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Abstract: Atherothrombosis remains one of the main causes of morbidity and mortality worldwide.
The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving
several pathways, including oxidative stress. Cellular and animal studies have provided compelling
evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly
established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant
therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis.
Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be
involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall.
Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers
of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise
sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss
the impact of these oxidative systems on LDL and HDL, as well as the value of these modified
lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by
reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological
vascular remodeling.
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1. Introduction

Atherothrombosis is the main cause of death in developed countries. The main feature
underlying atherothrombosis is a chronic pathological remodeling of the vascular wall, characterized
by lipid deposition, oxidative stress, immune-inflammatory and proliferative responses, along with
proteolysis, neo-angiogenesis, apoptosis, calcification and fibrosis [1,2]. Reactive oxygen species
(ROS) are considered crucial mediators of vascular homeostasis and pathogenesis in vascular diseases.
Low levels of ROS are essential for the regulation of multiple cellular processes and signaling pathways,
whereas uncontrolled ROS production, as occurs in several vascular diseases including atherosclerosis
or abdominal aortic aneurysm (AAA), results in exacerbated oxidative stress that damages vascular
cells through a myriad of processes [3–8].

Known risk factors for atherothrombosis include increased systemic low-density lipoprotein
(LDL) and reduced high-density lipoprotein (HDL) cholesterol levels. This systemic alteration of
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lipoprotein particles is accompanied by the increased lipoprotein retention observed during the
earlier stages of the development of the vessel wall remodeling. LDLs are highly susceptible to
being modified by the oxidative milieu found inside the vascular wall. In fact, the “oxidative
modification hypothesis of atherosclerosis” [9] was based on the evidence that modified oxidized LDLs
are retained in atherosclerotic plaques and their uptake by scavenger receptors on phagocytes lead
to foam cell formation. In addition, oxidative stress could also modify other lipoproteins (e.g., HDL)
or other molecules involved in different initial processes associated with vessel wall remodeling
(e.g., nitric oxide-related endothelial dysfunction). However, the precise sources of oxidative stress in
these initial stages are not completely defined.

In the more advanced stages, intraplaque hemorrhages in complicated atherothrombotic
disease [10] and intraluminal thrombus (ILT) in AAA [11] both lead to clinical complications due
to arterial wall rupture, involving intimal cap rupture in complicated atherothrombotic plaques
and medial and adventitial rupture in AAA. No matter where there is intraplaque or intraluminal
localization, hemorrhages and/or thrombi involve trapping of red blood cells (RBCs), leukocytes and
activating platelets. In this context, RBC-derived, iron-rich heme group and leukocyte-derived oxidants
(e.g., NADPH-dependent ROS and myeloperoxidase-MPO-), are the main sources of oxidative stress
and are able to modify lipids, proteins and DNA, which leads to the progression of atherothrombotic
pathology towards clinical events [12].

In the present review, we will summarize the molecules involved in redox imbalance in human
atherothrombosis, highlighting the functional consequences of oxidative stress mainly in lipoproteins,
due to their key role in vascular diseases. Moreover, we will describe studies by analyzing the
potential use of some biomarkers of redox imbalance, as well as its potential therapeutic value,
in these pathologies.

2. Generation and Elimination of ROS

ROS are reactive derivatives of oxygen metabolism. These include molecules with unpaired
electrons, also termed free radicals such as superoxide anion (O2

−) and hydroxyl radical (OH),
which are highly unstable and have short half-lives. Non-radical ROS include more stable molecules
with longer half-lives such as hydrogen peroxide (H2O2), peroxynitrite (ONOO−) and hypochlorous
acid (HOCl) [13]. The majority of O2

− generated is rapidly converted to H2O2, which, in contrast to
O2
−, penetrates cell membranes easily, and functions as a second messenger that activates multiple

signaling pathways.
O2
− is formed by the univalent reduction of molecular oxygen. This process is mediated by

different enzymatic systems including NADPH oxidases (NOX), xanthine oxidase, lipoxygenase,
cyclooxygenase, CYP450 isoforms, monoxygenases and uncoupled endothelial NO synthase (eNOS).
O2
− can also be generated non-enzymatically by the mitochondrial electron transport chain,

the endoplasmic reticulum (ER), and peroxisomes (Figure 1) [13–16]. O2
− can be converted into

H2O2 spontaneously or by the superoxide dismutases (SOD) enzymes: cytosolic Cu/Zn-SOD (SOD1),
mitochondrial Mn-SOD (SOD2) and extracellular EC-SOD (SOD3). Moreover, some types of NOX
including NOX-4 and dual oxidases (DUOX)-1 and -2, can directly produce H2O2 [16], which can
also be synthesized as a by-product of different enzymes including some which are important in
cardiovascular diseases (CVD) such as lysil oxidase [17,18] (Figure 1).
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Figure 1. Generation and elimination of ROS. Enzymatic systems (in red) including NADPH oxidases 
(NOXs), Xanthine Oxidase (XO), Lipoxygenase (LO), Cyclooxygenase (COX) and uncoupled eNOS 
produce O2− that can also be generated non-enzymatically (in orange) by the mitochondrial electron 
transport chain (mETC), the endoplasmic reticulum (ER) and peroxisomes. O2− is then transformed 
into H2O2 spontaneously or through superoxide dismutases (SODs) or can be synthesized directly by 
NOX-4 or as a by-product of lysyl oxidase (LOX). O2− can rapidly react with NO leading to the 
formation of ONOO−. H2O2 can be then converted into more reactive molecules, including hydroxyl 
radical (OH−) by Fenton reaction or into HOCl by myeloperoxidase (MPO). Furthermore, H2O2 can 
also be transformed into H2O by catalase (CAT) or by the glutathione peroxidase (GPx)/gluthathione 
reductase (GR) and the thioredoxin (Trx)/peroxiredoxin (PRx) systems. TrxR: thioredoxin reductase; 
TrxPrx: thioredoxin peroxidase. 

