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Abstract: miRNAs are central players in cancer biology and they play a pivotal role in mediating the
network communication between tumor cells and their microenvironment. In melanoma, miRNAs
can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to
mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the
EMT process, even at a distance, for example through exosome-mediated mechanisms. miRNAs also
strongly act on some components of the immune system, regulating the activity of key elements such
as antigen presenting cells, and can facilitate an immune evasive/suppressive phenotype. miRNAs
are also involved in the regulation of metabolic processes, specifically in response to hypoxic stimuli
where they can mediate the metabolic switch from an oxidative to a glycolytic metabolism. Overall,
this review discusses and summarizes recent findings on miRNA regulation in the melanoma tumor
microenvironment, analyzing their potential diagnostic and therapeutic applications.
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1. Introduction

The understanding of melanoma biology and histopathology has grown exponentially in the last
20 years, and current therapeutic approaches take into account such developments. For example, the
knowledge of the BRAF driving oncogenic lesion has guided the advent of BRAF and MEK inhibitors,
effective in more than 50% of the treated melanoma patients. More recently, it has been elucidated that
the role of the immune system in melanoma therapy is pivotal, and appropriate immune therapies
have been developed, such as anti-CTLA4 and anti-PD1. Even so, most patients (50–60%) treated with
these agents do not have a durable response [1,2]. Thus, we anticipate that other microenvironmental
and genetic factors play an as-yet therapeutically-unrealized role in melanoma biology. One of the
common factors in this web of tumor-stromal interactions are microRNAs (miRNAs). miRNAs are
small non coding RNAs that inhibit gene expression mainly through translation inhibition or target
degradation. miRNAs have emerged as central players in cancer biology and have been demonstrated
to be helpful to determine tumor type, prognosis and response, and are intimately involved in both the
tumor cell-intrinsic and the microenvironmental communication of pro- and anti-oncogenic signals.
In this review, our goal is to present a structured view of how specific miRNAs mediate tumor-stromal
communication in three distinct tumor microenvironmental processes: EMT, immune infiltration, and
hypoxia. By organizing the current knowledge in such a way, we hope to provide readers with a
clearer top-down view, enabling the identification of both key translational strengths and missing
knowledge to guide future miRNA research.
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2. Epithelial to Mesenchymal Transition (EMT), Exosomes and miRNAs: A Complex Web

The epithelial to mesenchymal transition (EMT) has been proposed as one of the key mechanisms
of cancer resistance and invasiveness. Although melanomas are not epithelial tumors, they nevertheless
exhibit a spectrum of canonical EMT markers that anti-correlate with melanocyte differentiation
markers and Mitogen-activated protein kinase (MAPK) inhibitor sensitivity [3,4], strongly suggesting
that this EMT signature defines a biologically relevant—and plastic [5–7]—melanoma state.
In fact, melanoma cells express E-cadherin (CDH1) (which is fundamental for the contact with
keratinocytes) [8], and as a consequence they can encounter an EMT-like process consisting of
a decreased expression of CDH1 and increased expression of mesenchymal transcription factors
like ZEB1, SNAIL1, or TWIST1 [5,7,9,10]. It is widely demonstrated that the EMT process in
melanoma can be driven by oncogenic pathways, including MEK-ERK pathway activation [3,4],
and moreover that miRNA-mediated regulation can play a critical regulatory role. Below, we discuss
miRNAs in several different EMT-related melanoma contexts: downstream of oncogenic pathways, as
potential mediators of disease progression and drug resistance, and as components of various cell–cell
communication processes.

2.1. miRNA-Mediated EMT Regulation: Biological and Clinical Significance

E2F1 is a well-known cell cycle-regulatory transcription factor downstream of Rb that is one of
many transcription factors capable of inducing the EMT process in melanoma. Two miRNAs have
been shown to regulate the E2F1-driven EMT switch: miR-224 and miR-452 [11]. miR-224 is found
to be up-regulated in a large variety of tumors such as glioma, colorectal cancer, renal carcinoma,
and others [12–16]. miR-224 is part of a cluster of miRNAs together with miR-452 (GABRE intronic
region at chromosome Xq28), which is mostly involved in inflammation-related pathologies and is a
validated marker for bladder cancer [17]. miR-224/miR-452 expression is activated by E2F1 through
transactivation of the GABRE gene. E2F1-induced miR-224/miR-452 expression drives the EMT
process through the downregulation of TXNIP which is responsible for feedback inhibition of E2F1
itself [11].

