins was derived by an in silico analysis based
on a subcellular localization prediction online tool (Available online: http://cello.life.nctu.edu.tw/) [29,30].
Extracellular phosphoproteins accounted for >56.31% of the set of phosphoproteins (Figure 2C); Of the
remainder, 11.49% were predicted to be associated with the plasma membrane, 16.79% with the
nucleus and 6.43% with the cytoplasm, with the rest 9.00% being distributed among the mitochondria,
the chloroplasts, the endoplasmic reticulum and the others.

http://cello.life.nctu.edu.tw/
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Figure 1. The morphology of the rice seedling shoot and its Cd content when grown hydroponically 
for 12 days in a solution containing 0 μΜ (NC), 10 (M10) μΜ or 100 μΜ (H100) Cd2+. (A,B) The 
appearance of the seedlings; (C) the effect on shoot height; (D) the effect on dry matter accumulation; 
(E) the effect on the leaf chlorophyll content (soil and plant analyzer development, SPAD) after 12 
days of Cd2+ treatment; (F) the effect on tissue Cd content. Values in (C–F) are means ± SD (n = 3); the 
asterisks indicate statistical significance between the M10, H100 and NC, as determined by a Student’s 
t-test (* p ≤ 0.05; ** p ≤ 0.01).  

 
Figure 2. Phosphosite types and the subcellular location of phosphoproteins. (A) The frequency of 
phosphopeptides carrying one, two or three phosphosites; (B) The distribution of phosphosites 
between serine (S), threonine (T) and tyrosine (Y) residues; (C) The putative subcellular location of 
the set of phosphoproteins. 

2.4. Peptide Motifs Associated with Phosphorylation 

A set of 2454 distinct sequences representing the 15 residue surrounding each of the phosphosites 
was obtained. Of these, 2404 were centered on a serine residue and 50 on a threonine (Table S3, Figure 
3). The former set included twelve over-presented motifs: the most common ones were ‘sxS’ (476 
occurrences) and ‘sD’ (385 occurrences), followed by ‘sP’ and ‘Rxxs’ (each with >200 occurrences). The 
‘sP’ motif has also been identified as being over-represented in other systems [31–33]. ‘sP’ is recognized 
by MAPK (mitogen-activated protein kinase), SnRK2 (sucrose non-fermenting1-related protein kinase 
2), AGC (cAMP and cGMP dependent protein kinase C), RLK (receptor-like kinase), CDK (cyclin-
dependent kinase), STE20-like kinase (SLK) and CDPK (calcium-dependent protein kinase) kinases [31]. 

Figure 1. The morphology of the rice seedling shoot and its Cd content when grown hydroponically for
12 days in a solution containing 0 µM (NC), 10 (M10) µM or 100 µM (H100) Cd2+. (A,B) The appearance
of the seedlings; (C) the effect on shoot height; (D) the effect on dry matter accumulation; (E) the effect
on the leaf chlorophyll content (soil and plant analyzer development, SPAD) after 12 days of Cd2+

treatment; (F) the effect on tissue Cd content. Values in (C–F) are means ± SD (n = 3); the asterisks
indicate statistical significance between the M10, H100 and NC, as determined by a Student’s t-test
(* p ≤ 0.05; ** p ≤ 0.01).
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Figure 2. Phosphosite types and the subcellular location of phosphoproteins. (A) The frequency
of phosphopeptides carrying one, two or three phosphosites; (B) The distribution of phosphosites
between serine (S), threonine (T) and tyrosine (Y) residues; (C) The putative subcellular location of the
set of phosphoproteins.

2.4. Peptide Motifs Associated with Phosphorylation

A set of 2454 distinct sequences representing the 15 residue surrounding each of the phosphosites
was obtained. Of these, 2404 were centered on a serine residue and 50 on a threonine (Table S3,
Figure 3). The former set included twelve over-presented motifs: the most common ones were ‘sxS’
(476 occurrences) and ‘sD’ (385 occurrences), followed by ‘sP’ and ‘Rxxs’ (each with >200 occurrences).
The ‘sP’ motif has also been identified as being over-represented in other systems [31–33]. ‘sP’ is
recognized by MAPK (mitogen-activated protein kinase), SnRK2 (sucrose non-fermenting1-related
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protein kinase 2), AGC (cAMP and cGMP dependent protein kinase C), RLK (receptor-like kinase),
CDK (cyclin-dependent kinase), STE20-like kinase (SLK) and CDPK (calcium-dependent protein
kinase) kinases [31]. Meanwhile the ‘Rxxs’ motif provides a target for MAPKK (Mitogen-activated
protein kinase kinase), protein kinase A and CaMK-II (Calmodulin-dependent protein kinase) [31,33].
There were over 50 occurrences of each of ‘sS’, ‘sE’, ‘sG’, ‘Dxxxxs’, ‘sxxR’, ‘SxsP’, ‘sxxxxS’ and ‘Kxxs’.
As for phosphothreonine, ‘tP’ was found to be the only conserved motif in this study.