In the presence of reduced transition metals (e.g., ferrous or cuprous ions), H2O2 can be 
converted into the highly reactive OH that damages different macromolecules including lipids, 
proteins and DNA. Alternatively, H2O2 may be converted into water by the enzyme catalase or 
glutathione peroxidase-1 that catalyzes the reduction of H2O2 using reduced glutathione (GSH) as an 
electron donor. GSH is transformed into glutathione disulfide (GSSG) by glutathione peroxidase, 
which can then be converted back to GSH by glutathione reductase in an NADPH-consuming process 
(Figure 1). The thioredoxin (TRX) system, in which thiol-dependent peroxidases (peroxiredoxins, 
PRDX) are provided with electrons to remove reactive oxygen and nitrogen species rapidly, is also 
an important H2O2 detoxifying system [19]. 

Myeloperoxidase (MPO) is a well-known enzyme, mainly released by activated neutrophils, 
characterized by powerful pro-oxidative and pro-inflammatory properties. MPO is a heme 
peroxidase that produces HOCl in the reaction between H2O2 and chloride ions. These mediators are 
not only important for the antimicrobial activities of the innate immune system but also contribute 
to immune inflammatory diseases, including atherosclerosis and AAA [6,20] (see Section 3.2). 

Other important ROS/reactive nitrogen species (RNS) is peroxynitrite (ONOO−) which is formed 
by the reaction of NO with O2−. RNS produce post-translational modifications of proteins, nitrative 
stress and different modifications such as tyrosine nitration. Moreover, not only ONOO− but also 
MPO pathways have been involved in protein nitration [20]. 

Increased levels of ROS activate nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master 
regulator of the antioxidant response, which is activated to counteract oxidative stress. Nrf2 controls 
the expression of about 250 genes including those encoding antioxidant enzymes such as those 

Figure 1. Generation and elimination of ROS. Enzymatic systems (in red) including NADPH oxidases
(NOXs), Xanthine Oxidase (XO), Lipoxygenase (LO), Cyclooxygenase (COX) and uncoupled eNOS
produce O2

− that can also be generated non-enzymatically (in orange) by the mitochondrial electron
transport chain (mETC), the endoplasmic reticulum (ER) and peroxisomes. O2

− is then transformed
into H2O2 spontaneously or through superoxide dismutases (SODs) or can be synthesized directly
by NOX-4 or as a by-product of lysyl oxidase (LOX). O2

− can rapidly react with NO leading to the
formation of ONOO−. H2O2 can be then converted into more reactive molecules, including hydroxyl
radical (OH−) by Fenton reaction or into HOCl by myeloperoxidase (MPO). Furthermore, H2O2 can
also be transformed into H2O by catalase (CAT) or by the glutathione peroxidase (GPx)/gluthathione
reductase (GR) and the thioredoxin (Trx)/peroxiredoxin (PRx) systems. TrxR: thioredoxin reductase;
TrxPrx: thioredoxin peroxidase.

In the presence of reduced transition metals (e.g., ferrous or cuprous ions), H2O2 can be
converted into the highly reactive OH that damages different macromolecules including lipids,
proteins and DNA. Alternatively, H2O2 may be converted into water by the enzyme catalase or
glutathione peroxidase-1 that catalyzes the reduction of H2O2 using reduced glutathione (GSH) as an
electron donor. GSH is transformed into glutathione disulfide (GSSG) by glutathione peroxidase,
which can then be converted back to GSH by glutathione reductase in an NADPH-consuming process
(Figure 1). The thioredoxin (TRX) system, in which thiol-dependent peroxidases (peroxiredoxins,
PRDX) are provided with electrons to remove reactive oxygen and nitrogen species rapidly, is also an
important H2O2 detoxifying system [19].

Myeloperoxidase (MPO) is a well-known enzyme, mainly released by activated neutrophils,
characterized by powerful pro-oxidative and pro-inflammatory properties. MPO is a heme peroxidase
that produces HOCl in the reaction between H2O2 and chloride ions. These mediators are not only
important for the antimicrobial activities of the innate immune system but also contribute to immune
inflammatory diseases, including atherosclerosis and AAA [6,20] (see Section 3.2).

Other important ROS/reactive nitrogen species (RNS) is peroxynitrite (ONOO−) which is formed
by the reaction of NO with O2

−. RNS produce post-translational modifications of proteins, nitrative
stress and different modifications such as tyrosine nitration. Moreover, not only ONOO− but also
MPO pathways have been involved in protein nitration [20].

