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Abstract: Leaf senescence, the final stage of leaf development, is a complex and highly regulated
process that involves a series of coordinated actions at the cellular, tissue, organ, and organism levels
under the control of a highly regulated genetic program. In the last decade, the use of mutants with
different levels of leaf senescence phenotypes has led to the cloning and functional characterizations
of a few genes, which has greatly improved the understanding of genetic mechanisms underlying
leaf senescence. In this review, we summarize the recent achievements in the genetic mechanisms in
rice leaf senescence.
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1. Introduction

Leaf senescence is the final stage of leaf development. The green leaves gradually turn to yellow,
orange, red, and eventually brown and die. This process is accompanied by a series of changes
at the cellular, tissue, organ, and organism levels [1]. As a form of programmed cell death (PCD),
leaf senescence is primarily an age-dependent process; however, it can also be triggered prematurely by
internal and external factors [2]. By integrating environmental and endogenous factors, leaf senescence
provides the optimal fitness for plant development [1].

Leaf senescence is an active rather than passive process to death, and the main functions of leaf
senescence are to (a) recycle and re-use the nutrients from senescing leaves into newly developing
organs or offspring and (b) enhance the chance of plant survival to adapt to biotic/abiotic stresses [3–5].
For grain crops, leaf senescence affects grain yield and quality such as nutrient loss and incomplete
filling, etc. [6]. Thus, studying the molecular mechanisms of leaf senescence will not only facilitate
the understanding of this fundamental biological process, but may also provide a way to regulate leaf
senescence for improving the agricultural traits of crop plants [1].

To date, many excellent reviews have described the molecular processes involved in leaf
senescence in plants [5–8]. The molecular and genetic understanding of leaf senescence has been mainly
gained through the use of the model plant Arabidoposis, which is a Dicot species. Genes controlling leaf
senescence are termed as senescence-associated genes (SAGs), and many senescence-associated genes
(SAGs) have been identified in plants [9,10]. Our knowledge on the molecular mechanisms underlying
leaf senescence in monocots including the major cereals crops such as rice, maize, wheat, barley, and
sorghum is still limited. However, with the development of molecular biology and genomics, much
inspirational progress has been made in elucidating the molecular mechanisms of leaf senescence in
rice. The leaf senescence database currently contains more than 130 SAGs experimentally identified in
rice [11]. The objective of this review is to briefly summarize recent progress in this field.
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2. Chloroplast Degradation Involved in Leaf Senescence

During leaf senescence, chloroplasts are the first organelles to be dismantled, which can induce
the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion
radicals (O2

−), hydroxyl radicals (OH·), and singlet oxygen (1O2). As signaling triggers, ROS influence
the expression of nuclear genes, thereby causing oxidative stress and damage to the cell [12–15].
The chlorophyll (Chl) degradation pathways involved in leaf senescence have been well established in
recent years [16]. Based on the current literature, several SAGs are reported to relate to chlorophyll
degradation in rice by using mutations that exhibit a stay-green phenotype in the process of leaf
senescence (Table 1). During the degradation of chlorophyll, the first step is the conversion from
Chl b to Chl a. NON-YELLOW COLORING 1 (NYC1), a chlorophyll b reductase for catalyzing the
degradation chlorophyll b, encodes a chloroplast-localized short-chain dehydrogenase/reductase
(SDR) and plays an important role in the degradation of the light-harvesting complex II (LHC II)
and the thylakoid membrane (Figure 1) [17,18]. NYC1-LIKE (NOL), a thylakoid membrane location
protein, is functionally similar to NYC1. NOL and NYC1 may form a complex to function as a
chlorophyll b reductase in rice (Figure 1) [18]. Next, Chl a degradation may start with the de-chelation
of Mg2+ by a magnesium-chelating substance which then removes phytol by pheophytinase (PPH) [19].
In rice, NON-YELLOW COLORING 3 (NYC3), which encodes a plastid-localizing α/β hydrolase-fold
family protein with an esterase/lipase motif, may function in removing phytol residues from
pheophytin a [20]. The STAY GREEN RICE (SGR) gene encodes a senescence-inducible chloroplast
stay-green protein 1. The SGR mutant showed chlorophyll retention, stable chlorophyll-protein
complexes, and thylakoid membrane structures, but lost its photosynthetic competence during leaf
senescence. Further research showed that SGR may be involved in regulating or participating in the
activity of pheophorbide a oxygenase (PAO), thereby influencing the degradation of chlorophyll and
pigment-protein complexes (Figure 1) [21]. NYC4 (ortholog of Arabidopsis THF1) is also involved in the
degradation of chlorophyll–protein complexes during leaf senescence, but its function is distinct from
SGR. NYC4 is mainly involved in the degradation of chlorophyll-protein complexes, rather than in
the regulation of chlorophyll breakdown [22]. As the downstream of SGR, PAO, and red chlorophyll
catabolite reductase (RCCR) are the keys in catalyzing chlorophyll degradation. Knockdown of
OsPAO and OsRCCR1 increased the production of ROS, resulting in leaf death and lesion mimic spots
(Figure 1) [16].Int. J. Mol. Sci. 2017, 18, 2686  3 of 11 