Int. J. Mol. Sci. 2017, 18, 2055 4 of 16 

 

Meanwhile the ‘Rxxs’ motif provides a target for MAPKK (Mitogen-activated protein kinase kinase), 
protein kinase A and CaMK-II (Calmodulin-dependent protein kinase) [31,33]. There were over 50 
occurrences of each of ‘sS’, ‘sE’, ‘sG’, ‘Dxxxxs’, ‘sxxR’, ‘SxsP’, ‘sxxxxS’ and ‘Kxxs’. As for 
phosphothreonine, ‘tP’ was found to be the only conserved motif in this study. 

 
Figure 3. Motif-X analysis of over-represented motifs around the phosphosites. (A) ‘sxS’; (B) ‘sD’; (C) 
‘sP’; (D) ‘Rxxs’;(E) ‘sS’; (F) ‘sE’; (G) ‘sG’; (H) ‘Dxxxxs’; (I) ‘sxxR’; (J) ‘SxsP’; (K) ‘sxxxxS’; (L) ‘tP’. In 
motif names, the phosphoserine or phosphorthreonine residue at the position 0 were represented as 
“s” or ”t”; the conservative and unconservative residues around the phosphosite were represented as 
uppercase and “x”, respectively. 

2.5. Differentially Phosphorylated Proteins in Response to Cd2+ Treatment 

Differential phosphorylation was inferred whenever the presence of Cd2+ altered the abundance 
of a phosphorylated protein by at least two fold (p ≤ 0.05). Of the 1244 proteins identified in the 
seedlings, 482 fell into this category: 403 of these were associated with the H100 treatment and 34 
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392 proteins up-regulated by the stress, 366 were identified in the H100 treated seedlings, 7 in the 
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Figure 3. Motif-X analysis of over-represented motifs around the phosphosites. (A) ‘sxS’; (B) ‘sD’;
(C) ‘sP’; (D) ‘Rxxs’;(E) ‘sS’; (F) ‘sE’; (G) ‘sG’; (H) ‘Dxxxxs’; (I) ‘sxxR’; (J) ‘SxsP’; (K) ‘sxxxxS’; (L) ‘tP’.
In motif names, the phosphoserine or phosphorthreonine residue at the position 0 were represented as
“s” or ”t”; the conservative and unconservative residues around the phosphosite were represented as
uppercase and “x”, respectively.

2.5. Differentially Phosphorylated Proteins in Response to Cd2+ Treatment

Differential phosphorylation was inferred whenever the presence of Cd2+ altered the abundance
of a phosphorylated protein by at least two fold (p ≤ 0.05). Of the 1244 proteins identified in the
seedlings, 482 fell into this category: 403 of these were associated with the H100 treatment and 34 with
the M10 treatment, while 45 featured in both treatments (Figure 4A,B, Tables S4 and S5). Of the
392 proteins up-regulated by the stress, 366 were identified in the H100 treated seedlings, 7 in the M10
treated seedlings and 19 in both treatments (Figure 4A). The H100 treatment suppressed 37 of the
differentially phosphorylated proteins, the M10 treatment suppressed 27, and 26 were suppressed in
both treatments (Figure 4B). Overall, the abundance of 407 proteins was enhanced in both treatments
and that of 63 was reduced; a small number (12) of proteins was up-regulated in one treatment but
down-regulated in the other (Figure 4C–F).
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multi-organism process was under-presented. Regarding “cellular component”, DP proteins 
associated with cell, cell part and membrane part were up-represented, but nucleoid and extracellular 
region were less presented. Finally, from the “molecular function” perspective, DP proteins involved 
in binding, catalytic activity and transporter activity were over-presented, while receptor activity and 
molecular transducer activity were less preferred. When separately conducted GO enrich analysis 
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by iTRAQ. (A) Phosphorylated proteins up-regulated differentially by the presence of Cd2+;
(B) Phosphorylated proteins down-regulated differentially by the presence of Cd2+. The orange
segments refer to proteins more abundant in the H100 treatment but not in the M10 treatment, and
the blue ones vice versa; the gray segments refer to proteins differentially abundant in both Cd2+

treatments; (C–F) Contrasting patterns of expression among the 482 differentially phosphorylated
proteins: within each panel, the gray lines represent the abundance of individual phosphoproteins,
and the light blue line represents the average pattern.