Second, it is frequent to observe a correlation between specific miRNA expression, disease
progression, and EMT. For example, miR-205-5p progressively decreases during the successive
stages of melanomagenesis in mice [18]. The induction of miR-205-5p reduces RAP1A expression
(an EMT-related protein) and consequentially mitigates cell invasiveness, decreases proliferation,
and delays tumor onset [18]. Similarly, miR-542-3p has been described as another key regulator of
the EMT process as it is strongly downregulated in melanoma tumor cells and tissues compared to
healthy counterparts [19]. The forced re-introduction of miR-542-3p was able to inhibit EMT and
metastasis formation in a pre-clinical model of melanoma, putatively through the translation inhibition
of PIM1, a well-known promoter of tumor growth and spreading [19]. Also, miR-9 is downregulated
in metastatic melanomas compared to primary tumors. miR-9 is able to downregulate SNAIL1 and
consequently promote CDH1 expression, inhibiting melanoma cells’ ability to invade [20]. In this
mechanism, a fundamental role is played by NF-κB1 (NFκB1) which is a central mediator of the
whole process. It is interesting to notice that the same miRNA has an EMT-promoting role in breast
cancer, highlighting that the same signal can sort opposite effects in different tumoral contexts [20].
These observations suggests that miRNAs capable of modulating EMT may play a role in melanoma
progression, though this awaits further validation.

Third, an interesting association is also seen between miRNA expression profiles and EMT-driven
drug resistance. Patient derived xenograft and biopsies from patients with acquired BRAFi resistance
showed decrease levels of miR-200c and increased expression of BMI1, ZEB2, ABCG5, and other
EMT markers [21]. Mechanistically, miR-200c has been shown to mediate the inactivation of MAPK
and PIK3/AKT pathway and the downregulation of mesenchymal markers, such as N-Cadherin and
MDR1; BMI1 appears to be a critical mediator of this mechanism [22]. As a result, miR-200c has a
double controlling role in cell proliferation arrest and invasion inhibition because of its influence on
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multiple signaling pathways [21]. Consistently, miR200c has been proven to be helpful in inhibiting
EMT in other contexts, such as in experimental vaccination against melanoma [23,24]. Moreover,
miR200c is also well-established as a central EMT regulator in various other cancers [25–28].

Fourth, interaction of miRs with epigenetic programming is suggested by the finding that the
miR-211 promoter can be methylated by DNA (cytosine-5)-methyltransferase 1 (DNMT1) [29]. EMT
and epigenetic reprogramming are also closely linked, and some miRNAs are involved in such
epigenetic regulation [30]. For example, the miR-31 locus is frequently lost in melanoma samples and
this is correlated with invasion and metastasis of melanoma, in particular because of its regulatory
relationship with Enhancer of zeste homolog 2 (EZH2) [31]. EZH2 is part of the Polycomb complex 2,
which is able to mediate trimethylation of histone 3 at lysine K27 at the miR-31 promoter region [32,33].
Among the genes regulated by miR-31 are SRC, NIK, RAB27A and MET, whose products in turn,
control transcription factors ultimately regulating EZH2 expression, which is known to be a key
regulator of EMT in melanoma [34]. When miR-31 is lost because of a frequent deletion in chromosome
9p, this feed forward loop is de-regulated and an invasive phenotype is promoted [31], positing miR-31
as one of the multiple miRNAs that indirectly regulate EMT. Interestingly, EZH2 and MITF are often
reported to be regulated together by miRNAs and linked to de-differentiation, invasion and metastasis.
EZH2 and MITF, in fact, are targets of miR-101 and miR-137 that have been associated with the control
of the invasive phenotype of melanoma cell lines. Consistently, a low expression of miR-137 and
miR-101 is correlated with poor survival in stage IV melanoma patients [35,36].