 

 
Figure 1. Chlorophyll degradation pathway involved in rice during leaf senescence. RCC: red 
chlorophyll catabolite; FCC: fluorescent chlorophyll catabolite. 
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OsPAO LOC_Os03g05310 Pheophorbide a oxygenase early unknown － [16] 
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NYC1 LOC_Os01g12710 Short-chain dehydrogenase/reductase delayed unknown + [17] 
NOL LOC_Os03g45194 Short-chain dehydrogenase/reductase delayed unknown + [18] 

NYC3 LOC_Os06g24730 α/β hydrolase-fold family protein delayed unknown + [20] 
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NYC4 LOC_Os07g37250 THYLAKOID FORMATION 1 delayed unknown + [22] 
RLS1 LOC_Os02g10900 NB-ARC domain containing protein early early − [23] 
Osh69 LOC_Os08g38710 Alkaline α-galactosidase unknown unknown + [24] 

OsMYC2 LOC_Os10g42430 JA-inducible basic helix-loop-helix 
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OsCOI1b LOC_Os05g37690 F-box domain and LRR containing 
protein 
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OsTSD2 LOC_Os02g51860 Pectin methyltransferase delayed unknown + [28] 
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OsGATA12 LOC_Os03g61570 GATA-like zinc finger transcription 
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OsWRKY42 LOC_Os02g26430 Nuclear transcriptional repressor unknown early + [32] 
OsHox33 LOC_Os12g41860 Class III homeodomain-leucine zipper 

gene family 
early unknown − [33] 

ONAC106 LOC_Os01g66120 NAC domain transcription factor delayed unknown + [34] 
OsNAP/PS1 LOC_Os03g21060 No apical meristem delayed early + [35] 

SUB1A * No Submergence tolerance regulator unknown delayed − [36] 
OsDOS LOC_Os01g09620 Nuclear-localized CCCH-type zinc 

finger protein 
early delayed − [37] 

OsTZF1 LOC_Os05g10670 CCCH-tandem zinc finger protein early delayed − [38] 
LTS1/OsNaPRT1 LOC_Os03g62110 Nicotinate phosphoribosyltransferase early unknown − [39] 

OsSRT1 LOC_Os04g20270 NAD+-dependent histone deacetylases early delayed − [40] 
OsFd-GOGAT LOC_Os07g46460 Ferredoxin-dependent glutamate 

synthase 
early unknown − [41] 

Osl2 LOC_Os04g52450 γ-aminobutyric acid (GABA):pyruvate 
transaminase 

unknown unknown + [42] 

DEL1 LOC_Os10g31910 Pectate lyase precursor early unknown − [43] 
SPL29 LOC_Os08g10600 UDP-N-acetylglucosamine 

pyrophosphorylase 1 
early unknown − [44] 

ES1/TUTOU1 LOC_Os01g11040 SCAR-like protein 2 early unknown − [45] 
OsSWEET5 LOC_Os05g51090 Sugar transporter family unknown early + [46] 

Figure 1. Chlorophyll degradation pathway involved in rice during leaf senescence. RCC: red chlorophyll
catabolite; FCC: fluorescent chlorophyll catabolite.

