SUPPORTING INFORMATION

Replacing Nitrogen by Sulfur: From Structurally Disordered Eumelanins to Regioregular Thiomelanin Polymers

Mariagrazia Iacomino ¹, Juan Mancebo-Aracil ², Mireia Guardingo ^{2,3}, Raquel Martín ³, Gerardino D'Errico¹, Marco Perfetti ¹, Paola Manini ¹, Orlando Crescenzi ¹, Félix Busqué ³, Alessandra Napolitano ¹, Marco d'Ischia ^{1,*}, Josep Sedó ² and Daniel Ruiz-Molina ^{2,*}

- ¹ Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126, Naples, Italy;
- ² Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain
- ³ Department de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Spain
- * dischia@unina.it; dani.ruiz@icn2.cat;

Synthesis and structural characterization of 3,4-dihydroxyphenyl ethanethiol (DHPET,

1). *Step I, Synthesis of S-3,4-dimethoxyphenethyl ethanethioate* (**1a**). To a solution of 2-(3,4 – dimetoxyphenyl)ethanol (1.5 g, 8.24 mmol) in dry tetrahydrofuran (THF, 42 mL) methanesulfonyl chloride (MsCl, 1.55 mL, 21.3 mmol) and triethylamine (Et₃N, 2.51 mL) were added dropwise under N₂ atmosphere. The reaction mixture was stirred at r.t. for 2 h. Potassium thioacetate (3 g, 26.3 mmol) was dissolved in dry DMF (36 mL). The latter solution was slowly added to the reaction mixture. After 4 h, the solvent was evaporated under reduced pressure and extracted (water/ethyl acetate), the combined organic layers were dried over anhydrous Na₂SO₄, evaporated and purified by flash silica chromatography (hexane:ethyl acetate 9:1). The desired product (**1a**) was obtained as a brown oil (1.72 g, 87 % yield).

(**1a**): ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 8.1 Hz, H-6), 6.77 (s, H-2), 6.73 (d, *J* = 8.0 Hz, H-5), 3.88 and 3.86 (s, H-11, H-12), 3.10 (t, *J* = 7.7 Hz, H-8), 2.81 (t, *J* = 7.7 Hz, H-7), 2.33 (s, H-10). ¹³C NMR (91 MHz, CDCl₃) δ 193.2 (C-9), 149.0 (C-3), 148.0 (C-4), 133.0 (C-1), 122.0 (C-6), 115.2 (C-5), 112.1 (C-2), 56.1 and 55.8 (C-11, C-12) 36.1 (C-8), 33.2 (C-7), 30.3 (C-10).

Step II, Synthesis of S-3,4-dihydroxyphenethyl ethanethioate (**1b**). To a solution of **1a** (1.53 g, 5.88 mmol) in CH₂Cl₂ (24 mL) a 1 M solution of BBr₃ in CH₂Cl₂ (32 mL) was slowly added under N₂ atmosphere at -5 °C. After 6 h, the reaction mixture was extracted with water. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated to give **1b** (1.0 g, yield >> 99%). No further purification was needed.

(**1b**): ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.0 Hz, H-6), 6.73 (s, H-2) 6.65 (d, *J* = 8.0 Hz, H-5), 2.82 (d, *J* = 6.6 Hz, H-7), 2.79 (d, *J* = 6.6 Hz, H-8), 2.07 (s, H-10). ¹³C NMR (91 MHz, CDCl₃) δ 193.2 (C-9), 145.0 (C-3), 144.0 (C-4), 133.0 (C-1), 122.0 (C-6), 116.2 (C-5), 115.4 (C-2), 36.1 (C-8), 33.6 (C-7), 30.5 (C-10).

Step III, Synthesis of S-3,4-dihydroxyphenyl ethanethiol (**DHPET, 1**). To a solution of **1b** (1.0 g, 5.85 mmol) in CH₃OH (90 mL) 12 M HCl was added (50 drops). The mixture was left under stirring overnight under reflux. After 12 h, the solvent was evaporated under

reduced pressure and the reaction extracted by water/ethyl acetate. DHPET was recovered without further purification as a brown oil (0.9 g, yield = 90%).

(1): ¹H NMR (360 MHz, CDCl₃) δ 6.80 (d, J = 8.0 Hz, H-6), 6.77 (s, H-2), 6.73 (d, J = 8.0 Hz, H-5), 2.98 (t, J = 6.8 Hz, H-7), 2.85 (t, J = 6.8 Hz, H-8). ¹³C NMR (91 MHz, CDCl₃) δ 149.0 (C-3), 148.1 (C-4), 131.0 (C-1), 121.0 (C-6), 120.9 (C-2), 112.2 (C-5), 38.7 (C-7), 35.2 (C-8).

Synthesis and structural characterization of 5,6-dihydrobenzo[b]thiophene (DHBT, 8).

Step I, Synthesis of S-benzyl ethanethioate (**4**). To a solution of benzyl bromide (1.26 g, 7.4mmol) in Acetone (20 mL) potassium thioacetate (0.9 g, 7.88 mmol) was added . The reaction mixture was heated at reflux for 2h, evaporated and extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated, affording **4** as a colourless oil (1.20 g, 99%).