Increased levels of ROS activate nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master
regulator of the antioxidant response, which is activated to counteract oxidative stress. Nrf2 controls
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the expression of about 250 genes including those encoding antioxidant enzymes such as those involved
in glutathione and TRX systems, SOD, catalase, and hemoxygenase-1, among many others [21].
In addition to enzymatic degradation of ROS, various low-molecule compounds can directly react with
ROS. These molecules can be endogenously synthesized or obtained from diet and include vitamins C
and E, uric acid, glutathione, flavonoids and thiols, among others [3].

The misbalance between ROS generation and elimination determines oxidative stress. It is now
accepted that oxidative stress responses are involved in many cellular and tissue processes in relation to
CVD and its risk factors. In fact, all established cardiovascular risk factors such as hypercholesterolemia,
hypertension, diabetes mellitus, and smoking enhance ROS generation. The ROS-modulated
processes include proliferation and migration of vascular smooth muscle cells (VSMC), endothelial
dysfunction with diminished NO availability and increased vasoconstriction, and increased production
of isoprostanes. These isoprostanes are eicosanoids derived from nonenzymatic oxidation of
arachidonic acid via the interaction with ROS and they cause artery vasoconstriction via TP receptors,
VSMC proliferation and platelet aggregation. Moreover, endothelial activation with the expression
of adhesion molecules, recruitment of inflammatory cells, lipid oxidation, platelet aggregation,
activation of metalloproteinases and altered extracellular matrix deposition, are also activated by
ROS [3–7]. All cells in the vascular wall including VSMC, endothelial cells and adventitial cells,
together with circulating cells (such as platelets and RBC) are able to generate ROS. Moreover,
inflammatory cell infiltration is now recognized as a potential source of ROS in different CVD including
atherosclerosis and AAA. Most of the vast information available on the role of oxidative stress in
CVD has been obtained from animal models and excellent reviews covering these issues are already
available [7,8,22–27]. For the sake of clarity, we now discuss in depth the possible role of oxidative
stress in atherothrombosis in the human context.

3. Sources of Oxidative Stress in Human Vascular Diseases

In this section, we will focus on NADPH oxidase as a master of ROS production, but also on
leukocyte-derived MPO and in RBC-derived iron that have been linked to lipid/lipoprotein oxidation
in humans (Figure 2).
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Figure 2. Sources of oxidative stress in the vascular wall. The oxidative process inside the pathological
vascular wall is the result of the interaction of lipids/lipoproteins and reactive oxygen species (ROS)
derived from infiltrating (red blood cells-RBC, platelets, leukocytes-neutrophils and monocytes)
and resident (endothelial cells-EC- and smooth muscle cells-SMC-) cells. LDL, low-density lipoproteins;
HDL, high-density lipoproteins; ApoA1, apolipoprotein A1; MPO, myeloperoxidase; Hb, hemoglobin;
eNOS, endothelial NO synthase. Some graphical elements from this figure were adapted from Servier
Medical Art Powerpoint image bank at http://smart.servier.com/.
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3.1. NADPH Oxidase

The NADPH oxidase system is the main source of ROS in the vessel wall and is present
in endothelial cells, VSMC, adventitial fibroblasts, and infiltrating monocytes/macrophages.
The structure and function of NADPH oxidase in physiological and cardiovascular pathological
conditions have been extensively reviewed [5,6,14,16,28–30]. In contrast to the rest of the
ROS-producing enzymes that produce ROS as a by-product of their activity, the main catalytic function
of NADPH oxidases is the generation of ROS. NADPH oxidase isoforms in mammals have a catalytic
subunit called NOX (NOX-1-5) or DUOX (DUOX-1-2) and up to seven regulatory subunits, leading to
the formation of seven NADPH oxidase isoforms. NOX-1, NOX-2, NOX-4 and NOX-5 are expressed
in the cardiovascular system. The classic NOX, NOX-2, was initially found and characterized in
leukocytes. Cytosolic adaptor proteins called “NOX organizers” (p47phox or NOXO1 and p40phox)
and “NOX activators” (p67phox or NOXA1) that bind GTP-Rac and affect the flow of electrons, regulate
the activity of NOX-1, NOX-2 and NOX-3. When the p22phox component binds with NOX-1-4, a stable
heterodimeric complex and then the active oxidase are formed [5,6,14,16,28–30]. NOX isoforms are
variably expressed in vascular cells with some of them coexisting in the same cell type, suggesting
different cell functions for each NOX. Thus, endothelial cells express NOX-1, NOX-2, NOX-4 and
NOX-5, the latter being expressed only in humans; VSMCs mainly express NOX-1, NOX-4 and NOX-5;
and adventitial cells mainly express NOX-2 and NOX-4 [5,6,14,16,28–30]. As mentioned, NOX-2 is
mainly expressed in phagocytes (neutrophils and macrophages) but platelets also express NOX-2
where it has a central role in generating O2

− [6,31].
Many studies in animal models have demonstrated a key role of vascular and phagocytic NADPH

oxidase isoforms in the development of vascular diseases and to some degree these observations have
also been extended to humans. Vascular production of O2