2.6. Functional Assignment of the Differentially Phosphorylated Proteins

A set of differentially phosphorylated (DP) proteins was subjected to a gene ontology (GO)
analysis (Figure 5). For “biological process”, DP proteins related to cellular process, metabolic process
and single-organism process were preferred changed in response to Cd stress, whereas growth and
multi-organism process was under-presented. Regarding “cellular component”, DP proteins associated
with cell, cell part and membrane part were up-represented, but nucleoid and extracellular region
were less presented. Finally, from the “molecular function” perspective, DP proteins involved in
binding, catalytic activity and transporter activity were over-presented, while receptor activity and
molecular transducer activity were less preferred. When separately conducted GO enrich analysis
with DP proteins in M10 or H100, there was significant different in the categories of “biological
process”, “cellular component” and “molecular function” (Figures S1 and S2). The phosphoproteins
displaying the greatest change in abundance as a result of the M10 treatment fell into the “cellular
component” categories “membrane part”, “transcription factor complex” or “nucleolar part”, whereas
the genes modulated by H100 fell largely into the categories “vacuole”, “mitochondrial matrix” or
“endomembrane system”. In terms of “molecular function”, the M10 treatment induced proteins for
the most part involved “binding of cytoskeletal protein”, “microtubule and tubulin”, “oxidoreductase
activity” or “transporter activity”, while the H100 treatment induced proteins associated with “sucrose
synthase activity”, “binding of histone” or “Rab (Ras-related in brain) GTPase”. Finally, with respect
to “biological process”, the majority of the proteins induced by M10 were categorized as a “cellular
process”, “metabolic process of carbohydrate”, “homeostatic process” or “response to oxidative stress”,
while the H100-induced ones were mostly assigned to “regulation involving in cellular component”,
“vesicle fusion” or “transcription”.
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2.7. The Abundance of Transcript from Genes Encoding Differentially Phosphorylated Proteins

An attempt was made to establish a correspondence between the transcript abundance of
randomly selected 16 genes encoding a differentially phosphorylated protein and the degree of
their phosphorylation; the former was derived using a quantitative real time PCR (qRT-PCR) assay
(Figure 6A,B). The result showed that there was no evidence for any correlation for eleven of the
proteins, which indicated that the protein phosphorylation events of rice shoot in response to Cd
stress are independent of the protein amount. For example, both Q7XX94 and Q84W73 became highly
phosphorylated in response to the H100 treatment, but there was no up-regulation in the transcription
of their encoding genes. The proteins Q5SMQ9, Q7X8W5 and Q84QW0 all experienced a loss in
phosphorylation in response to the M10 and H100 treatment, but the transcription of these proteins
did not change significantly in M10. The abundance of transcript produced by the genes encoding
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Q2R4Z4, Q5W769 and Q651D5 was unrelated to the extent of their phosphorylation in response to the
M10 treatment, while the abundance of Q8S3S1, Q6ATB2 and Q7XLR1 transcript was reduced more
strongly than the extent of their dephosphorylation induced by Cd stress.
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2.8. Protein-Protein Interactions Involving Differentially Phosphorylated Proteins

An interaction network based on the set of differentially phosphorylated proteins comprised of
19 nodes and 44 edges (Figure 7, Table S6). An analysis focused on just kinases and phosphatases
revealed the centrality of three protein phosphatases belonging to the PP2C (type 2c protein
phosphatase) family, which implied that abscisic acid (ABA)-related signaling is likely of some
importance for Cd detoxification and tolerance. For example, the self-phosphorylating SAPK6
(stress-activated protein kinase) has been associated with both the response to osmotic stress and
ABA signaling [34]. Additionally, phosphorylated proteins involved in MAPK (mitogen-activated
protein kinase) and CaMK (calmodulin dependent protein kinase) systems were also included in
the interaction network. For instance, DSM1 (drought-hypersensitive mutant1) is thought to be a
MAPK kinase kinase functioning as an early signaling component the drought stress response [35].
The presence of Q10BA4/CaMK in the network suggested that CaMK also participate in the response
to Cd stress.
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The full form of the abbreviated ID’s is given in Table S6.