(4): ¹H NMR (360 MHz, CD₃Cl) δ 7.29 (m, protoni aromatici), 4.12 (s, H-5), 2.35 (s, H-7). ¹³C NMR (91 MHz, CDCl₃) δ 137.57 (C-1), 128.80 (C-3,3'), 128.63 (C-2,2'), 127.27 (C-4), 33.46 (C-7), 30.34 (C-5).

Step IIa and IIb, Synthesis of 2-iodoethyl-3,4-dimethoxybenzene (5). To a solution of 2-(3,4 – dimetoxyphenyl)ethanol (1.5 g, 8.24 mmol) in CH₂Cl₂ (20 mL) at 0 °C pyridine (0.73 mL, 9.06 mmol) and methanesulfonyl chloride (0.66 mL, 9.06 mmol) were added. The reaction mixture was stirred at rt for 12 h, poured into 5% aqueous HCl (12 mL), and extracted with CH₂Cl₂, the combined organic layer was dried over anhydrous Na₂SO₄, evaporated and used without further purification for the next step of the synthesis (yield: 85%).

5a

¹H NMR (360 MHz, CDCl₃) δ 6.80 (d, J = 8.0 Hz, H-6), 6.77 (s, H-2), 6.73 (s, H-5), 4.37 (t, J = 6.9 Hz, H-8), 3.86 (s, H-10), 3.84 (s,H-9), 2.98 (t, J = 6.8 Hz, H-7), 2.85 (s, H-11).¹³C NMR (91

MHz, CDCl₃) δ 149.0 (C-3), 148.0 (C-4), 131.0 (C-1), 121.0 (C-6), 112.2 (C-5), 112.1 (C-2), 70.52 (C-8), 55.9 (C-10), 55.8 (C-9), 37.3 (C-11), 35.2 (C-7).

Subsequently, to a solution of **5a** (2.0 g, 7.83mmol) in acetone, NaI (1.76 g, 11.7 mmol) was added. The mixture was heated at reflux overnight, cooled, and evaporated. The oily mixture was then extracted with water/CH₂Cl₂, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated. Flash chromatography of the crude mixture, with Hexane: Ethyl Acetate 9:1 as eluting system, afforded 1.39 g (61%) of **5** as a pale yellow oil.

¹H NMR (360 MHz, CDCl₃) δ 6.8 (d, J = 8.1 Hz, H-6), 6.75 (s, H-2) 6.6 (d, J = 8.1 Hz, H-5), 3.9 (s, H-10), 3.8 (s, H-9), 3.3 (t, J = 7.8 Hz, H-8), 3.1 (t, J = 7.8 Hz, H-7). ¹³C NMR (91 MHz, CDCl₃) δ 148.9 (C-3), 147.9 (C-4), 133.3 (C-1), 120.4 (C-6), 111.6 (C-2), 111.3 (C-5), 55.9 (C-9,10), 40.0 (C-8), 6.2 (C-7).

Step III, Synthesis of benzyl(3,4-dimethoxyphenethyl)sulfane (6). To a solution of 5 (1.2 g, 4.1 mmol) in MeOH (20 mL) at 0 °C, 0.5 M NaOH in MeOH (10 mL) was slowly added and then a solution of 4 (0.68 g, 4.1 mmol) in MeOH (10 mL). The reaction mixture was stirred at room temperature for 24 h, poured into water, and extracted with CH₂Cl₂, and the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated. Flash chromatography of the crude mixture with Hexane: Ethyl Acetate 9:1 as eluting system, afforded 0.98 g (85%) of 6 as a colorless oil.

6

S4

Step IVa and IV, Synthesis of 2,3-dihydro-5,6-dihyroxybenzothiophene (**7**, **H**2-**DHBT**). A DCM (66 mL) mixture of PIFA and BF3-Et2O was added dropwise to a solution of **6** (0.95 g, 3.3 momol) in DCM (95 mL) at -78 °C under N₂. The reaction was stirred for 20 minutes, then quenched with MeNH₂ (40%), stirred for 30 minutes and acidified with HCl 10% until pH 6.5. The mixture was extracted with CH₂Cl₂ and purified by flash chromatography using Hexane : Ethyl acetate 9:1 as eluting system affording to 0.4 g (63%) of 5,6-dimethoxy-2,3-dihydrobenzo[b]thiophene (**7a**) as a white solid.

7a

¹H NMR (360 MHz, CDCl₃) δ 6.8 (s, H-7), 6.7 (s, H-4), 3.84 (s, H-9), 3.83 (s, H-10), 3.4 (t, J = 7.7 Hz, H-2), 3.2 (t, J = 7.7 Hz, H-1). ¹³C NMR (91 MHz, CDCl₃) δ 148.84 (C-6), 146.64 (C-5), 132.29 (C-3), 131.57 (C-8), 108.73 (C-4), 105.86 (C-7), 56.39 (H-11), 56.23 (H-10), 36.50 (C-1), 34.28 (C-2).

In the next reaction, BBr₃ (5 mL) was added dropwise to a solution of **7a** (0.17 g, 0.89 mmol) in DCM (4 mL), at 0 °C and under N₂ atmosphere. After 90 minutes, the reaction mixture was evaporated and extracted with H₂O/Diethyl Ether affording to 0.13 mg (90%) of **7** as a white solid.