− increases as a consequence of risk factors
for atherosclerosis [32]. Atherosclerotic lesions contain abundant p22phox and NOX-2 (also termed
gp91phox) that correlated with the severity of atherosclerosis [33,34] where p22phox is located in
adventitial fibroblasts, VSMC, macrophages in the neointima and media, and in endothelial cells [35].
Importantly, clinical and experimental studies support the role of NOX-2 expressed in platelets in the
atherothombotic process [7,8] by mechanisms that include the expression of the CD40 ligand, a protein
with pro-inflammatory and prothrombotic properties on interaction with its receptor CD40 thereby
modulating platelet function [6,31]. The role of NOX-1 in atherogenesis remains controversial since
NOX-1 was undetected or had very low expression in human lesions [33,34]. Interestingly, NOX-1
upregulation was demonstrated in plaques from patients with cardiovascular events or established
diabetes mellitus [36]. In contrast, NOX-4 was found exclusively in non-phagocytic cells with NOX-4
being highest in stage IV atherosclerosis and dramatically decreased in the most complicated plaques
that are characterized by fibrosis and a reduction in intimal VSMC [34]. Another study also showed that
NOX-4 mRNA levels were reduced in plaques from patients with cardiovascular events or established
diabetes mellitus which was found that, together with experimental studies, pointed to a possible role
of NOX-4 as a negative modulator of inflammation and remodeling to convey atheroprotection [36].
Finally, NOX-5 was found to be upregulated in atherosclerosis in the endothelium in the early lesions
and in VSMC in the advanced coronary lesions [37] and more recently, NOX-5 was found in human
monocytes and macrophages and in macrophage-rich areas within human carotid artery atherosclerotic
plaques [38]. However, the fact that NOX-5 is only expressed in humans has slowed down the progress
in the elucidation of the impact of NOX-5 in atherosclerosis.

Analysis of tissue from patients undergoing bypass surgery revealed that, besides changing
NOX isoforms, diabetes is characterized by increased expression of p22phox, p47phox, and p67phox
compared with non-diabetics [39]. Moreover, NADPH oxidase activity in peripheral blood
mononuclear cells positively correlated with carotid intima-media thickness, a surrogate marker
of atherosclerosis, in asymptomatic subjects [40]. Increased expression and activity of NADPH
oxidases are also important mechanisms underlying oxidative stress in human AAA [41]. Specifically,
mRNA levels of p22phox, NOX-2 and NOX-5 were significantly increased in AAAs while NOX-4
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mRNA expression was lower [41]. Notably, although human studies clearly suggest a role for increased
oxidative stress in atherothrombosis, the specific cell responsible remains elusive.

In humans, direct evidence of the relationship between ROS and atherothrombosis mainly
originate from studies in patients with NOX-2 loss of function by genetic NOX-2 or p47phox
deficiencies (chronic granulomatous disease). These patients show increased flow mediated
dilation and therefore NO-induced vasodilation, and diminished carotid intima-media thickness,
two surrogate markers of atherosclerosis [7,8,42,43]. Interestingly, reduced carotid but not coronary
artery atherosclerosis was observed in patients with chronic granulomatous disease suggesting that
NOX2-related mechanisms may play a lesser role in coronary atherosclerosis than in other arterial
beds [44]. In the same line of evidence, patients with the C242T polymorphism of the p22phox subunit
(associated with lower oxidative stress) [45], had less cardiovascular death, myocardial infarction and
re-vascularization compared with those carrying the wild-type allele [46], demonstrating that the 242T
allele was a predictor of lower risk of recurrence of cardiovascular events in high-risk patients.

3.2. MPO

MPO is a hemoprotein mainly released by activated leukocytes that catalyzes the reaction between
H2O2 and chloride ions to produce HOCl as the primary oxidant. MPO-derived oxidants generate
a footprint of specific (e.g., 3-Chlorotyrosine, 3-Cl-Tyr) and nonspecific (e.g., protein carbonyls and
3-nitrotyrosine modifications) oxidation products. Moreover, MPO may serve as a source of free
iron through a mechanism that involves heme depletion [47] and MPO has been also implicated
in lipoprotein oxidation in vivo [48]. It was long established that MPO works as an NO-oxidase,
consuming NO to lead to impaired endothelial relaxation [49]. Previous studies have shown
that catalytically active MPO and its oxidative species are present in human atherothrombotic
tissues [50–53]. Moreover, plasma MPO levels are increased in atherosclerotic and AAA patients [53,54].
It should be noted that MPO is a potent predictor of cardiovascular events in patients with chest
pain [55] and MPO levels are a significantly better predictor of major adverse cardiovascular events
than NT-proBNP levels in patients with ST-segment elevation in myocardial infarction who are treated
with primary percutaneous coronary intervention [56]. More recently, increased MPO indexed to HDL
particle concentration at baseline is associated with increased risk of incident cardiovascular events in
a population initially free of CVD [57].