The chloroplast degradation mutants above-mentioned all showed a stay-green phenotype;
however, Jiao et al. [23] identified a mutant rapid leaf senescence 1 (rls1), which displayed a rapid leaf
senescence during chloroplast degradation. RLS1 encodes an NB-containing protein with an ARM
domain at the carboxyl terminus. The NB domain consists of three motifs and is found in many plant
disease resistance proteins [23].
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Galactolipids digalactosyl diacylglycerol (DGDG) and monogalactosyl diacylglycerol (MGDG)
are the most abundant lipids of thylakoid membranes [24]. At the early stage of leaf senescence, the
thylakoid membrane gradually breaks down, and the photosynthetic apparatus disassembles [25].
Osh69, a family of glycosyl hydrolases, encodes alkaline α-galactosidase. The Osh69 protein can cleave
the terminal α-galactosidic bond of the galactolipid DGDG [24]. In addition, Osh69 upregulation can
be induced by many factors including darkness, hormones, and stress [24].

3. Phytohormones and Transcription Factors Involved in Rice Leaf Senescence

Phytohormones play vital roles in plant development including leaf senescence (Table 1) [1].

Table 1. Leaf senescence related genes in rice.

Gene Accession
Number Functional Annotation Mutant

Phenotype
Overexpression

Phenotype
Regulatory

Role ∆ Ref.

OsPAO LOC_Os03g05310 Pheophorbide a oxygenase early unknown − [16]

OsRCCR1 LOC_Os10g25030 Red chlorophyll catabolite reductase early unknown − [16]

NYC1 LOC_Os01g12710 Short-chain
dehydrogenase/reductase delayed unknown + [17]

NOL LOC_Os03g45194 Short-chain
dehydrogenase/reductase delayed unknown + [18]

NYC3 LOC_Os06g24730 α/β hydrolase-fold family protein delayed unknown + [20]

SGR LOC_Os09g36200 Senescence-inducible chloroplast
stay-green protein 1 delayed early + [21]

NYC4 LOC_Os07g37250 THYLAKOID FORMATION 1 delayed unknown + [22]

RLS1 LOC_Os02g10900 NB-ARC domain containing protein early early − [23]

Osh69 LOC_Os08g38710 Alkaline α-galactosidase unknown unknown + [24]

OsMYC2 LOC_Os10g42430 JA-inducible basic helix-loop-helix
transcription factor unknown early + [26]

OsCOI1b LOC_Os05g37690 F-box domain and LRR
containing protein delayed unknown + [27]

OsPME1 LOC_Os01g57854 Pectinesterase delayed early + [28]

OsTSD2 LOC_Os02g51860 Pectin methyltransferase delayed unknown + [28]

OsFBK12 LOC_Os03g07530 F-box protein containing a kelch
repeat motif early delayed − [29]

OsPLS1 LOC_Os06g45120 Vacuolar H+-ATPase subunit A1 early unknown − [30]

OsGATA12 LOC_Os03g61570 GATA-like zinc finger
transcription factor unknown delayed − [31]

OsWRKY42 LOC_Os02g26430 Nuclear transcriptional repressor unknown early + [32]

OsHox33 LOC_Os12g41860 Class III homeodomain-leucine
zipper gene family early unknown − [33]

ONAC106 LOC_Os01g66120 NAC domain transcription factor delayed unknown + [34]

OsNAP/PS1 LOC_Os03g21060 No apical meristem delayed early + [35]

SUB1A * No Submergence tolerance regulator unknown delayed − [36]

OsDOS LOC_Os01g09620 Nuclear-localized CCCH-type zinc
finger protein early delayed − [37]