2.2. Long- and Short-Range Cell-Stroma Communication: Exosomes, Integrins and Keratinocytes

An interesting axis of communication has been identified between melanoma cells and
keratinocytes of the epidermal layer: when tumor cells come in contact with keratinocytes, Notch
pathway activation impairs Microphthalmia-associated transcription factor (MITF) binding and
repression of the miR-222/221 promoter, and consequently promotes tumor invasion putatively
through GRB10 or ESR1 inhibition [37]. MITF is a transcription factor that, when active, keeps
melanocytes in a differentiated status. On the contrary, when MITF expression is lost or de-regulated
during melanoma progression, tumor cells tend to evolve towards a dedifferentiated mesenchymal
like phenotype [5,7]. In addition, miR222/221 also promotes EMT in breast cancer through a direct
regulation of ZEB2 [38]. It is interesting to notice that only when melanoma cells activate Notch
signaling the MITF/miR-222/221 axis is deregulated and causes tumor invasion, further underlining
how fundamental context and microenvironment are in regulation of tumor phenotype [37]. It has
also recently been suggested that a crucial part of the EMT process in melanoma may be mediated
by exosomes. Exosomes are vesicles generally of the dimension of 50–150 nanometers and are part
of the autocrine and paracrine communication among tumor cells and tumor microenvironment [39].
Additionally, it has been shown not only that the EMT process can be mediated by exosomes in a
paracrine fashion, but also that a particular miRNA, let7i, is involved in the process [40]. let7i is part of a
finely regulated axis with LIN28B and HMGA2, its two principal targets; it has been speculated that the
circuit comprehending LIN28B and HMGA2 can control the EMT process, even if the molecular details
of the mechanism are not clear [41–43]. MAPK pathway activation was demonstrated to be necessary
for the whole process as exosome-mediated EMT was inhibited by MAPKi administration [40].
Surprisingly, exosomes from melanoma tumor cells are also able to model and re-program stromal cells,
like fibroblasts, in order to form a promoting niche for tumor invasion. Exosomes are able to influence
fibroblasts at distance, and the core actors of reprogramming are miRNAs. miR-211 contained in
exosomes, in fact, caused an increase in collagen contraction and expression of the pro-inflammatory
genes IL1, IL6, IL8, CXCL1 and CXCL2, transforming resident fibroblasts in cancer-associated fibroblast
(CAF), which favor the growth and invasion of melanoma cells [44]. The whole process involves MAPK
signaling once again, and in particular IGFR2, which is a direct target of miR-211 [44]. Interestingly,
miR-211 had already been shown to modulate EMT in melanoma via RAB22A expression inhibition [29].
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However, the exact role of exosomes in mediating human melanoma progression remains controversial
and these observations await further in vivo validation.

Finally, integrins are another category of molecules strongly involved in the EMT
process—because of their role in cell adhesion [45]—whose expression is strongly context dependent
and directly intertwined with miRNAs. miR-214 expression, for example, is generally low or
undetectable in cell culture while it increases dramatically when tumor cells are injected in vivo where
it targets TFAP2C and ITGA3 [46]. Consistently, miR-214 was demonstrated to favor the extravasation
and metastasis process of melanoma tumor cells, also because it is apparently involved in ALCAM
and MET upregulation [47,48]. Similarly, miR125b loss of expression is associated with melanoma
progression and invasion. ITGA9 is the main target of miR-125b, which mediates a consistent regulation
of the classic EMT markers such as cadherins, VIMENTIN, and SNAIL [49]. The integrin B3, encoded
by ITGB3, is also widely known to be overexpressed in melanoma and other solid tumors, and its
expression is inhibited by let7a binding to the 3′ untranslated region (3′ UTR) of ITGB3 [50,51]. When
let7a expression is lost or decreased, ITGB3 and NRAS expression boosts and promotes the melanoma
invasive phenotype [51]. Interestingly, Integrin-α V (ITGAV) is suppressed by miR-146a, a miRNA
known to be involved in melanoma cell growth regulation and whose expression is upregulated during
melanoma progression. [52–54]. As a result, miR-146a is able to exert a paradoxical role in melanoma
tumor cells: while it inhibits tumor metastasis through ITGAV inhibition, at the same time it favors
tumor growth through the activation of the AKT/PTEN pathway [54].

Overall, miRNAs act at different levels of intra- and extra-cellular communication among the
multiple cell types present in the melanoma tumor niche, mainly as indirect regulators of EMT
transcription factors. Additionally, miRNAs appear to be interrelated with the MAPK pathway that is
predominant in melanoma and capable of inducing EMT (Figure 1). However, a major effort remains
to tease out exactly which miRNAs act proximally, distally, or even within the EMT induction program
itself. Such a knowledgebase will allow the field to predict epistatic interactions and to guide the
identification of feasible miRNA-based biomarkers and putative therapeutic interventions.
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Figure 1. MicroRNA (miRNA)-mediated regulation of epithelial to mesenchymal transition (EMT)
in melanoma. miRNAs can facilitate or impair EMT through transcriptional, post-transcriptional or
epigenetic mechanisms in a context dependent manner. Red T symbols indicate repression, green
arrows indicate up-regulation.