3.3. Iron

Iron plays crucial roles in cell proliferation and metabolism by serving as a functional constituent
of various enzymes, normally associated to the hemo group. The main iron pool in the body is found
within the hemoglobin (Hb) of RBCs, which, after a mean half-life of 120 days, are taken up by resident
macrophages by erythrophagocytosis. However, free iron is toxic through the generation of ROS via
the Fenton reaction. Iron could be released due to microvessel rupture in atherosclerotic plaques [10]
or after RBC lysis within the intraluminal thrombus of AAA [11]. Iron was observed in advanced
carotid atherosclerotic plaques [58]. Moreover, it has been recently described that RBC efferocytosis by
the arterial wall promotes oxidation in early-stage human atheroma [59]. In this respect, the role of iron
in the pathogenesis of atherosclerosis was originally associated with its ability to catalyze the oxidation
of lipoproteins [60], but potential novel mechanisms by which iron could modulate atherogenesis
have been later described [61]. More recently, Sawada et al. described that iron was accumulating
in human AAA walls compared with non-AAA walls and the extent of the iron-accumulated area
positively correlated with that of the area of 8-hydroxy-2′-deoxyguanosine expression [62]. A long time
ago, iron was proposed as a cardiovascular risk factor, suggesting that the lower incidence of CVD
in premenopausal women could be explained by the lower body iron stores [63]. We also described
local iron retention and altered iron recycling associated with high hepcidin and low transferrin
systemic concentrations in AAA patients, potentially leading to reduced circulating Hb levels [64].
Moreover, low Hb levels were associated with AAA progression. In this respect, anemia has been
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associated with several chronic (inflammatory) diseases, including CVD, probably related to the
diversion of iron recycling [65,66].

4. Markers of Oxidative Stress in Human Vascular Diseases

A biomarker is a marker reflecting or integrating one or several biological activities. In the case of
biomarkers of oxidative stress, we will refer to both pro- and antioxidant biomarkers. Such markers
may be any detectable and quantifiable molecules including proteins, peptides, lipids, nucleic acids,
etc. Many studies have reported oxidative stress markers in tissues and plasma of patients with
atherothrombosis. However, although markers assessing the oxidation of phospholipid and protein
components of LDL were among the first to be developed, clinical trials including cross-sectional and
retrospective and prospective studies provided equivocal results [6]. Among the reasons explaining
these conflicting results, methodological issues have been highlighted and it is beyond the scope
of this article to review this aspect in detail and the reader is referred to excellent reviews on this
aspect [6,20,67]. In any case, although promising advances in this field are being carried out in the
last years, it is still premature to unequivocally affirm the clinical validity of a specific oxidative stress
biomarker for the management of patients with higher risk of CVD [6].

4.1. Oxidized LDL

Low-density lipoprotein (LDL) is the main player in cholesterol transport to the cells and
high concentration of LDL is a well-established cardiovascular risk factor [68]. LDL has been
associated to atherosclerosis development as in the subendothelial space, LDL becomes modified
by either aggregation, acetylation and/or oxidation. Modified LDL induces endothelial injury,
increases the expression of adhesion molecules, favoring monocyte adhesion and its differentiation to
macrophages [69]. Moreover, oxidized LDL stimulates platelet aggregation and inhibits endothelial NO
synthase expression/activity, promoting atherogenesis. Therefore, modified LDL is a main mediator
inducing vascular damage and atherosclerotic disease development.

Oxidized LDLs are mainly present in ceroids that can be formed within the cell and are similar to
cholesterol crystals [70]. Ceroids are autofluorescent, insoluble and sudanophilic polymers composed
of aggregated proteins entrapping lipids. Iron deposits, Hb and MPO colocalized with ceroids
within cells and tissues such as atherosclerotic plaques and AAA [71–73]. After the initial finding
of the presence of ceroid/lipofuscin and of peroxidized lipids in atherosclerotic lesions [74,75],
it was discovered that oxLDLs are present in atherosclerotic lesions [76]. Oxidation of LDL can be
carried out by, among others, transition metals, Hb, lipoxygenases, and ROS generated by vascular cells
or phagocytes. Interestingly, oxidation of LDL by NOX-2 containing platelets may represent another
mechanism through which NOX-2 activates platelets in a self-perpetuating mechanism [7,8]. HOCl can
modify LDLs at the lipid and the protein moieties in vitro and/or in vivo [77]. Malondialdehyde
(MDA), a lipid peroxide product released by oxidation from prostanoid metabolism, reacts with
the positively charged epsilonamino group of apo B-100 protein lysyl residues, a constituent of the
LDL molecular complex [78]. MDA-modified LDLs induce lipid accumulation in macrophages [79].
Circulating MDA-LDL levels has been proposed as a marker of oxidative stress in atherosclerotic
CVD [80–82] and clinical studies have demonstrated that MDA-LDL levels are associated with the
severity of coronary artery disease [83], coronary plaque vulnerability [84] and adverse clinical
outcomes after percutaneous coronary intervention with drug eluting stents [85].