3. Discussion

3.1. Protein Kinases/Phosphatases Participated in Signal Perception and Transduction

The ABA signaling pathway is of major importance to the plant response and defense to Cd
stress. It was revealed that ABA was rapidly induced by Cd2+ in S. tuberosum [36]. Exogenous ABA
was reported to not only decrease Cd content in O. sativa by ABA-assisted reduced Cd root-to-shoot
translocation via decreased transpiration rate [37], and confer Cd tolerance as result of increase of
phytochelatins content through increased O-acetylserine (thiol) lyase and phytochelatin synthase [38,39].
The central signaling complex of ABA pathway has been shown to be formed by the interaction of
pyrabactin resistant protein (PYR), PYR-Like protein (PYL), Regulatory components of ABA receptors
(RCAR), PP2Cs and SnRK2s; PP2Cs relieve the inhibition of SnRK imposed by their phosphorylation
by competitively binding with ABA receptors [40]. Here, the phosphorylation level of two of the three
known PP2Cs (PP2C66 and PP2C30) and three SnRK1s (Q6ZI44/Os02g0551100, Q0J0U2/Os09g0499000
and Q18PR9/Os03g0319100) was increased in response to the H100 treatment (Tables S4 and S5).
The phosphorylation of PP2C66 and PP2C30 likely promotes their binding to ABA receptors,
enhancing the level of phosphorylation of Q6ZI44, Q0J0U2 and Q18PR9, which in turn promotes
the phosphorylation of AREB/ABF (ABA-responsive element-binding protein/ABA-responsive
element-binding factors) and the induction of genes related to Cd translocation and tolerance;
This hypothetical model is consistent with the behavior both of wheat plants exposed to drought [22]
and of rice plants to infection by bacterial blight [27]. Two ARFs (Q94DL7/Os01g0963600 involved in
aluminum tolerance [41,42] and Q2R4Z4/Os11g0454300 in salinity tolerance [43]) were identified here
as experiencing enhanced phosphorylation involving both the Ser41/73 and Ser89 residues in response
to the H100 treatment, indicating this two ARFs probably also can reduce the Cd accumulation and
enhance Cd tolerance via transpiration rate or PCs synthesis in rice shoot.

In addition to ABA signaling, components of both CDPK and MAPK signaling were also
phosphorylated by Cd stress. Of the seven rice CDPKs, the phosphorylation level of six was raised as
a response to the H100 treatment (Tables S4 and S5). Two of these were CPK 13 (calcium-dependent
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protein kinase 13, Os07g0568600) and CDKC2 (cyclin-dependent kinase C 2, Os01g0958000). The former
protein was observed to accumulate in both the rice leaf sheath and callus, and responds to low
temperature and exogenous gibberellin by becoming increasingly phosphorylated [44]. The absence
of CDKC2 enhances the plant’s tolerance to moisture stress through the re-programming of the
transcription of genes encoding certain cell cycle-associated proteins; It also downgrades the
phosphorylation status of RNA polymerase II, which impacts upon the development of stomata [45].
Here, the enhanced phosphorylation level of CDKC2 and CPK13 in response to the H100 treatment
implied that both of these kinases participated in Cd detoxification. Stress-responsive MAP kinases
are thought to be involved in the response to Cd [46]. The signaling protein DSM1/Os02g0743500
has been suggested to act as a MAP kinase during the response to moisture stress, perhaps by
its regulation of ROS scavenging [35]. Here, the phosphorylation level of Q6Z2V3/Os02g0743500
was markedly enhanced in H100-treated seedlings, suggesting that it can confer Cd tolerance by
regulation on stomata or scavenging ROS. In addition to the kinases and phosphatases involved in
ABA, CaMK and MAPK signaling, in all over 50 differentially phosphorylated kinases or phosphatases
were identified here: these included the RLK transmembrane protein kinase CrRLK1L4/Os01g0155500
and the leucine-rich repeat (LRR) protein kinase Q7XAK8/Os07g0106100. The overall conclusion was
that multiple signaling pathways are likely involved in the response and tolerance to Cd stress.