3. miRNAs and Regulation of the Immune Dynamics

The role of the immune system in melanoma is widely known and studied. Many effective
therapeutic approaches rely on the knowledge of the immune dynamics in melanoma growth and
development. Indeed, an efficacious immune response against the tumor is intimately associated with
achieving a durable and long lasting effect [1,2]. Recently, some evidence has been accumulated about
the immune suppressive/evasive effect of families of miRNAs.
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3.1. miRNA and Adaptive Immunity: Regulation of T Cell Activity

miR-30b/miR-30d is involved in the melanoma metastatic process, but not in the classic EMT
invasive pathways, and instead have the immune-stimulatory GalNAc transferases (GalNAc-Ts)
GALNT7 and GALNT1 as targets, among others. Specifically, miR-30d-mediated GALNT7 inhibition
stimulates the expression of the immune suppressive IL-10 cytokine which in turn triggers an immune
suppressive microenvironment as measured by an increase in the number of FoxP3+ cells [55].
The creation of an immune-privileged microenvironment favors the escape of tumor cells from immune
surveillance and facilitates invasion [56]. The fine biochemical balance of tumor milieu is, in fact, a
determining factor for melanoma development and progression. Hypoxia, for instance, can strongly
influence tumor growth, differentiation and development ([57,58] and next section). miR-210 is among
the hypoxia-induced miRNAs in melanoma and is able to impair susceptibility to T-cell lysis by tumor
cells [59]. Interestingly, miR-210 does not target major hiscompatability class I (MHC class I) molecule
genes or any other gene associated with cell recognition, and it has no effect on hypoxia transcription
factors such as HIF1α or HIF2α. Contrarily, miR-210 inhibition of PTPN1, HOXA1, and TP53I11 has
been showed to have a great influence on Cytoxic T Lymphocytes (CTL) lysis: miR-210 knock down
restores the sensitivity to CTL lysis by tumor cells, likely through the stimulation of TNF-α, IL-6,
and IFN-β.

Another player in the miR-related melanoma immune regulation process is ADAR1, which is
a member of the family of adenosine deaminases that act on RNA (ADARs) [60,61]. Suppression
of ADAR1 expression causes tumorigenesis and metastasis in melanoma through a mechanism that
involves miR-455-5p and CREB [62]. Recently, ADAR1 has been suggested to be important also in the
mechanism of recognition of tumor cells by T cells. This last phenomenon is cell-contact and, more
specifically, ICAM1 dependent. ADAR1 controls the transcriptional levels of miR-222 that, in turn,
inhibits ICAM1 expression. Consistently, miR-222 expression was detected to be inversely related to
clinical efficacy of ipilimumab in melanoma patients [63].

In the context of High-intensity focused ultrasound (HIFU) therapy in melanoma preclinical
models, it was found that among HIFU-induced-benefits there is a stimulation of immune response to
the tumor that is miR-dependent. HIFU-stimulated IFN-gamma and TNFα induction and increased
CD86 expression in tumor tissue; this was mediated by miR-134 whose direct targets include CD86 [64].
CD86 is an important co-stimulatory molecule and, when it is lacking, T lymphocyte activation is
rendered more difficult and less probable [65].

3.2. miRNAs and Immune Suppression/Evasion: Focus on Innate Immunity

In addition to adaptive immunity, the innate components of the immune system, and in particular
myeloid lineage cells, play a relevant role in regulation of melanoma dynamics [66]. More specifically,
miRNAs were found to be associated in the regulation of natural killer (NK) cells, macrophage and
myeloid-derived suppressor cell (MDSC) immune responses. For example, CSF1-ETS2 pathway
activation induces miR-21, miR-29a, miR-1423p and miR-223 in macrophages [67]. CSF1-ETS2
axis mediates tumor-promoting M2 reprogramming of macrophages and it was demonstrated that
miR-29a and miR21 target anti-angiogenic modulators and genes involved in M1 polarization (PDCD4,
SPRY1, TIMP3 by miR-21 and miR-29a targets COL4A2, SPARC and TIMP3) influencing melanoma
tumors growth and metastasis. Consistently, miR-21 and miR-29a are highly expressed in specific
suppressive myeloid populations in mouse bone marrow and patient blood during melanoma
metastatic progression [67].