Oxidized LDL is immunogenic and the oxidative modifications of apolipoprotein B-100 resulted
in the formation of neoepitopes. Oxidation-specific epitopes (OSE) may be indirectly reflected by
the presence of circulating antibodies and immune complexes. These are often measured as IgG
and IgM autoantibodies to MDA-LDL and apoB-immune complexes [86]. These biomarkers can
predict CVD and associated events [87]. In atherosclerotic CVD, IgG and IgM titters to OSE such as
MDA-LDL, were predictive of recurrent events in a prospective study with a 15-year follow-up [88].
In general, high levels of IgM OSE biomarkers predict lower risk, consistent with their potential



Int. J. Mol. Sci. 2017, 18, 2315 8 of 21

protective function as natural antibodies, and higher levels of IgG biomarkers predict a higher risk,
consistent with their general properties of being acquired.

4.2. Oxidized HDL

Although most of the work related to the oxidation hypothesis of atherosclerosis has been
performed on LDL, there is also evidence that oxidation of other lipoproteins, such as HDL, could also
take place during vascular remodeling. In this respect, it is important to note that the majority
of cholesterylester hydroperoxides are associated with HDLs rather than LDLs [89]. HDL is the
responsible for the reverse cholesterol transport, which is the transport of excess cholesterol from
the peripheral tissues to the liver for its elimination in feces and bile [90]. HDL is atheroprotective
by several ways; one of them is cholesterol efflux from macrophages, controlling the accumulation
of foam cells and atherosclerosis development. Beyond the role of HDL in reverse transport of
cholesterol, the particle is protective through other functions such as anti-inflammatory, antioxidant,
antithrombotic, anti-fibrotic and vasoprotective properties, protection against lipopolysaccharide and
promotion of NO production [91,92].

Epidemiologically, an inverse relationship between HDL cholesterol (HDLc) and cardiovascular
risk has been clearly demonstrated [93]. Low HDLc levels are also associated with both AAA presence
and progression [94–96]. However, HDLc-raising therapies do not result in cardiovascular risk
reduction [97]. These negative results have led to a new HDL perception, where the “quality”
or “functionality” is more relevant than just HDL plasma levels [98]. It is now fully accepted
that in pathological states, such as the oxidative and pro-inflammatory environment present in
atherothrombosis, HDL is remodeled, modifying the functionality of the particle. Among functional
assays measuring HDL quality, it has been shown that decreased cholesterol efflux capacity is
related to incident CVD and CV events [99,100]. In addition, HDL functionality is associated with
its molecular (protein/lipid) composition [101]. Regarding AAA, it was previously demonstrated
that HDL carries less alpha-1 antitrypsin and higher MPO levels, leading to dysfunctional HDL
characterized by decreased antioxidant properties [73,102]. The functionality of the particles could
also be derived by the presence of postranslationally-modified proteins. Among them, it has been
previously demonstrated that ApoA1, the main constituent of HDLs, could be oxidatively modified,
leading to dysfunctional HDLs [103–107]. Previous studies of ApoA1 from human aortic tissues
revealed that ApoA1 in the human aorta was extensively oxidatively cross-linked and functionally
impaired [108]. Moreover, elevated oxApoA1 levels in a large cohort of subjects presented to a
cardiology clinic were associated with increased CVD risk [109]. Similarly, Yassine et al. demonstrated
a significant increase in oxApoA1 in the HDL of participants with diabetes and CVD compared to
participants without CVD [110].

4.3. Antioxidants

Paraoxonase 1 (PON1) hydrolyzes lipoprotein-associated peroxides and lactones. PON1 is mainly
synthesized in the liver and in circulation it is associated with HDL. However, PON1 is not a
fixed component of HDL since the enzyme could also exert its protective functions outside the
lipoprotein environment. It has been demonstrated that HDL transfers PON1 to cell membranes
to improve cellular resistance to oxidative stress [111,112]. Previous studies supported a role of
PON1 in atheroprotection, through its ability to prevent lipid oxidation and limit atherosclerotic
lesion development; moreover, low PON1 activity has been associated with different cardiovascular
pathologies, including atherosclerosis and AAA [113–117]. In addition, human population studies
have suggested an association of PON-1 polymorphisms with CVD [118].

As mentioned, catalase is one of the most active catalysts that decompose H2O2 at an extremely
rapid rate and without consuming cellular reducing equivalents [119]. H2O2 itself is not very
reactive; however, the danger of H2O2 comes from its ready conversion to hydroxyl radical by the
interaction with a range of transition metal ions, of which the most important in vivo is probably iron.
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We have recently observed a decrease in catalase, along with SOD and thioredoxin (TRX) reductase,
in polimorphonuclear cells (PMNs) of AAA patients compared to controls, which suggest a global
decrease in antioxidant enzymes in PMNs under chronic pathological conditions [120]. In contrast,
increased catalase immunostaining was shown in AAA tissue [120], which is similar to what is
observed in atherosclerotic plaques [121].