OsTZF1 LOC_Os05g10670 CCCH-tandem zinc finger protein early delayed − [38]

LTS1/OsNaPRT1 LOC_Os03g62110 Nicotinate
phosphoribosyltransferase early unknown − [39]

OsSRT1 LOC_Os04g20270 NAD+-dependent
histone deacetylases early delayed − [40]

OsFd-GOGAT LOC_Os07g46460 Ferredoxin-dependent
glutamate synthase early unknown − [41]

Osl2 LOC_Os04g52450 γ-aminobutyric acid
(GABA):pyruvate transaminase unknown unknown + [42]

DEL1 LOC_Os10g31910 Pectate lyase precursor early unknown − [43]
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Table 1. Cont.

Gene Accession
Number Functional Annotation Mutant

Phenotype
Overexpression

Phenotype
Regulatory

Role ∆ Ref.

SPL29 LOC_Os08g10600 UDP-N-acetylglucosamine
pyrophosphorylase 1 early unknown − [44]

ES1/TUTOU1 LOC_Os01g11040 SCAR-like protein 2 early unknown − [45]

OsSWEET5 LOC_Os05g51090 Sugar transporter family unknown early + [46]

OsGDCH LOC_Os10g37180 Glycine decarboxylase complex
H subunit early Unknown − [47]

∆ + positive regulation; − negative regulation; * absent in Nipponbare and therefore without an LOC number.
NB-ARC: nucleotide-binding, Apaf-1, R proteins, and Ced-4; JA: jasmonate; LRR: Leucine-rich repeat; GATA: GATA
motif; NAC: NAM/ATAF1/ATAFC2; CCCH: C-x8-C-x5-C-x3-H; UDP: uridine diphosphate; SCAR: suppressor of
cAMP receptor.

In rice, the plant hormone methyl jasmonate (MeJA) and its precursor jasmonate (JA) were the
first identified senescence promoting substances [26]. CORONATINE INSENSITIVE 1b (OsCOI1b)
encodes a homolog of the Arabidopsis jasmonate (JA) receptor COI1. The mutation of OsCOI1b showed
methyl jasmonate (MeJA) insensitivity and delayed leaf senescence [27]. By using a metabolite-based
genome-wide association study (mGWAS), Fang et al. [28] identified two major quantitative genes
OsPME1 (encoding pectin esterase) and OsTSD2 (encoding pectin methyltransferase) that affected
the content of JA. Pectin methyl esterfication is the major source of MeOH. Subsequent investigations
using mutants and transgenic lines revealed an MeOH–jasmonates cascade and its epigenetic that
regulates leaf senescence [28]. F-box proteins are components of E3 ubiquitin ligase with functions in
a wide variety of biological processes [48]. OsFBK12, encoding an F-box protein containing a kelch
repeat motif, was involved in 26S proteasome-mediated degradation by interacting with Oryza sativa
S-PHASEKINASE-ASSOCIATED PROTEIN1-LIKE PROTEIN (OSK) and targeted the substrate
S-ADENOSYL-L-METHIONINE SYNTHETASE1 (SAMS1), triggering changes in ethylene (ETH)
levels for the regulation of leaf senescence [29]. ORYZA SATIVA PREMATURE LEAF SENESCENCE
(OsPLS1) encoding a vacuolar H+-ATPase subunit A1, plays a negative regulatory role in the onset
of rice leaf senescence. The ospls1 mutant showed higher salicylic acid (SA) levels, increased ROS
accumulation, and upregulation of WRKY genes [30]. In addition, Yamada et al. [49] found that
strigolactone (SL)-deficient mutants in rice, such as d10, d17, and d27, showed accelerated dark-induced
leaf senescence, implying that SL is involved in leaf senescence.