3.2. Phosphorylated Transcription Factors Related to Stress Response and Defense

In response to external stress, the phosphorylation status of many transcription factors is altered
through the action of protein kinases or phosphatases [47]. In rice challenged by drought stress,
multiple serine-proline dipeptides in the transcription factor WRKY30 are phosphorylated [48].
It was revealed that majority of WRKYs (14 of 20 genes) were induced in Populus exposed
to Cd stress [49]. In maize, WRKY4 was reported to enhance tolerance to Cd stress by
increase in expression and activity of superoxide dismutase (SOD) and ascorbate peroxidase
(APX) [50]. Here, both WRKY72/Os11g0490900 and WRKY1/Os01g0246700 responded to the H100
treatment became more strongly phosphorylated at, respectively, the residues Ser88 and Ser242/244
(Tables S4 and S5), suggesting that they both were probably involved in the plant’s defense against
Cd stress by scavenging ROS. This was agreement with the literature revealing WRKY7 improved
Cd tolerance through increase antioxidant enzymes SOD and peroxidase (POD) in Arabidopsis [51].
Similarly, the phosphorylation of WRKY72 has been associated with heightened salinity stress tolerance
in rice [52]. Another class of transcription factor, the so-called Zn finger CCCH domain-containing
proteins, has been implicated in cellular development and the abiotic stress response [53,54].
According Zhang et al. [22], changes in the phosphorylation level of two such transcription factors
are a part of the response of wheat plants to moisture stress. In seedlings exposed to the H100
treatment, the Zn finger CCCH domain-containing C3H12/Os01g0917400, C3H20/Os03g0112700 and
C3H45/Os06g0677700 proteins became more strongly phosphorylated. Other transcription factors,
namely MYBc/Os09g0299200, bHLH113/Os10g0556200, MYC2/Os10g0575000, DDT/Os05g0562400
and the bZIPs Os01g0174000 and Os03g0239400 (Tables S4 and S5) were similarly more intensely
phosphorylated in seedlings exposed to the H100 treatment, suggesting their involvement in the
defense to Cd stress.

3.3. Phosphoproteins Classified as Stress-Related Proteins

Numerous phosphoproteins related to the general stress response have been shown to be induced
in plants (particularly, cereals) exposed to abiotic stress [55,56]. Here, members of this large class
of proteins, including heat shock proteins, chaperonins, E3 ubiquitin-protein ligase, oxidoreductase,
peroxidases and Cd tolerance factor (Tables S4 and S5), were among the proteins which responded to
the Cd stress by increasing their level of phosphorylation. SNAP32 (synaptosomal-associated protein
32)/Os02g0437200, a protein accumulated in response to various biotic and abiotic stresses [57],
was more strongly phosphorylated in seedlings exposed to the H100 treatment than in those
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not challenged by Cd stress. Another example was represented by A0A0P0WJ59/Os05g0196100,
a rice homolog of the multidrug tolerance associated protein 14 (MRP14): the Cd stress raised
its phosphorylation level at the two residues Ser888 and Ser893, Which was supported by that
MRPs (multidrug resistance-associated proteins) are thought to contribute to cellular detoxification,
by transporting toxic compounds (such as Cd-phytochelatin complexes) from the cytosol into the
vacuole [58]. Majority of proteins were damaged in plants under Cd stress. The chaperonins
inhibit protein aggregation and refolding, while also activating other proteins required for protein
folding and proteostasis [59]. Of the 19 chaperonins identified here, 15 responded to the H100
treatment by increasing their level of phosphorylation (Tables S4 and S5): these included HSP
(heat shock protein) 70 and a 14-3-3-like protein GF14-E (G-box factor 14-3-3 homologs). The same
phosphorylation response of HSP70 has been previously noted in rice plants exposed to moisture
stress [33], while the up-regulation of the 14-3-3 like GF14-B phosphoprotein is thought to interact
with the ubiquitin-dependent pathway in the context of protein degradation in salinity-challenged
plants [60]. The ubiquitin protein degradation system relies on E3 proteins, many of which have
been implicated in the response to abiotic stress [61]. Here, six such proteins, including Hrd1
(C3HC4-type ring finger domain containing protein 1)/Os06g0301000, responded to the H100 treatment
by a rise in their phosphorylation level, as did two E3 proteins in response to moisture stress [33].

3.4. ROS-Related Phosphoproteins

Despite the fact that Cd is not directly involved in cellular redox reactions [62], Cd stress is known
to enhance the production of ROS. Plants have evolved a suite of measures to limit the cytotoxicity of
these oxidative compounds [63]. Here, ten distinct phosphoproteins were found to be associated with
ROS scavenging, of which seven were identified in seedlings exposed to the H100, but not to either
the M10 or NC treatments; these were a peroxidase (Os02g0192700), two NADH dehydrogenases
(Os09g0500200 and Os05g0481600), two oxidoreductases (Os03g0862100 and Os08g0476300) and two
thioredoxin-like proteins (Os01g0184800 and Os03g0767500) (Tables S4 and S5). Many gene products
are involved in cellular homeostasis, which is a prerequisite for maintaining the morphological and
physiological viability of an organism. One such protein is LHCB (light-harvesting chlorophyll
a-b binding protein/Os07g0558400), which responded to the H100 treatment by increasing its level
of phosphorylation at the residues Thr111 and Thr115 (Tables S4 and S5); this protein regulates
the redox state of the plastoquinone mediating electron transfer between photosystems I and II [64].
A second electron transfer-related protein, which became more phosphorylated in response to the H100
treatment, was LFNR2 (leaf-type ferredoxin-NADP+ oxidoreductase 2)/Os02g0103800, a leaf-type
ferredoxin NADP (nicotinamide adenine dinucleotide phosphate) reductase, which generates the
reducing power required for numerous other reactions [65].