NKG2D ligands (NKG2DL) of the NKG2D receptor are generally a sensitizing factors to tumor
cell killing by NK cells. Nonetheless, there is a process called “shedding” that increases the soluble
levels of NKG2DL, impairing the effective killing of tumor cells by NK cells [68,69]. ULBP2 is a
NKG2DL whose high expression in sera of patients is associated with poor prognosis. miR-34a/c and
miR-449a/miR-449c bind to 3′ UTR of ULBP2, downregulating its expression and are hypothesized to
be involved in the process of melanoma cell recognition by NK cells [70].



Int. J. Mol. Sci. 2017, 18, 2354 6 of 16

Another well-studied miRNA is miR-155. Its role in immune regulation is controversial, as it has
been associated with the promotion of immune activation, but it has also been recently conjectured to
have an immune suppressive role. miR-155 is processed from the B cell integration cluster, a noncoding
transcript primarily upregulated in both activated B and T cells, and in monocytes/macrophages
upon inflammatory stimuli [71,72]. miR-155 increases T cell immune reactivity against tumors in
lymphoreplete hosts [73] and it has been reported to aid immunity against tumors in different
contexts [74,75]. Even if miR-155 has been found associated with immune stimulatory pathways,
it is also able to exert immune suppressive functions depending on the context. In melanoma
models, miR-155-induced MDSC recruitment may be required for their suppressive function [76].
Mechanistically, miR-155 upregulation in MDSCs appears to induce immune suppressive phenotypes
through the inhibition of SOCS1, a negative regulator of the JAK-STAT pathway [76]. What is notable
is that miR-155 upregulation is favored by IL1β, and this mechanism can be a way to circumvent
immune recognition [77]. MSDC functions and biological mechanisms are far from being completely
elucidated, but it is becoming more and more evident that their role in the abrogation of immune
response is pivotal [78,79] and miRNAs seem to have a part in mediating their effects. For example,
MSDCs immune suppressive nature is exploited by miR-494. miR-494 induces CXCR4-mediated
chemotaxis and is able to influence survival of MDSCs through PTEN inhibition. Interestingly, miR494
expression in MDSCs is induced by melanoma tumor cells through TGFβ1 secretion [80].

Experimental models for ultra violet radiation (UVR)-induced melanoma have also highlighted
that UVR-induced inflammation can promote immune-evasion. Exposure to UVR is, in fact,
a broadly studied core phenomenon in melanoma development. It is widely known that UVR
has a direct mutagenic role in disease, as evidenced by the discovery of an elevated number of
transitions throughout sun-exposed melanoma genomes [81]. An interesting network existing between
UV-inhibited miRNAs and immune evasive genes has been depicted: a complex web of 14 miRNAs
has been hypothesized to be altered after UV exposure, leading to the increase of immune evasive
molecules such as CCL2, CCL8, PD1 and B7H2 [82].

Recently, it has been suggested that miRNAs can also be involved in immune checkpoint
regulation [83]. miR-28 expression, for example, has been found reduced in 30% of exhausted T-cells in
melanoma. miR-28 binds the 3′ UTR of TIM3, BTLA and PD-1. If mir-28 mimetics are administered to
exhausted T-cells the phenotype can be reverted, restoring IL-2 and TNF-α production [84]. miR-17-5p
has also been associated with the regulation of checkpoint inhibitor molecule PD-L1: BRAF inhibitor
resistant melanomas bear increased expression of PD-L1; such increase is inversely correlated with
patient plasmatic levels of mir-17-5p which has PD-L1 as a direct post-transcriptional target [85].

In conclusion, miRNAs are emerging as relevant actors in immune regulation and, more
specifically, they often appear to mediate the exploitation of a suppressive/evasive phenotype. They do
so by participating in the homeostatic processes of the immune system, at various levels; when
a perturbation of the microenvironment intervenes (hypoxia, UVR, etc.), or miRNA-expression is
compromised, the fine regulation of the physiologic processes can be lost and can give rise to an
immune-compromised tumor niche (Figure 2). Now that specific miRs have been implicated in various
adaptive and innate immune settings, a comprehensive understanding of their coordination is needed
to deconvolute likely biomarkers and therapeutic intervention points.
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4. miRNAs, Hypoxia and Melanoma Metabolism

Tumor cells’ ability to survive in their microenvironment is dictated by their ability to adapt to
various circumstances and change their survival capacities. One of the most typical needs is to adapt
to hypoxia, a very frequent phenomenon in tumor settings [57,58].