¹H NMR (360 MHz, CD₃OD) δ 6.66 (s, H-7), 6.58 (s, H-4), 3.27 (t, J = 7.7 Hz, H-3), 3.08 (t, J = 7.6 Hz, H-2); ¹³C NMR (91 MHz, CD₃OD) δ 144.4 (C-5), 142.1 (C-6), 130.8 (C-3a), 130.7 (C-7a), 111.7 (C-4), 108.7 (C-7), 35.7 (C-2), 33.3 (C-3)

Figure S2. ¹³C NMR spectrum of 7

Synthesis of 5,6-dihyroxy[b]benzothiophene (8, DHBT).

H₂-DHBT (100 mg, 0.6 mmol) was dissolved in MeOH (1 mL) then 60 mL of the proper buffer were added: 0.05 M carbonate buffer pH 9 (O₂ mediated oxidation) or 0.05 M phosphate buffer pH 7.7 when the oxidation was performed under argon atmosphere by K₃[Fe(CN)₆] (2 molar eq.). Suddenly, the reaction mixture turned deep red and slowly faded to almost colorless. After 24h or 30 min, the reaction was extracted with ethyl acetate, the organic layers dried over anidrous Na₂SO₄. DHBT (**8**) was recovered as a white solid without further purification (yield: 75% or 90%).

8

¹H NMR (400 MHz, MeOD) δ 7.21 (s, H-4), 7.22 – 7.20 (d, J = 5.4, H-2), 7.18 (s, H-7), 7.08 (dd, J = 5.4, 0.7 Hz, H-3); ¹³C NMR (101 MHz, MeOD) δ 146.0 (C-6), 145.5 (C-5), 134.6 (C-3a), 132.9 (C7a), 124.3 (C-4), 124.0 (C-3), 109.1 (C-7), 108.0 (C-2).

Figure S4. ¹³C NMR spectrum of 8

Synthesis and characterization of 5,6-diacetoxybenzo[b]thiophene (9, DABT). DHBT (100 mg, 0.60 mmol) was dissolved in acetic anhydride-pyridine (1 mL-20 L) and left under stirring overnight at room temperature. DABT was recovered as a white amorphous solid in very high yield (>> 99%) after solvent evaporation without further purification.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, H-7), 7.62 (d, *J* = 1.1 Hz, H-4), 7.47 (dd, *J* = 5.2, 1.4 Hz, H-2), 7.30 – 7.27 (dd, *J* = 5.2, 1.4 Hz, H-3), 2.33 (s, H-9,11); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 168.7 (C-8,10), 140.1, 139.8 (C-5,6), 137.8 (C-3a), 137.3 (C-7a), 128.3 (C-2), 123.6 (C-3), 117.4 (C-4), 116.7 (C-7), 20.8 (C-9,11)

Figure S5. ¹³C NMR spectrum of 9

Oxidation of DHPET or DHBT. To a methanolic solution of DHPET or DHBT, the proper buffer was added to achieve the desired substrate concentration (1 or 10 mM). Different oxidative conditions were tested and used as required:

- a) O₂ mediated oxidation in 0.05 M Na₂CO₃ buffer pH 8.5-9;
- b) sodium periodate (1-2 molar eq.) in 0.1 M phosphate buffer (pH 7.4);
- c) Cerium Ammonium Nitrate (1-2 molar eq.) in 0.1 M phosphate buffer (pH 3.0);
- d) potassium ferricyanide (1-3 molar eq.) in 0.05 M Na₂CO₃ buffer pH 7.7;
- e) Horse radish peroxidise (HRP)/H₂O₂ (50 U mL⁻¹, 1 molar eq.) in 0.05 M phosphate buffer pH 7.7.

Substrate consumption was determined by TLC (CHCl₃:AcOEt 8:2 or hexane:AcOEt 7:3) or HPLC analysis (0.1 % HCOOH-ACN 8:2).

Synthesis and structural characterization of DHPET dimers. Dimers were obtained oxidizing DHPET (50 mg, 0.29 mmol) in the conditions described at line e) of the previous paragraph (30 mL buffer). Purification was achieved by Preparative Layer Chromatography (PLC), CHCl₃:AcOEt 8:2 was selected as eluant. Two fractions were collected, referred as **2** and **3**, corresponding respectively to the thiosulfinate (yield: 22%) and the disulfide (yield: 35%) dimeric species.

Figure S6. Hypothetical structures of the main oxidation products from DHPET: Fraction 1 (left), fraction 2 (right)

2: R_f: 0.8 (CHCl₃:AcOEt 8:2), ESI⁺-TOF LC-MS: *m*/*z* 545 [M+Na]⁺, ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) δ 168.4 (C-9), 142.1 (C-3), 140.9 (C-4), 137.9 (C-1), 137.0 (C-6), 126.9 (C-2), 123.7 (C-5), 56.5 (C-8), 39.4 (C-10), 36.5 (C-7), 33.9 (C-11), 20.6 (C-9).

3: R_f: 0.6 (CHCl₃:AcOEt 8:2), ESI+-TOF LC-MS: *m*/*z* 529 [M+Na]+, ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, H-2), 7.09 (d, H-5), 7.03 (d, H-6), 3.01 – 2.94 (t, J= 2.98 Hz, H-7), 2.93 – 2.86

(t, J= 2.90 Hz, H-8), 2.28 (s, H-9); ¹³C NMR (101 MHz, CDCl₃) δ 168.4 (C-9,10), 141.9 (C-3), 140.4 (C-4), 138.8 (C-1), 126.8 (C-6), 123.5, (C-2) 123.3 (C-5), 39.4 (C-8), 34.9 (C-7).