3.5. Phosphoproteins Involved in Water and Ion Transport

It has been shown that Cd stress can disturb the uptake, transport and use of water and
several elements (Ca, Mg, P and K), resulting in osmotic pressure and ion unbalance [66].
Plants gradually adjust a series of transporters on the plasma membrane to defense Cd2+ toxicity.
Aquaporins (AQPs) are plasma membrane intrinsic proteins (PIPs) that rapidly transport water
induced by osmotic pressure [67]. In our study, three AQPs (Tables S4 and S5) were identified
significantly changed in phosphorylation status in response to Cd stress, including two down-regulated
DPs (PIP2-1/Os07g0448800, PIP2-6/Os04g0233400) in H100 treatment and one up-regulated DP
(PIP2-7/Os09g0541000) in M10 treatment, indicating phosphorylation of AQPs may play an important
function in this process.

Besides AQPs, another kind of transporter that is also associated with Cd2+ detoxication,
ATP binding cassette (ABC)-type transporters is also involved in Cd2+ detoxication through
transporting PCs-Cd into vacuole [68]. In the present study, two out of three ABC transporters
(Tables S4 and S5), such as Q9ARU4/Os01g0121700 and ABC-2/Os03g06139, were identified
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up-phosphorylated in H100 treatment, indicating phosphorylation of ABC transporter probably
enhanced its activity to transport Cd2+.

4. Materials and Methods

4.1. Rice Materials and Plant Growth Conditions

The cultivar used in these experiments was ‘Zhong Jiazao-17’ (Hangzhou, Zhejiang Province,
China), a fast maturing indica type known to be a low accumulator of Cd in the grain. The grain was
surface-sterilized by immersion in 5% sodium hypochlorite for 5 min, rinsed three times in sterile
distilled water, imbibed for 24 h, then held at 30 ◦C for a further 24 h. Germinating seedlings were
removed to a hydroponics solution consisting of Hoagland’s solution (pH 5.5), following [69]. Once the
first leaf had fully expanded, seedlings were subjected to CdCl2·2.5H2O in different concentrations,
including 0 µM (the control, NC), 10 µM (moderate stress, M10) and 100 µM (high stress, H100) for
12 days, when there were significantly different in growth and physiological traits among seedlings
under this three Cd stress. Each treatment was represented by three replicates, each comprising a set
of 32 uniformly sized seedlings. The seedlings were maintained in culture for 12 days under a relative
humidity of 80%, with a day/night temperature regime of 30/28 ◦C.

4.2. Plant Growth and Chlorophyll Content Analysis

At the end of the Cd2+ treatment, the chlorophyll content of the youngest expanded leaf was
measured using a SPAD (soil and plant analyzer development)-5 chlorophyll meter (Konika Minolta,
Tokyo, Japan). The length of the shoot of each plant was recorded, and its dry weight measured after
baking at 65 ◦C for 72 h.

4.3. Determination of Shoot Cd Contents

The Cd content of the shoots was determined as previously described [70]. Briefly, the shoots were
rinsed in distilled water, dried by baking at 105 ◦C for 48 h and ground to a powder. About 100 mg
the powder was digested in 5 mL 65% HNO3 at 60 ◦C for 48 h, and the resulting solution diluted by
adding 20 volumes of Milli-Q water. The Cd concentration of the samples was derived by inductively
coupled plasma-optical emission spectrometry, using an Optima 5300 V device (PerkinElmer, Inc.,
Waltham, MA, USA). Shoot Cd contents were expressed in the form mg per kg dry weight.