The two most studied hypoxia-induced transcription factors are HIF1α and HIF2α for whom
miR-210 is a direct transcriptional target [86]. miR-210 plays a regulatory role in inhibiting cell cycle
arrest in hypoxic conditions, inhibiting MNT, a known MYC antagonist, and favoring the cell growth
of tumor cells even in absence of oxygen [87]. As described above, miR-210 also impairs CTL lysis
of melanoma cells, decreasing tumor cells’ sensitivity to this process. This is in turn is triggered
by hypoxia linking the immune escape mechanism to oxygen deprivation [59]. Even in normoxic
environment, miR-210 has been found to be upregulated together with miR-224, miR-452, and miR-218
in a HIF1α-dependent manner, causing an increase in BNIP3 and ATF3, response genes that react to
oxygen deprivation [88]. Consistently, miR-210 was found to be increased in the plasma of metastatic
melanoma patients [89].

Contrariwise, miR-33a/b [90] and miR-18b have been reported to have HIF1α as direct target;
their expression causes cell growth inhibition and is generally correlated with a better prognosis.
miR-18b expression, in particular, causes cell cycle arrest through glycolysis inhibition [91].

An additional actor in the hypoxia mechanism is miR-211, known to be involved in melanoma
cell proliferation and invasion [92]. miR211 is able to sensitize melanoma cells to hypoxic conditions,
inhibiting HIF1α induction under oxygen deprivation. miR-211 acts as a metabolic switch increasing
oxygen consumption and downregulating PDK4 expression. Melanoma cells often bear a very low
expression of miR-211, which leads to increased PDK4 expression and consequent decreased Pyruvate
dehydrogenase (PDH) activity, which in turn downregulates the tricarboxylic acid (TCA) cycle and
oxidative phosphorylation by mitochondria. The whole phenomenon favors tumor cell survival in low
O2 hostile environments [92].

It important to notice also that in the presence of O2, tumor cells often switch towards a
glycolytic metabolism (aerobic glycolysis) [93,94]. This phenomenon is known as the “Warburg
effect” and one of the advantages for the tumor cell is likely to be the faster accumulation of
biomass despite the inefficiency of the metabolic process. miRNAs can move the balance towards
a mainly glycolytic metabolism, inhibiting oxidative phosphorylation (OxPhos), or vice versa.
For example, in melanoma cell lines, let7a inhibits some key anabolic enzymes such as G6PD, inosine
monophosphate dehydrogenase (IMPDH2), Fatty Acid Synthase (FASN), stearoyl-CoA desaturase
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(SCD), and 4-phosphopantetheinyl transferase (AASDHPPT), leading to OxPhos and consequent
oxidative stress induction [95].

Autophagy is an additional mechanisms of survival that can be enacted by both healthy and
tumor cells during stressful conditions such as starvation or hypoxia [96,97]. This complex cellular
process involves key proteins such as BECLIN-1, ATG5 and UV Radiation Resistance Associated
(UVRAG) which are direct targets of miR-216b [98]. Autophagy upregulation in tumor cells can lead to
increased survival of cancerous cells and ultimately drug resistance [99]. BRAF inhibition in melanoma,
for example, has been shown to downregulate mir-216b expression, promoting autophagy. Remarkably,
the co-administration of miR-216 with a BRAF inhibitor was able to increase drug efficacy in vivo,
inhibiting autophagy mediated drug resistance [98]. A restricted supply of oxygen and nutrients can
have multiple effects, not only on cancer cells, but also on stromal and immune components of the
microenvironment. An interesting phenomenon, for example, involves the metabolic T cells linked to
the EZH2 transcription factor. We previously discussed the relevance of EZH2 in the EMT process,
but this transcription factor exerts a pleiotropic effect also on T cell phenotypes. More specifically,
EZH2 suppresses Notch repressors (NUMB and FBXW7) via trimethylation of histone H3 at Lys27,
stimulates T cell polyfunctional cytokine expression, and promotes their survival via Bcl-2 signaling.
Intriguingly, in the context of glucose restriction, tumors are able to impair T cell functionality in
ovarian cancer and melanoma models trough miR101 and miR26a (EZH2 repressors) [100].