Figure S8. ¹³C NMR spectrum of 2

Figure S11. MS-analysis of fraction 1 (compound 2), left; and fraction 2 (compound 3), right

Synthesis and preliminar structural characterization of acetylated DHBT oligomers. For analytical purposes, a 10 mM stock solution in MeOH of DHBT was diluted 10 times in the proper buffer, then the proper oxidant was added (condition described in lines from a) to e)). Reaction courses were monitored by HPLC. In the casa of line c) to e), the mixtures were extracted (water/ethyl acetate) organic layer acetylated and analysed by ESI+ LC-MS spectrometry (Figure S12). For preparative purposes DHBT (50 mg, 0.30 mmol) was dissolved in methanol (1 mL) oxidation with 2 molar eq of potassium ferrycianide in 50 mM carbonate buffer pH 8 (30 mL). The reaction was left under stirring, in argon atmosphere, at room temperature for 45 min. The reaction mixture was then reduced by sodium diotionite and extracted in ethyl acetate. The organic layers (c.a. 30 mg, 60% w/w of starting material) were dried over anhydrous Na₂SO₄, evaporated and subsequently acetylated by acetic anhydride- pyridine (1 mL- 20 µL) overnight. Purification of the acetylated oligomers mixture was performed by silica gel chromatography whit hexane:ethyl acetate 7:3 as the eluant. Besides a first fraction mainly consisting of the acetylated monomer (DABT, Rf: 0.6, yield: 25%) other three fractions were collected referred to as Fraction I to III (Rf: 0.4, 0.2 and 0.1, respective yields: 4%, 9% and 2%).

Figure S12. Top) TIC traces of the acetylated organic extracts from DHBT oxidation with $(HRP)/H_2O_2$ (50 U mL⁻¹, 1 eq, red), K₃[Fe(CN)₆] (1 eq, black) or $(NH_4)Ce(NO_3)_6$ (1 eq, blue). Middle) ESI⁺ LC-MS spectrum of the peak with R_t= 14 min corresponding to DABT. Bottom) ESI⁺ LC-MS spectrum of the peak with R_t= 27, 31 or 36 min corresponding to three isomeric dimers with the same m/z = 521.

Figure S13. MALDI-MS spectrum of fraction I (mixture of acetylated dimers of DHBT).

Figure S14. Expansion (8.5-6.0 ppm) of the ¹H NMR spectrum in CDCl₃ of fraction I. Solvent side bands are marked by a dot.

Figure S15. MALDI-MS spectrum of fraction II (mixture of acetylated trimers of DHBT).

Figure S16. Expansion (8.0-6.5 ppm) of the ¹H NMR spectrum in CDCl₃ of fraction II.

Figure S17. Spectrophotometric analysis of 0.05 mM H₂-DHBT autoxidation in 50 mM pH 8.8 phosphate buffer.

Figure S18. Spectra of *o*-quinones from DHBT and from H₂-DHBT, computed at the TD-PBE0/6-311++G(2d,2p)/PCM level both in vacuo and in water (PCM). Black line, DHBT *o*-quinone in vacuo; red line, DHBT *o*-quinone in water; green line, H₂-DHBT *o*-quinone in vacuo; blue line, H₂-DHBT *o*-quinone in water.

	DH	BT/DABT	DH	I/DAI
Position	(1H)	(¹³ C)	(1H)	(¹³ C)
2	7.21/7.48	108.0/128.3	6.20/6.45	122.8/127.5
3	7.08/7.28	124.0/123.6	6.98/7.41	101.3/101.6
3a		134.6/137.8		142.3/137.8
4	7.21/7.59	124.3/117.4	6.89/7.36	104.9/113.7
5		145.5/139.8		130.6/133.5
6		146.0/140.1		140.5/136.3
7	7.18/7.69	109.1/116.7	6.82/7.27	98.7/106.1
7a		132.9/137.3		120.9/125.6
AcetylC=O		168.8 and 168.9		169.5
Me	2.33	20.8		21.0

Table S1. Comparison between experimental NMR chemical shifts (ppm) of DHBT and DHI and their respective peracetylated derivatives (DABT, DAI).

Table S2. NMR chemical shifts of peracetylated DHBT oligomers, computed at the PBE0 / 6-311+G(d,p) // PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃.

Ring	Position	Monomer ^a	4,4'-	7,7'-	4,7'-	4,4':7',7"-
			dimer ^{b,c}	dimer ^{d,e}	dimer ^f	trimer ^g
			н, ј	opm		
1	H2	7.268	7.189	7.328	7.206	7.270
1	H3	7.208	6.698	7.239	6.722	6.640
1	H4	7.497	-	7.609	-	-
1	H7	7.518	7.656	-	7.627	7.657
1	H(Me)-	1.839	1.661	1.802	1.658	1.727
	Ac6					
1	H(Me)-	1.841	1.900	1.504	1.904	1.914
	Ac7					
2	H2				7.331	7.255
2	H3				7.218	6.684
2	H4				7.562	-
2	H7				-	-
2	H(Me)-				1.913	1.675
	Ac6					
2	H(Me)-				1.671	1.726
	Ac7					
3	H2					7.431
3	H3					7.255
3	H4					7.646
3	H7					-
3	H(Me)-					1.913