4.4. RNA Extraction and qRT-PCR Analysis

RNA was extracted from rice seedlings using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA),
and was treated with DNase I (Promega, Madison, WI, USA) to remove any contaminating genomic
DNA. A 2 µL aliquot was reverse transcribed to cDNA using a PrimeScript® RT reagent kit
(Takara, Tokyo, Japan). Primer pairs for the subsequent qRT-PCR analyses (Table S7) were designed
using Primer 5.0 software (PREMIER Biosoft International, Palo Alto, CA, USA) and checked specificity
by blasting primer sequences in the NCBI database (Available online: www.ncbi.nlm.nih.gov/tools/
primerblast/). The Ubiquitin gene (LOC4332169) was chosen as the reference. Each 20 µL qRT-PCR
comprised 2 µL cDNA, 0.5 µL of each gene-specific primer, 9 µL 2.5× Real Master Mix/20× SYBR
solutions and 8 µL ddH2O. The reactions were denatured at 95 ◦C for 3 min, and then cycled 40 times
through 95 ◦C/20 s, 55 ◦C/10 s and 72 ◦C/20 s. At the end of the cycling process, a melting curve
(65 ◦C to 95 ◦C) analysis was applied to check amplification specificity. The reactions were performed
using a LightCycler 480 Real-time PCR Detection System (Roche, Basel, Switzerland).

4.5. Sample Preparation and iTRAQ Labeling

The root and the shoot of each seedling were separately snap-frozen in liquid nitrogen and
stored at −80 ◦C. Protein was extracted from the shoot using the procedure given by Wang et al. [71]
with the following minor modifications. In detail, approximately 500 mg of fresh leaves from each
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biological replicate were ground into a fine power in liquid nitrogen. Subsequently, the ground
power was suspended in extraction buffer, and then added Postop Phosphatase Inhibitor Cocktail
(one lablet/10 mL; Roche, Basel, Switzerland) and 1 mM phenylmethanesulfonyl fluoride (PMSF) to
inhibit phosphatase activity and protease. The mixture was shaken vigorously for 30 s. After samples
were centrifugated at 20,000× g and 4 ◦C for 30 min, protein supernatants were precipitated with four
fold volumes of cold methanol plus 100 mM ammonium acetate. After centrifugation at 20,000× g and
4 ◦C for 20 min, the pellets were rinsed twice with cold acetone and then centrifugated so as to get
protein mixtures. After freeze-drying was complete, the pellets were added to 300 µt of solubilization
buffer at room temperature for 2 h. Finally, the concentration of protein samples were determined with
a 2-D Quant Kit (Amersham Bioscience, Piscataway, NJ, USA), and final protein solution was stored
at −80 ◦C until use. The protein concentrations of the sample set were equalized, and an aliquot of
ca. 100 µg per sample was labeled using an iTRAQ device (Applied Biosystems, Foster City, CA, USA),
applying the standard protocol provided with a 4-plex kit (126 and 127N/C, 128N/C and 129N, 129C
and 130N/C for the control, 10 µM and 100 µM separately).

4.6. Enrichment for Phosphorylated Peptides

Labeled peptides were mixed, concentrated by vacuum evaporation and resuspended in 500 µL
of loading buffer (65% acetonitrile (CAN), 2% w/v glutamic acid and 2% trifluoro acetic acid (TFA)).
TiO2 beads were added; the mixture was agitated for 40 min, and then centrifuged (5000× g, 1 min).
The procedure was repeated with the resulting supernatant and the two sets of beads were combined
and rinsed three times in 50 µL of 30% CAN, 3% TFA, then a further three times in 50 µL of 80% CAN,
0.3% TFA. Phosphopeptides were eluted from the beads by adding 50 µL of 40% CAN, 15% NH4OH.
The eluate was lyophilized.

4.7. Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS) Analysis

For the purposes of LC-MS/MS, 5 µL of phosphopeptide solution was mixed with 15 µL of 0.1%
(v/v) TFA, and a 10 µL aliquot of this mixture was loaded into a Q Exactive mass spectrometer
(Thermo Finnigan, Somerset, NJ, USA) coupled to an Easy-nLC 1200 liquid chromatograph
(Thermo Fisher Scientific, Waltham, MA, USA). The C18-reversed phase column dimensions were:
length 25 cm, inner diameter 75 µM, RP-C18 3 µM. The elution buffer was a mixture of 0.1%
formic acid in 2% v/v acetonitrile (A) and 0.1% formic acid in 80% v/v acetonitrile (B) at a flow
rate of 300 nL/min over 155 min. Over the period 0–101 min, the concentration of B rose linearly
from 0% to 19% B, from 101–136 min; it was increased from 19% to 29%, from 136–142 min from
29% to 38% and from 142–155 min from 38% to 100%. For the mass spectrometry, the positive
ion mode was adopted, with peptide recognition mode enabled. The data were acquired using a
data-dependent top 20 method, achieved by choosing the most abundant precursor ions from the
survey scan (350–1300 m/z) for HCD (higher-energy C-trap dissociation) fragmentation. The range
of charge was from +2 to +6. Target values were determined by predictive automatic gain control.
The dynamic exclusion duration was 18 s. Survey scans were acquired at a resolution of 70,000 at
200 m/z and the resolution set for the HCD spectra was 35,000 at 200 m/z. The normalized collision
energy was 30 eV and the underfill ratio was defined as 0.1%. Three technical replicates were performed
for each sample.