Among protein thiol-disulfide oxidoreductases, TRX and PRDX have been widely associated
with atherothrombosis. TRX is overexpressed in cells of the vascular wall, probably as a response
to high oxidative stress [122]. In contrast, the truncated form, called TRX80, was associated with a
pro-inflammatory status and increased atherosclerosis [123]. Moreover, increased expression of TRX
has been observed in complicated human atherosclerotic plaques, associated with augmented ROS
production and intraplaque hemorrhage [124,125]. Similarly, TRX reductase overexpression is observed
in atherosclerotic plaques [126]. Different PRDX isoforms seem to modulate different cellular responses.
PRDX1 diminishes leucocyte activation and adhesion to vascular endothelium. Moreover, PRDX-1 was
observed in both VSMC and macrophages in human atherosclerotic plaques [127]. Similarly, PRDX-1
and -2 were detected in AAA tissue [128,129], probably as a response to increased oxidative stress [130].
TRX and PRX levels are elevated in plasma from atherothrombotic patients [131,132]. We reported
an increase in serum TRX, but also PRX-1, from AAA patients compared with control subjects.
Besides, TRX and PRX-1 correlates with AAA size and expansion rate, which suggests that TRX and
PRX-1 could be good biomarkers of AAA evolution [128,133]. The increased levels of TRX-1/PRX-1
associated to disease have been suggested to represent a response to increased oxidative stress. In this
regard, we recently observed that TRX-1/PRX-1 levels in plasma of asymptomatic subjects correlated
with NADPH activity in peripheral blood mononuclear cells [127].

5. Antioxidants as a Potential Therapeutic Strategy to Prevent Pathological Vascular Remodeling

Based on the above findings, antioxidant therapy seems to be a promising alternative for
the treatment of atherothrombosis and its associated complications. However, disappointing
results have been obtained when comparing results obtained in animal models and in patients.
Thus, different antioxidants have in general, prevented, slowed or even reversed atherosclerosis or
AAA in animal models. In addition, these findings have been greatly reinforced by the fact that
knockout mice on different ROS producing enzymes including NADPH oxidases, or transgenic
mice overexpressing detoxifying enzymes including catalase, are partially protected against different
processes involved in the atherothrombotic process (see below in this section). To date, no antioxidant
drugs have proven effective in the treatment of atherothombotic complications in patients. The majority
of trials evaluated the effects of vitamins (mainly vitamin C and E) or folic acid and showed negative
results. Among potential explanations, it has been suggested that there were probable differences in
oxidative stress in the patients and that they were not assessed for their “oxidative stress status” [6,134].
Other factors such as the type of vitamin given alone or in combination, administration with or without
meals, concomitant use with other potential antioxidant drugs, lack of site-specificity or dosage and
duration of antioxidant used have also been questioned [8,134]. Other potential antioxidant therapeutic
approaches in humans are N-acetylcysteine, an antioxidant precursor of the synthesis of GSH,
or nutritional supplements mainly included in the Mediterranean diet such as polyphenols present in
extra virgin olive oil, chocolate, red wine or black and green tea, which in general seems to be associated
with lower CVD (reviewed in detail by Violi et al. [8]). In this line of evidence, novel antiplatelet
and antithrombotic therapies using different antioxidant compounds including flavonoid conjugates,
isoquercetine or N-acetylcysteine are being tested [135–137]; however, the influence of their antioxidant
activity to the antithrombotic and antiplatelet activities remains to be established.

Another interesting finding relies on the fact that many commonly used drugs for the treatment
of atherosclerosis or cardiovascular risk factors, mainly statins but also angiotensin converting
enzyme (ACE) inhibitors or angiotensin receptor AT1 antagonists [8,134,138] show pleiotropic
antioxidant effects that might have contributed, at least in part, to the beneficial effects of these
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drugs on the treatment of atherothrombosis. Thus, atorvastatin acutely inhibits platelet Nox2,
platelet isoprostanes and thromboxane A2 production and this leads to decreased oxidative stress
and platelet activation [138]. Moreover, we and others have previously observed antioxidant capacity
and inhibition of NADPH oxidase activation by statins in preclinical models [139,140]. Regarding
the renin angiotensin system, it is well accepted that Angiotensin II, mainly acting on AT1 receptors,
is one of the most important stimulus for oxidative stress both locally and systemically, through the
activation of the NADPH oxidase among other mechanisms [5,14,16,28–30,141]. In fact, many studies
have shown beneficial effects of ACE and renin inhibitors and AT1 antagonists on oxidative stress in
different cardiovascular diseases (reviewed in detail [142,143]). It should be noted that recent evidence
demonstrates that the selective AT2 receptor agonist Compound 21 decreases oxidative stress and
atherosclerosis in an experimental model of diabetes-associated atherosclerosis [144] and might open
new avenues for pharmacological treatment of atherothrombosis. Other drugs such as calcium channel
blockers can also have potential antioxidant activities in the context of atherothrombosis [141,145].
However, only interventional well-controlled clinical trials with specific ROS inhibitors or supplement
antioxidants will unequivocally confirm the role of ROS in atherothrombosis and the potential
beneficial effects of these therapeutic approaches in patients at risk or having cardiovascular events.