	Ac6					
3	H(Me)-					1.684
	Ac7					
			c , 1	opm		
1	C2	132.651	132.788	133.469	132.612	133.030
1	C3	122.733	123.558	122.829	123.785	123.431
1	C4	116.958	124.864	118.268	124.229	124.552
1	C5	140.482	138.724	141.136	138.037	138.919
1	C6	140.174	141.555	137.947	140.768	140.949
1	C7	116.450	116.713	123.464	117.265	116.703
1	C3a	136.458	136.734	135.870	135.586	136.786
1	C7a	139.753	140.358	141.207	140.765	140.116
1	C(=O)-Ac6	171.832	172.552	171.885	172.358	172.294
1	C(Me)-Ac6	16.532	16.293	16.716	16.128	16.688
1	C(=O)-Ac7	171.798	173.069	172.721	173.066	172.852
1	C(Me)-Ac7	16.458	16.570	16.120	16.509	16.544
2	C2				133.635	134.115
2	C3				122.515	122.901
2	C4				117.155	125.282
2	C5				142.016	139.177
2	C6				138.636	138.306
2	C7				124.831	124.119
2	C3a				136.698	136.681
2	C7a				141.814	140.379
2	C(=O)-Ac6				173.035	173.010
2	C(Me)-Ac6				16.496	16.363
2	C(=O)-Ac7				172.499	172.934
2	C(Me)-Ac7				16.424	16.334
3	C2					133.975
3	C3					122.641
3	C4					117.594
3	C5					141.468
3	C6					138.405
3	C7					123.895
3	C3a					136.838
3	C7a					140.417
3	C(=O)-Ac6					172.932
3	C(Me)-Ac6					16.556
3	C(=O)-Ac7					172.103
3	C(Me)-Ac7					16.518

[a] 192 conformations were explored by a rigid scan at the PM6 level. 32 conformers were fully optimized at the PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃. The reported chemical shifts are Boltzmann averages over the 7 most significant conformers.

[b] 512 conformations were explored by a rigid scan at the PM6 level. 26 conformerswere fully optimized at the PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃. The reported chemical shifts are Boltzmann averages over the 6 most significant conformers.

[c] Shifts averaged over the two rings.

[d] 512 conformations were explored by a rigid scan at the PM6 level. 14 conformerswere fully optimized at the PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃. The reported chemical shifts are Boltzmann averages over the 11 most significant conformers.

[e] Shifts averaged over the two rings.

[f] 512 conformations were explored by a rigid scan at the PM6 level. 27 conformerswere fully optimized at the PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃. The reported chemical shifts are Boltzmann averages over the 10 most significant conformers.

[gconformations were explored by a rigid scan at the PM6 level. 134 conformerswere fully optimized at the PBE0-D3BJ / 6-31+G(d,p) level in CDCl₃. The reported chemical shifts are Boltzmann averages over the 46 most significant conformers.

Table S3. Mulliken spin densities (with hydrogens summed into heavy atoms) computed in water (PBE0 / 6-31+G(d,p) / SMD) for DHBT and for DHI semiquinones.

Position	D	HBT Semiquinone		DHI Semiquinone				
	Neutral form, 5-yl radical	Neutral form, 6-yl radical	Anionic form	Neutral form, 5-yl radical	Neutral form, 6-yl radical	Anionic form		
C2	0.012	0.282	0.157	0.055	0.304	0.201		
C3	0.027	-0.133	-0.078	-0.003	-0.116	-0.118		
C4	0.229	-0.216	-0.028	0.215	-0.165	-0.012		
C7	-0.155	0.308	0.090	-0.150	0.206	0.003		

Table S4. Relative stabilities of different positional isomers of the first-formed dimeric products arising from coupling of two DHBT semiquinones, one of them being in anionic form.

Dimer	Dimer Coupling mode	
2,2'	2 of 6-yl semiquinone on 2 of semiquinone anion	0.15
2.4/	4 of 5-yl semiquinone on 2 of semiquinone anion	1.23
2,4	2 of 6-yl semiquinone on 4 of semiquinone anion	0.40
2 7/	2 of 6-yl semiquinone on 7 of semiquinone anion	2.08
2,7	7 of 6-yl semiquinone on 2 of semiquinone anion	1.47
4,4'	4 of 5-yl semiquinone on 4 of semiquinone anion	0.00
4 77	4 of 5-yl semiquinone on 7 of semiquinone anion	2.14
4,7	7 of 6-yl semiquinone on 4 of semiquinone anion	0.43
7,7'	7 of 6-yl semiquinone on 7 of semiquinone anion	3.04

Table S5. Conformational exploration of the first-formed dimeric products arising from coupling of two neutral DHBT

semiquinones.

Dimer	Coupling mode	Diastereoisome r	Symmetry point groupª	Interring dihedral (deg) ^ь	Gel,РСМ (На) ^с	Нрсм,rrho (Ha) ^d	Gpcm,rrho (Ha) ^e	Gel,SMD (Ha) ^f	Gsmd,rrho (Ha) ^g	GSMD,RRHO (kcal mol ⁻¹) ^h
2,2′	2 of 6-yl semiquinone on 2 of 6- yl semiquinone		C2	-57.1	-1711.757425	-1711.511786	-1711.577599	-1711.767020	-1711.587194	2.99
		dl	C2	64.0	-1711.760686	-1711.515136	-1711.580688	-1711.770377	-1711.590379	0.99
			C2	-171.9	-1711.759030	-1711.513419	-1711.578956	-1711.767601	-1711.587527	2.78
		meso		-61.5	-1711.760027	-1711.514370	-1711.580479	-1711.769484	-1711.589936	1.27