Another typical way to react to the absence of oxygen and nutrients in the tumor is the promotion
of neo-angiogenesis [101,102]. miR-1908, miR-199a-5p, and miR-199a-3p have been identified as key
regulator of the process in melanoma. These miRNAs target apolipoprotein E (ApoE) and the heat
shock factor DNAJA4, which promotes ApoE production. ApoE suppresses invasion and endothelial
recruitment specifically by engaging melanoma cell LRP1 and endothelial cell LRP8 receptors,
respectively [103]. It has been shown that miR-1908, miR-199a-5p, and miR-199a-3p are robust
prognostic and therapeutic targets in melanoma, in reason of this finely regulated mechanism [103].

Comprehensively, various families of miRNAs are involved in the metabolic regulation of tumor
cells under stressing conditions. Hypoxia or nutrient deprivation can be crucial triggers for tumor
cell metabolic change, which implies a profound modification and evolution of tumor cells and a
challenge to their ability to adapt (Figure 3). There is some evidence showing that hypoxia can even
impact global miRNA expression [86,104,105], but additional research is needed to further substantiate
this claim.

It is interesting to notice that miRNAs can often tip the balance towards a glycolytic or an oxidative
metabolism, effectively determining the fate of tumor cells survival and/or the ability of the immune
system to effectively eradicate the lesion.
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5. Conclusions

Much of the miRNAs biology is still obscure, but there is increasing evidence that they
participate in many crucial cancer phenomena. Our structured analysis of miRNAs mediating the
tumor-stromal interaction in melanoma suggests that miRNA actions both closely within the tumor
microenvironment and at a distance can provide fine-tuning of cancer phenotypes. For example,
exosomes are capable of transporting miRNAs at great distances, eliciting EMT-related or other
signaling to create tumor-friendly niches. Close-range interactions can be exemplified with, for
example, miRNA-mediated modification of M2 macrophages or MDSCs to regulate T cell behavior
and immune checkpoints and thus the immune-suppressive/evasive status of the tumor. Another
close-range interaction is typified by miRNAs that often mediate the metabolic switch in melanoma,
regulating the expression of some of the key enzymes of the glycolytic or oxidative phosphorylation
chains to create cancer-friendly metabolic states. This bird’s eye view of melanoma microenvironmental
miRNA interactions contextualizes the various translational strengths of miRNAs, to wit: miRNAs
can be (1) sampled in relevant microenvironmental milieu such as blood and lymph and purified
from exosomes and similar structures; (2) easily incorporated into gene expression signatures through
pan-RNA platforms such as RNA deep sequencing (RNAseq); (3) detected as cell-free circulating
RNAs; and 4) assayed starting from low amounts of total RNA because of their increased stability
compared to mRNAs in both plasma and formalin-fixed samples [106].

In order to maximize the translational value of miRNAs, however, many challenges remain
to be overcome, both technical and biological. For example, miRNAs have multiple targets and
their activity strongly relies on the genetic and microenvironmental background of the tissue/tumor.
Moreover, there is increasing evidence that miRNAs can act in non-canonical ways which require
further characterization [107]: (1) they can be transcribed from exonic regions [108], (2) they can
act directly in the nucleus as pre-miRNA or even be imported back into the nucleus as mature
miRNAs from the cytoplasm [109–111], and (3) they can bind mRNAs not only at the 3′ UTR but
also at the 5′ UTR, or inside the coding sequence, to exert various effects on transcription [112,113].
In addition, still very little is known about possible mechanisms of resistance to miRNA inhibition.
Nevertheless, interference with specific miRNAs have shown some potential therapeutic promise in a
few clinical settings, [114,115], while their status as clinical biomarkers continues to be increasingly
validated [116–119].

In conclusion, our review lays out a cadre of specific miRNAs with potential functional
and prognostic values in melanoma through their interactions with the tumor microenvironment.
Such miRNAs have previously been understudied in comparison to those with tumor cell-intrinsic
action, and thus, shining a spotlight on such miRNAs with potential clinical relevance is hoped to
aid the field in sorting out potential miRNA targets and biomarkers. Particularly with the rise of
both targeted and immune checkpoint therapies to the front stage in melanoma, the roles of EMT,
regulatory immune cells, and metabolic signatures in drug sensitivity and resistance [120–122], and
the driving miRNAs behind them have become all the more clinically relevant. We envision miRNAs
as a complementary field to therapies that target mRNAs, DNA, and proteins, with the potential for
helping to hijack the ability of miRNAs to fine-tune tumor cell survival.
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