4.8. Phosphopeptide and Phosphosite Identification

The Uniprot_Oryza sativa database (Avalable online: http://www.uniprot.org/proteomes/) and a
decoy database was searched for matches to the acquired MS/MS spectra using Mascot v2.2 software
embedded in Proteome Discoverer 2.1 (Thermo Fisher Scientific, Waltham, MA, USA). The parameters
applied for protein identification were: MS/MS tolerance = 0.02 Da; peptide mass tolerance = 10 ppm;
missed cleavage = 2; enzyme = trypsin; fixed modification: iTRAQ4plex (N-term); iTRAQ4plex (K);
carbamidomethyl (C); phosphorylation (S/T/Y) and variable modification: oxidation (M). The false
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discovery rate threshold for both peptides and proteins was set as 1.0%. The probability that a given
phosphorylation site was truly phosphorylated was used to evaluate the PhosphoRS site probability:
probabilities >75% were taken as evidence of true phosphorylation. Phosphopeptide ratios were
normalized against the average value of all identified peptides. The quantification of phosphopeptides
was represented by the mean value of three biological replicates. Statistical significance between means
was assigned using the Students’ t-test. A Benjamin-Hochberg false discovery rate was applied in
multiple comparisons. Significant changes in a phosphopeptide’s abundance were inferred where its
abundance ratio was >1.2 or <0.83 and its p-value derived from the Students’ t-test was <0.05.

4.9. Bioinformatics

GO annotation and enrichment were conducted using the AgriGO tool [72].
“Eukaryotes” database of CELLO (Available online: http://cello.life.nctu.edu.tw/) was used
to identify the subcellular localization of proteins. Phosphorylation site motifs and the
specificity of these motifs were predicted using Motif-X online software (Available online:
motif-x.med.harvard.edu/motif-x.html). KOG (cluster of orthologous groups of proteins for
eucaryon) numbers were obtained from a search of the EggNog database (Available online:
eggnog.embl.de/version_4.0.beta/). STRING v10.0 software (Available online: http://string-db.org/)
was deployed to identify potential protein-protein interactions between sets of phosphorylated
proteins, applying a confidence score of 0.75. The resulting inferred networks were visualized using
Cytoscape v3.0 software (Available online: http://www.cytoscape.org).

5. Conclusions

Overall, the experiment revealed a set of 1244 proteins (harboring 2454 phosphosites) as responding
to Cd stress. Of the 482 that were differentially phosphorylated, 392 were more strongly phosphorylated
by exposure to Cd2+, 98% of which were identified in the H100 treatment. A functional analysis
suggested that the proteins which responded to the stress by becoming more highly phosphorylated
included several involved in ABA signaling (PP2C66, PP2C30, Q6ZI44, Q0J0U2, Q18PR9, Q94DL7 and
Q2R4Z4), in CDPK signaling (CPK13 and Q5JK68) and in MAPK signaling (DSM1); another notable
group comprised the transcription factors WRKY72, WRKY1, C3H12, C3H20 and C3H45. The gene
products associated with abiotic stress tolerance included SNAP32, MRP14, HSP70, the 14-3-3-like
protein GF14-E and various E3 proteins. Other gene products liable to become phosphorylated were
Hrd1 (Os06g0301000), a peroxidase (Os02g0192700), two NADH dehydrogenases (Os09g0500200
and Os05g0481600), two oxidoreductases (Os03g0862100 and Os08g0476300), two thioredoxin-like
proteins (Os01g0184800 and Os03g0767500), LHCB (light-harvesting chlorophyll a/b-binding protein)
and LFNR2 (Leaf-type ferredoxin-NADP+ oxidoreductase 2). All of these products likely are involved
in the rice seedling response to Cd stress. This study represents a first attempt to use quantitative
phosphoproteome analysis to reveal the molecular basis of the response to Cd2+ exposure, and the data
which have emerged will contribute to a better understanding of the contribution of phosphorylation
to Cd stress tolerance and detoxification in rice.
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