			Ci	180.0	-1711.757727	-1711.512074	-1711.578469	-1711.766312	-1711.587054	3.08
				-70.0	-1711.761696	-1711.516023	-1711.582203	-1711.769730	-1711.590237	1.08
		RR		68.5	-1711.759013	-1711.513294	-1711.579081	-1711.767018	-1711.587086	3.06
2 1/	2 of 6-yl semiquinone on 4 of 5-			178.9	-1711.756041	-1711.510254	-1711.576273	-1711.763748	-1711.583980	5.00
2,4'	yl semiquinone			-65.7	-1711.755747	-1711.509944	-1711.576454	-1711.763741	-1711.584448	4.71
		RS		65.6	-1711.761399	-1711.515793	-1711.581629	-1711.769949	-1711.590179	1.12
				-162.0	-1711.760491	-1711.514778	-1711.580817	-1711.768452	-1711.588778	1.99
				-63.1	-1711.754168	-1711.508338	-1711.574565	-1711.761886	-1711.582283	6.07
		RR		55.7	-1711.760855	-1711.515265	-1711.581507	-1711.768688	-1711.589340	1.64
2 7'	2 of 6-yl semiquinone on 7 of 6-			-169.4	-1711.757262	-1711.511503	-1711.577205	-1711.764788	-1711.584731	4.53
2,1	yl semiquinone			-59.2	-1711.759628	-1711.513983	-1711.579935	-1711.767774	-1711.588081	2.43
		RS		73.1	-1711.760121	-1711.514395	-1711.580377	-1711.768151	-1711.588407	2.23
				170.4	-1711.753371	-1711.507627	-1711.574309	-1711.760808	-1711.581746	6.41
			C2	-48.6	-1711.758666	-1711.513233	-1711.578600	-1711.766789	-1711.586723	3.28
	4 of 5-yl semiquinone on 4 of 5- yl semiquinone	dl	<i>C</i> ₂	-61.0	-1711.760137	-1711.514373	-1711.578181	-1711.768141	-1711.586185	3.62
			C2	55.2	-1711.752836	-1711.506965	-1711.571447	-1711.760155	-1711.578766	8.28
4,4'			C2	144.5	-1711.763630	-1711.518215	-1711.583736	-1711.771060	-1711.591166	0.50
		meso		-72.9	-1711.763833	-1711.518295	-1711.584882	-1711.770907	-1711.591956	0.00
			Ci	180.0	-1711.751395	-1711.505437	-1711.570450	-1711.759775	-1711.578830	8.24
			Ci	180.0	-1711.724124	-1711.478835	-1711.544381	-1711.731812	-1711.552069	25.03
				-57.8	-1711.763533	-1711.517944	-1711.583487	-1711.770518	-1711.590472	0.93
		RR		57.5	-1711.749126	-1711.503338	-1711.568657	-1711.756854	-1711.576385	9.77
				159.8	-1711.762284	-1711.516650	-1711.582714	-1711.768427	-1711.588857	1.94
4,4'	4 of 5-yl semiquinone on 7 of 6-			-82.7	-1711.762354	-1711.516892	-1711.583125	-1711.769115	-1711.589886	1.30
4,/	yl semiquinone			80.9	-1711.757339	-1711.511810	-1711.577750	-1711.765092	-1711.585503	4.05
		RS		61.5	-1711.758868	-1711.513127	-1711.577599	-1711.766462	-1711.585193	4.24
				174.8	-1711.721840	-1711.476769	-1711.542852	-1711.729006	-1711.550018	26.32
				175.6	-1711.750190	-1711.504445	-1711.570461	-1711.757315	-1711.577586	9.02
			C2	-49.8	-1711.761005	-1711.515523	-1711.581153	-1711.767112	-1711.587260	2.95
		di	<i>C</i> ₂	47.2	-1711.747687	-1711.501791	-1711.566535	-1711.755185	-1711.574033	11.25
	7 of (where and an 7 of (ш	C2	175.3	-1711.757455	-1711.511636	-1711.575550	-1711.764512	-1711.582607	5.87
7,7'	7 of 6-yr semiquinone of 7 of 6-		C2	149.0	-1711.755630	-1711.510181	-1711.575462	-1711.762502	-1711.582334	6.04
	yi semiquinone			-70.1	-1711.761942	-1711.516269	-1711.581675	-1711.768192	-1711.587925	2.53
4,7'		meso	Ci	180.0	-1711.746727	-1711.501021	-1711.567503	-1711.753420	-1711.574196	11.14
			Ci	180.0	-1711.721743	saddle point		-1711.728213		

[a] C₁ if not specified.

[b] Fiducial groups are the highest priority atoms on either side of the interring C-C bond.

[c] Electronic energy in water (including electrostatic PCM contributions).

[d] Sum of electronic and thermal enthalpies in water (including electrostatic PCM contributions).

[e] Sum of electronic and thermal free energies in water (including electrostatic PCM contributions).

[f] Electronic energy in water (including both electrostatic and non-electrostatic SMD contributions).

[g] $G_{\text{SMD,RRHO}} = G_{\text{PCM,RRHO}} - G_{\text{el,PCM}} + G_{\text{el,SMD}}$.

[h] Relative *G*_{SMD,RRHO} values referred to the most stable structure identified in the series.