Several senescence-related transcription factors (TFs) are important for regulating leaf senescence
(Table 1), for example, the zinc finger transcription factor OsGATA12, whose overexpression causes
delayed leaf senescence, the reduction of leaf and tiller number, and improved rice yield. Further study
showed that OsGATA12 may be involved in decreased chlorophyll degradation [31]. Overexpression
of OsWRKY42 showed an accumulation of ROS and promoted leaf senescence by repressing
OsMT1d expression via binding its W-box promoter in rice [32]. The class III homeodomain-leucine
zipper (HD-Zip III) gene family plays important roles in plant growth and development [50].
Knockdown of an HD-Zip III member, OsHox33, accelerates leaf senescence in rice [33]. ONAC106,
a senescence-associated NACs (NAM/ATAF1/ATAF2/CUC2) transcription factor, negatively
regulates leaf senescence [34].

Many studies have clearly shown that transcription factors and phytohormones interactively
regulate the leaf senescence process (Table 1). NACs are plant-specific transcription factors and
some NACs have been confirmed to play important roles in regulating leaf senescence [51–54].
In rice, OsNAP/PS1 encodes a plant-specific NAC transcriptional activator and is induced specifically
by abscisic acid (ABA). Overexpression of OsNAP/PS1 significantly promoted premature leaf
senescence, whereas knockdown of OsNAP/PS1 produced an obvious delay of leaf senescence [35].
The transcription factor SUBMERGENCE1A (SUB1A), a key regulator of submergence in rice,
significantly delays dark-induced senescence by the restriction of MeJA responsiveness and ETH
production [36]. A nuclear-localized zinc finger/CCCH transcription factor protein OsDOS (delay of
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the onset of senescence) was found to take parts of the JA pathway. Overexpression of OsDOS showed
delayed leaf senescence, whereas knockdown caused accelerated age-dependent leaf senescence,
indicating it was a negative regulator for leaf senescence [37]. In contrast, the rice OsTZF1, which
encodes a zinc finger CCCH type family protein, is induced by many factors including ABA, JA, SA,
drought, high-salt, and H2O2. Overexpression of OsTZF1 showed delayed seed germination, growth
retardation, delayed leaf senescence, improved tolerance to high-salt and drought stresses, and caused
opposite phenotypes [38]. OsMYC2, a JA-inducible basic helix-loop-helix transcriptional factor, is a
positive regulator of leaf senescence by the direct regulation of some SAGs in rice. Overexpression
of OsMYC2 significantly promoted leaf senescence and a reduction in chlorophyll content, and was
negatively regulated by OsJAZ8 (a JA ZIM-domain protein), involved in the JA signaling pathway in
rice [26]. In addition, a recent study showed that miR319-controlled TCP transcription factors were
involved in regulating JA content and leaf senescence [55].

Aside from the transcription factors mentioned above, based on microarray data, Liu et al. (2016)
concluded that the W-box and G-box cis-elements may function as positive regulators affecting rice
leaf senescence (Table 1) [56].

4. Energy Metabolism Pathway Regulated Rice Leaf Senescence

Nicotinamide adenine dinucleotide (NAD) and its derivative nicotinamide adenine dinucleo-tide
phosphate (NADP) are important energy metabolite pathways involved in redox reactions in living
organisms [57,58]. It was shown that NAD depletion could prevent cell death in vivo to maintain the
balance of the internal environment [59]. In Arabidopsis, there are two NADP biosynthetic pathways:
de novo and the salvage pathway [60,61]. In the salvage pathway, SIR2, an NAD+-dependent histone
deacetylase, plays a crucial role in converting NAD to nicotinamide (Nam) [39,40]. In rice, there are
two SIR2 homologous genes, OsSRT1 (OsSIRT701) and OsSRT2 (OsSIRT702) [62]. RNA interference
of OsSRT1 results in an increase of histone H3K9 acetylation and a decrease of H3K9 dimethylation,
H2O2 accumulation, DNA fragmentation, programmed cell death, and mimicking plant lesions, and
its overexpression enhances the tolerance of redox [40]. Recent research indicated that OsSRT1 could
regulate carbon metabolic flux through the repression of glycolysis by the deacetylation of both histone
and glycolytic glyceraldehyde-3-phosphatedehydrogenase (GAPDH) (Figure 2) [63].
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Figure 2. NAD synthesis and catabolic pathways involved in rice leaf senescence. Asp: aspartate,
QA: quinolinic acid, Na: nicotinic acid, Nam: nicotinamide, PRPP: 5-phosphoribosyl-1-pyrophosphate,
NaMN: nicotinate mononucleotide, NAAD: nicotinic acid adenine dinucleotide, NAD: nicotinamide
adenine dinucleotide.
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Downstream of NAD, Nam from nicotinate mononucleotide (NaMN) was catalyzed by
two enzymes: nicotinamidase and nicotinate phosphoribosyltransferase (NaPRTase) [59,61]. In rice,
a mutation of NaPRTase, LTS1, revealed increased concentrations of nicotinate and nicotinamide as
well as decreased NAD content. Further research indicated that the decreased NAD repressed the
expression of OsSRTs and would result in a lower deacetylation ability of OsSRTs, hence activating
senescence-related genes by increasing the acetylation of histone H3K9, leading to leaf senescence in
rice (Figure 2) [39].