As mentioned above, animal models have provided important mechanistic information about
the role of ROS and ROS-producing enzymes in atherothrombosis [24,25]. More importantly,
preclinical animal models have set up the bases for a possible therapeutic effect of antioxidants
in the clinic and therefore, although this review has focused on human studies, this aspect will
be revised here in more detail. A general antioxidant melatonin (Figure 3) has been recently
proposed as a potential agent for prevention of AAA [146]. More specific inhibitors of ROS have
also been tested. Thus, administration of apocynin (antioxidant with some abilities to inhibit
NADPH oxidase) attenuates experimental AAA formation and atherosclerosis progression [147,148].
It has also been shown that MPO inhibitor 4-amino benzoic acid hydrazide (4-ABAH) decreased
vascular oxidative stress, consecutively improved endothelial function and significantly reduced
atherosclerotic plaque development [149]. Very recently, MPO gene deletion attenuates experimental
AAA formation [150]. Moreover, oral administration of taurine, an amino acid known to react
rapidly with MPO-generated oxidants such as HOCl, also prevented AAA formation, reducing
aortic peroxidase activity and aortic protein-bound dityrosine (diTyr) levels [150]. Treatment with
the iron chelator desferrioxamine decreases lesion iron concentrations and inhibits atherosclerotic
lesion development in the cholesterol-fed rabbit [151]. Iron restriction reduced the incidence of AAA
formation with attenuation of oxidative stress and inflammation [62].
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Raising HDLc using both genetic and direct infusion models similarly show global
anti-atherosclerotic functions of HDL [152–155]. Similarly, treatment with HDL or fenofibrate inhibits
experimental AAA formation and progression [156,157]. ApoA-I or ApoA-1 mimetics reduced
or regressed atherosclerosis in animals, altering HDL function (e.g., inhibiting LDL oxidation)
without changing HDLc mass [158,159]. Proposed mechanisms include accelerating HDL-mediated
cholesterol efflux/reverse cholesterol transport and enhancing HDL’s anti-oxidant/anti-inflammatory
properties [160]. In advanced aortic root atherosclerotic plaques of apolipoprotein E-deficient mice,
native ApoA-I injections led to a significant decreases in lipid content, macrophage number, and an
increase in collagen content; in contrast, oxidized human ApoA-I failed to mediate these changes [161].
Interestingly, modulation of HDL functionality by either ApoA1 mimetic D4F or PON1 overexpression
decreased AAA formation in mice [95,117,162]. To add to this, PON1 overexpression in ApoE-KO
mice displayed smaller atherosclerotic lesions as compared with control mice [163].

In relation to antioxidants, overexpression of catalase suppresses oxLDL-induced aortic smooth
muscle cell death [164]. Atherosclerotic mice overexpressing catalase had smaller and relatively
early stages of vascular lesions [165]. More recently, mitochondrial oxidative stress was successfully
suppressed by catalase overexpression in mitochondria of macrophages or lesional myeloid cells
of ApoE−/− mice, and this led to a significant reduction in the aortic root lesional area [166,167].
In addition, catalase overexpression in aortic smooth muscle cells prevented pathological mechanical
changes underlying AAA formation [168,169]. In addition, hemoxygenase-1 deficiency aggravates
Angiotesin-II induced aortic aneurysms in the ApoE−/− model [170].

6. Conclusions

Atherothrombosis is a very complex pathology that involves, among many other processes,
lipid deposition, oxidative stress, inflammatory cell recruitment and platelet activation. Excessive
ROS and oxidative stress (likely arising from both increased ROS generation from NADPH oxidase,
MPO and iron, and decreased antioxidant systems from PON1 or catalase, among others), play an
important role in the initial phases of the disease by inducing endothelial dysfunction (i.e., impaired
NO-dependent vasodilation and increased endothelial activation) and by facilitating oxidation of
LDL and HDL. In the more advanced stages, RBC-derived iron-rich heme group and leukocyte-
and platelet-derived oxidants perpetuate the inflammatory process and eventually participate in the
rupture of the arterial wall with subsequent platelet aggregation and thrombus formation. Findings
from animal models and clinical studies prompted researchers to find oxidative stress markers in
tissues and plasma of patients with atherothrombosis. However, although some of these oxidative
stress markers predict increased CV risk, none of them have yet been incorporated into clinical practice.
Notably, the concept of specificity does not imply their potential use as diagnostic biomarkers in the
clinical setting as pathological biomarkers are not specific to a disease, but rather reflect a biological
activity associated with pathology. In this respect, oxidative stress is underlying several different
diseases and therefore we could observe modified levels of oxidative stress markers in different
pathologies, not only in CVD.

We have focused this review on markers of oxidative stress associated with lipid/lipoproteins as
they are the main drivers of vascular pathology, but it is important to note that oxidized lipoproteins
could only be a consequence of increased oxidative stress and just reflect vascular disease without
clearly proving their implication in promoting atherothrombosis. In fact, findings in patients treated
with different antioxidant therapies are not conclusive despite the overwhelming information on
the causative role of ROS in animal models of atherosclerosis and aneurysms. Similarly, we have
reviewed the data on antioxidants as they have been studied more globally probably due to the higher
stability and easier methodology used to address these questions. In this respect, we envision that novel
methodological approaches (e.g., mass-spectrometry) will help to test more specifically the contribution
of oxidative stress markers in the mechanisms of human atherothrombosis. In fact, these more specific
markers of oxidative stress as surrogate prognostic/therapeutic markers could also potentially give
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interesting information at the clinical level. Finally, further studies, with more specific ROS inhibitors
or antioxidants and carefully designed clinical trials, will probably shed light on the clinical benefits of
targeting oxidative stress in CVD and its risk factors.
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