Table S6. Conformational exploration of the first-formed dimeric products arising from coupling of two DHBT semiquinones, one of them being in anionic form.

Dimer	Coupling mode	Diastereoisom er	Interring dihedral (deg)ª	G _{el,РСМ} (На) ^ь	Нрсм,rrho (Ha) ^с	Gрсм,rrho (Ha) ^d	Gel,SMD (Ha) ^e	Gsmd,rrho (Ha) ^f	GSMD,RRHO (kcal mol ⁻¹) ^g
			-57.8	-1711.280641	-1711.048675	-1711.115253	-1711.295069	-1711.129681	2.19
		RR	64.0	-1711.283421	-1711.051592	-1711.118165	-1711.298181	-1711.132925	0.15
Dimer 2,2' 2,4'	2 of 6-yl semiquinone on 2 of semiquinone		-172.0	-1711.281300	-1711.049498	-1711.115696	-1711.295451	-1711.129847	2.09
	anion		-60.4	-1711.282366	-1711.050524	-1711.116560	-1711.297105	-1711.131299	1.18
		RS	63.5	-1711.282653	-1711.050809	-1711.117569	-1711.297148	-1711.132064	0.70
			-179.8	-1711.280594	-1711.048810	-1711.115424	-1711.294481	-1711.129311	2.42
			-69.8	-1711.283913	-1711.052034	-1711.118101	-1711.297022	-1711.131210	1.23
		RR	69.0	-1711.280387	-1711.048386	-1711.113932	-1711.293949	-1711.127494	3.56
	4 of 5-yl semiquinone on 2 of semiquinone		176.5	-1711.277857	-1711.045863	-1711.112430	-1711.291173	-1711.125746	4.66
	anion		-66.2	-1711.277346	-1711.045361	-1711.111742	-1711.290836	-1711.125232	4.98
		RS	63.6	-1711.282247	-1711.050442	-1711.116685	-1711.296696	-1711.131134	1.28
2.4/			-162.7	-1711.282126	-1711.050193	-1711.116535	-1711.295653	-1711.130062	1.95
2,4			-70.2	-1711.285856	-1711.054008	-1711.119935	-1711.298405	-1711.132484	0.43
		RR	67.5	-1711.285268	-1711.053430	-1711.118805	-1711.296531	-1711.130068	1.95
	2 of 6-yl semiquinone on 4 of semiquinone		-178.6	-1711.281861	-1711.049966	-1711.116301	-1711.293410	-1711.127850	3.34
	anion	RS	-59.2	-1711.281658	-1711.049841	-1711.116155	-1711.293093	-1711.127590	3.50
			67.4	-1711.285552	-1711.053811	-1711.119599	-1711.298486	-1711.132533	0.40
			-160.9	-1711.284864	-1711.052958	-1711.118677	-1711.297147	-1711.130960	1.39
			-61.2	-1711.277483	-1711.045458	-1711.111641	-1711.289790	-1711.123948	5.79
		RR	56.4	-1711.282640	-1711.050826	-1711.116856	-1711.295639	-1711.129855	2.08
			-170.8	-1711.281480	-1711.049511	-1711.114846	-1711.292991	-1711.126357	4.28
	2 of 6-yl semiquinone on 7 of semiquinone		-59.1	-1711.281594	-1711.049717	-1711.115347	-1711.294976	-1711.128729	2.79
	anion		74.1	-1711.281959	-1711.050025	-1711.116437	-1711.295126	-1711.129604	2.24
2 7/		RS	74.3	-1711.281982	-1711.050056	-1711.116009	-1711.295085	-1711.129112	2.55
2,1			-179.3	-1711.277322	-1711.045371	-1711.110984	-1711.288900	-1711.122562	6.66
			162.6	-1711.275551	-1711.043725	-1711.109169	-1711.287282	-1711.120900	7.70
			-66.9	-1711.276233	-1711.044211	-1711.110155	-1711.289456	-1711.123378	6.15
	7 of 6-yl semiquinone on 2 of semiquinone	מת	-64.5	-1711.276204	saddle point		-1711.289396		
	anion	KK	56.3	-1711.283909	-1711.052062	-1711.117981	-1711.296758	-1711.130830	1.47
			-169.6	-1711.278853	-1711.046871	-1711.112773	-1711.291933	-1711.125853	4.59