5. Nitrogen Remobilization Involved in Rice Leaf Senescence

Nitrogen remobilization increases nitrogen use efficiency and plays an important role in
sustainable agriculture. Nitrogen molecules have a major presence in proteins and nucleic acids, and
are transported in the form of amino acids (particularly glutamine and asparagine) from the senescence
leaves to new parts [64]. The metabolism of glutamate and γ-aminobutyric acid (GABA) plays an
important role in nitrogen circulation [65]. During glutamate metabolism, glutamine synthetase
catalyzes ammonia and 2-oxoglutarate into glutamine, whereas glutamate synthase (or glutamine
2-oxoglutarate aminotransferase, GOGAT) catalyzes the reversible conversion of glutamine into
glutamate [65,66]. In higher plants, GOGAT has two isoforms: Fd-GOGAT and NADH-GOGAT.
Fd-GOGAT is predominantly located in the chloroplasts of photosynthetic tissues, and NADH-GOGAT
is present in non-photosynthesizing cells [66]. In rice, the gogat1 mutant exhibited chlorosis under
natural conditions and less extent premature leaf senescence under low light conditions. Meanwhile,
the gogat1 mutant showed a reduced seed setting rate and increased grain protein and amino acid
content. This result showed that OsFd-GOGAT plays an important role in nitrogen remobilization
during leaf senescence [41].

The transferring glutamate to succinate via GABA is called the GABA metabolism or GABA
shunt [65]. As a temporary storage of nitrogen, enhanced GABA can inhibit the synthesis of glutamine
during senescence [67]. GABA:pyruvate-transaminase catalyzes GABA into succinic semialdehyde
(SSA). SSA is then catalyzed into succinate by succinic semialdehyde dehydrogenase (SSADH) and goes
into a tricarboxylic acid (TCA) cycle [65]. In rice, Osl2, encoding γ-aminobutyric acid (GABA):pyruvate
transaminase, is upregulated and plays a key role in nitrogen metabolism during leaf senescence [42,65].

6. Other Genes Involved in Leaf Senescence

Recent research has shown that cell-wall-related genes are involved in the regulation of leaf
senescence. The DWARF AND EARLY-SENESCENCE 1 (DEL1) gene encodes a pectate lyase precursor.
Loss of function of DEL1 decreased total pectate lyase (PEL) activity, increased the degree of
methylesterified homogalacturonan (HG), and perturbed cell wall composition and structure, resulting
in triggering ROS activity, thereby leading to leaf senescence [43].

UDP-N-acetylglucosamine pyrophosphorylase (UAP) is widely distributed in living
organisms [44]. Wang et al. [44] cloned the SPOTTED LEAF 29 (SPL29) gene, which encodes UAP1
in rice. The spl29 mutant displayed many changes involved in chloroplast degradation, chlorophyll
loss and photosystem II decline, enhanced resistance to bacterial blight inoculation, increased
malondialdehyde content and ROS, upregulated SAGs and defence response genes, downregulated
photosynthesis-related genes, etc. [44].

Actin filament plays an important role in many endomembrane processes such as vacuole
formation, endocytosis of plasma membrane (PL), and vesicle transport from the Golgi
complex, etc. [68–72]. The ARP2/3 complex as a key regulator of actin filament nucleation can
be inactive by itself and active by the SCAR/wave complex in plants [73]. The SCAR/WAVE complex
is highly conserved, and deficiency in the SCAR/WAVE complex in plants often leads to morphological
changes [45]. In rice, EARLY SENESCENCE 1 (ES1) encodes a SCAR-LIKE PROTEIN2, which plays an
important role in leaf senescence. The es1 mutant shows a short and irregular arrangement of actin



Int. J. Mol. Sci. 2017, 18, 2686 7 of 12

filaments. The changes to the actin filaments increase the water loss of leaves, thereby leading to leaf
senescence [45].

The SWEET family plays important roles in plant growth and development. In rice, overexpression
of OsSWEET5, a novel sugar transporter family, caused growth retardation and precocious senescence
at the seedling stage [46].

Glycine decarboxylase complex (GDC) is a multi-protein complex, which plays a major role in the
photorespiration of plants [74]. Under ambient CO2, knockdown of OsGDCH caused leaf senescence
due to chlorophyll loss, protein degradation, chloroplast breakdown, and autophagy, as well as ROS
accumulation [47].

7. Perspectives

Leaf senescence is a very complex phenomenon. It is an evolutionarily acquired developmental
strategy to adapt to internal and external factors [2]. Leaves are the main locations of plant photosynthesis,
most of the carbon in mature rice grains originates from leaf photosynthesis [75]. Timely leaf senescence
can make plants accumulate enough nutrients for assimilation, while excessive leaf senescence can
lead to decreased plant photosynthetic capacity and assimilation capacity, thereby reducing crop yield
and quality. In addition, adequate remobilization of nutrients increases the usage efficiency of crops,
thereby reducing the use of fertilizers [8].

Rice (Oryza sativa L.) is an important staple food that feeds more than half of the world’s population,
mainly in Asia [76]. Achieving increases in rice grain-yield is a permanent topic of concern for
over-increasing populations [77]. Delaying leaf senescence, particularly of the flag leaf, would help to
increase grain yield [3]. The stay-green traits have been used in breeding to enhance stress resistance
and increase grain yield, although the relationships between leaf senescence and crop yield and quality
have not yet been well characterized [78]. Systematically elucidating the molecular mechanisms of
leaf senescence will provide breeders with new tools/options for further improving many important
agronomic traits in future.

As summarized in this review, significant progress has been made in the cloning and functional
characterization of leaf SAGs in rice in the last few decades. However, the discussion in this review
only focuses on the role of single genes in the onset of senescence. The main reason for this is based on
the study progress of leaf senescence in rice. Therefore, a deeper understanding of leaf senescence will
provide more insights into the improvement of crop productivity.
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Abbreviations

ABA abscisic acid
Chl chlorophyll
ETH ethylene
DGDG digalactosyl diacylglycerol
GAPDH glyceraldehyde-3-phosphatedehydrogenase
HG homogalacturonan
H2O2 hydrogen peroxide
JA jasmonate
LHC II light-havesting complex II
MeJA methyl jasmonate
MGDG monogalactosyl diacylglycerol
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NAD nicotinamide adenine dinucleotide
NADP nicotinamide adenine dinucleotide phosphate
Nam nicotinamide
NaMN nicotinate mononucleotide
1O2 singlet oxygen
O2

− superoxide anion radical
OH hydroxyl radical
PCD programmed cell death
PEL pectate lyase
PL plasma membrane
PPH pheophytinase
ROS reactive oxygen species
SA salicylic acid
SAGs senescence-associated genes
SL strigolactone
SSA succinic semialdehyde
SSADH succinic semialdehyde dehydrogenase
TCA tricarboxylic acid
TFs transcription factors
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