			-60.6	-1711.280910	-1711.049024	-1711.114875	-1711.294679	-1711.128644	2.84
		RS	72.7	-1711.282122	-1711.050152	-1711.115807	-1711.295708	-1711.129393	2.37
			171.9	-1711.275435	-1711.043471	-1711.109882	-1711.288301	-1711.122748	6.54
			-49.2	-1711.281834	-1711.050240	-1711.115991	-1711.294677	-1711.128834	2.72
		חח	-64.2	-1711.284323	-1711.052381	-1711.116594	-1711.297087	-1711.129358	2.39
		KK	57.6	-1711.278596	-1711.046627	-1711.111390	-1711.289389	-1711.122183	6.90
4,4'	4 of 5-yi semiquinone on 4 of semiquinone		143.9	-1711.287106	-1711.055588	-1711.121506	-1711.298772	-1711.133172	0.00
	anion		-70.5	-1711.287495	-1711.055744	-1711.121043	-1711.298820	-1711.132368	0.50
		RS	72.7	-1711.286288	-1711.054315	-1711.119464	-1711.298514	-1711.131690	0.93
			-177.2	-1711.277837	-1711.045951	-1711.110822	-1711.288398	-1711.121383	7.40
			-56.1	-1711.283213	-1711.051346	-1711.116767	-1711.296016	-1711.129570	2.26
		RR	61.7	-1711.273268	-1711.041387	-1711.107056	-1711.284061	-1711.117849	9.62
			158.5	-1711.283652	-1711.051768	-1711.116942	-1711.295122	-1711.128412	2.99
	4 of 5-yl semiquinone on 7 of semiquinone		-83.2	-1711.283547	-1711.051895	-1711.117909	-1711.295393	-1711.129755	2.14
	anion		82.5	-1711.278016	-1711.046337	-1711.112146	-1711.291090	-1711.125220	4.99
		RS	59.4	-1711.280805	-1711.048829	-1711.112851	-1711.293873	-1711.125919	4.55
			166.6	-1711.251230	-1711.019857	-1711.085244	-1711.260984	-1711.094998	23.95
			-177.1	-1711.273617	-1711.041621	-1711.108334	-1711.284722	-1711.119439	8.62
4,7'			-60.5	-1711.287773	-1711.055975	-1711.121137	-1711.299126	-1711.132490	0.43
		DD	58.7	-1711.275350	-1711.043516	-1711.108853	-1711.286219	-1711.119722	8.44
		KK	160.6	-1711.284984	saddle point		-1711.296549		
	7 of 6 yl comiguinono on 4 of comiguinono		154.6	-1711.284940	-1711.053254	-1711.118872	-1711.296235	-1711.130167	1.89
	2 of 6-yr sentiquitone of 4 of sentiquitone		-83.1	-1711.286210	-1711.054664	-1711.120602	-1711.297300	-1711.131692	0.93
	anon		80.2	-1711.280895	-1711.049241	-1711.114708	-1711.293067	-1711.126880	3.95
		RS	58.9	-1711.283318	-1711.051356	-1711.115578	-1711.295624	-1711.127884	3.32
			179.6	-1711.255408	-1711.024083	-1711.089573	-1711.264536	-1711.098701	21.63
			-177.5	-1711.276590	-1711.044639	-1711.110102	-1711.286812	-1711.120324	8.06
			-51.1	-1711.282639	-1711.050889	-1711.116412	-1711.294154	-1711.127927	3.29
		RR	48.9	-1711.272179	-1711.040226	-1711.105395	-1711.283029	-1711.116245	10.62
	7 of 6-yl semiguinone on 7 of semiguinone	itit	176.9	-1711.279815	-1711.047755	-1711.111779	-1711.292346	-1711.124310	5.56
7,7'	anion		148.2	-1711.276890	-1711.045202	-1711.110886	-1711.289207	-1711.123203	6.26
	unon		-71.1	-1711.281993	-1711.050104	-1711.115635	-1711.294073	-1711.127715	3.42
		RS	69.5	-1711.283970	-1711.052031	-1711.116918	-1711.295385	-1711.128333	3.04
			-175.0	-1711.270833	-1711.038971	-1711.104556	-1711.281760	-1711.115483	11.10

[a] Fiducial groups are the highest priority atoms on either side of the interring C-C bond.

[b] Electronic energy in water (including electrostatic PCM contributions).

[c] Sum of electronic and thermal enthalpies in water (including electrostatic PCM contributions).

[d] Sum of electronic and thermal free energies in water (including electrostatic PCM contributions).

[e] Electronic energy in water (including both electrostatic and non-electrostatic SMD contributions).

[f] $G_{\text{SMD,RRHO}} = G_{\text{PCM,RRHO}} - G_{\text{el,PCM}} + G_{\text{el,SMD}}$.

[g] Relative *G*_{SMD,RRHO} values referred to the most stable structure identified in the series.

Thiomelanin synthesis and characterization. DHBT (50 mg, 0.3 mmol) was dissolved in MeOH (1 mL), then the proper buffer was added (0.05 M carbonate buffer pH 9, 30 mL). A solution of K₃[Fe(CN)₆] (3 molar equivalent, 99 mg) in water was added. Suddenly, the reaction mixture turned deep red, then purple while a light grey solid separated from the aqueous media. The solid was recovered by centrifugation (7000 rpm, 4° C, 15 min), extensively washed with water (3 x 5 mL) and MeOH (2 x 3 mL), and then lyophilized. Thiomelanin was recovered as a greyish amorphous solid (yield: 35 mg, 70% w/w).

Figure S19. Powdered melanins collected by centrifugation of oxidation mixtures of DHBT (left) and DHI (right)

Figure S20. SEM image of thiomelanine powder.

Figure S21. MALDI-MS spectrum of thiomelanin, showing 352 - 1111 m/z (top) and 1054 - 1712 m/z (bottom) spectral regions

Figure S22. UV-Vis spectrum of thiomelanin as aqueous suspension (0.5 mg/mL).

Figure S23. ATR/FT-IR spectrum of thiomelanin powder.

Coating experiments. DHBT or DHI were dissolved in methanol (3 mg/mL) and deposited on a clean substrate (glass or quartz) applying a standard spin-coating protocol (3000 rpm, 1 min, acc. 500 rpm/sec) and then exposed to gaseous ammonia vapors in a saturated chamber (15 min for DHI and 6 h for DHBT).