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Abstract: Lipopolysaccharide induced TNFα factor (LITAF) is an important transcription factor
responsible for regulation of tumor necrosis factor α. In this study, a novel litaf gene (designated
as Malitaf ) was identified and characterized from blunt snout bream, Megalobrama amblycephala.
The full-length cDNA of Malitaf was of 956 bp, encoding a polypeptide of 161 amino acids with
high similarity to other known LITAFs. A phylogenetic tree also showed that Malitaf significantly
clustered with those of other teleost, indicating that Malitaf was a new member of fish LITAF family.
The putative maLITAF protein possessed a highly conserved LITAF domain with two CXXC motifs.
The mRNA transcripts of Malitaf were detected in all examined tissues of healthy M. amblycephala,
including kidney, head kidney, muscle, liver, spleen, gill, and heart, and with the highest expression
in immune organs: spleen and head kidney. The expression level of Malitaf in spleen was rapidly
up-regulated and peaked (1.29-fold, p < 0.05) at 2 h after lipopolysaccharide (LPS) stimulation.
Followed the stimulation of Malitaf, Matnfα transcriptional level was also transiently induced to a
high level (51.74-fold, p < 0.001) at 4 h after LPS stimulation. Taken together, we have identified a
putative fish LITAF ortholog, which was a constitutive and inducible immune response gene involved
in M. amblycephala innate immunity during the course of a pathogenic infection.

Keywords: Megalobrama amblycephala; lipopolysaccharide induced TNFα factor; lipopolysaccharide
stimulation; innate immune

1. Introduction

Blunt snout bream (Megalobrama amblycephala) is one of the major economically important species
in freshwater polyculture fish aquaculture in China [1]. It has been widely cultured because of its
herbivorous habit, faster growth rate, and delicate flesh quality, as well as increasing demand in China
during the last few decades [2,3]. In 2013, its production has reached 0.73 million tons, ranking seventh
in Chinese freshwater fish production [4]. Associated with intensive farming, however, diseases
caused by infectious bacteria, mainly Aeromonas hydrophila, frequently occur [5]. The infectious disease
outbreak with quick spreading has led to serious economic losses in M. amblycephala culture industry.
Innate immunity plays crucial roles in defense against bacterial infections in fish [6]. The innate
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immune response to a bacterial pathogen is characterized by the immediate release of pro-inflammatory
cytokines, which act as key mediators of the immune system to eliminate the pathogen [7,8]. Finding
more molecular components involved in M. amblycephala’s innate immunity, therefore, will facilitate
our understandings in the largely unveiled complex immunity in fish.

Among the pro-inflammatory cytokines, tumor necrosis factor α (TNFα) has been confirmed
to significantly trigger host immunity, increase phagocytic activity, and provoke the induction of
inflammatory cytokines [9,10]. TNFα is one of the most well-known pleiotropic cytokines and is
secreted by various cell types and can be regulated by different transcription factors, such as nuclear
factor κB (NF-κB) [11], nuclear factor of activated T-cells (NF-AT) [12], activator protein 1 (AP-1) [13],
and lipopolysaccharide induced TNFα factor (LITAF) [14]. Lipopolysaccharide induced TNFα factor
(LITAF) is an important transcription factor mediating transcription of various inflammatory cytokines,
especially TNFα [15]. It has been demonstrated that LITAF can directly interact with the signal
transducer and activator of transcription (STAT) 6B and translocates into the nucleus where it binds
to the promoter regions of TNFα and other cytokines to modulate their transcription [16]. LITAF
was initially identified and characterized in the human macrophage cell line, THP-1 [17]. Since
then, a large amount of LITAF homologues have been obtained in several aquatic animals including
mollusk [18–23], arthropod [24,25], sea cucumber (Apostichopus japonicus) [26], and amphioxus
(Branchiostoma belcheri) [27], suggesting a conserved function in innate immunity. Although the
litaf gene has been characterized in several fish species, the knowledge of the LITAF orthologs in most
teleosts is still limited [28–31].

Therefore, in the present study, we identified a novel litaf homolog cDNA (designated as Malitaf )
in M. amblycephala, analyzed its phylogenetic relationship, and characterized its expression pattern in
response to LPS stimulation. Considering that litaf is a vital regulator for tnfα expression, we therefore
subsequently investigated the expression profile of tnfα (Matnfα) in M. amblycephala. To our knowledge,
this is the first study in the LPS-induced response of Malitaf. The achieved results will provide a better
understanding of the immune defense mechanisms and further improve the healthy management
efficiency in this species.

2. Results

2.1. Isolation and Characterization of Malitaf

The complete Malitaf cDNA sequence was 956 bp, which was composed of an 88-bp length
5′-untranslated region (5′-UTR), a 486-bp open reading frame encoding a protein comprising 161 amino
acids, and a 358-bp 3′-UTR followed by a poly (A) tail (Figure 1). One putative polyadenylation signal
(AATAAA) was recognized at the nucleotide position 906, which was 21 nucleotides upstream of the
poly (A) tail. Furthermore, there were two cytokine RNA instability motifs (ATTTA) at the 3′-UTR of
Malitaf, which were also presented in the litaf gene of Paralichthys olivaceus [28]. This cDNA sequence
has been deposited in the GenBank database under accession number KX421367.

The deduced protein from Malitaf gene (MaLITAF) possessed with an estimated molecular mass
of 17.2 kDa and an isoelectric point of 6.00. The protein analysis by Basic Local Alignment Search
Tool (BLAST) showed that MaLITAF protein shared the highest identity (91.3%) with that of grass
carp (Ctenopharyngodon idellus). Multiple alignment of amino acid sequences of LITAFs from different
species revealed that the C-terminal region of the MaLITAF showed much higher homology than
that of other regions (Figure 2). Furthermore, similar to other LITAF homologues, the maLITAF
protein possessed the typical LITAF domain (91–160 aa) that contained an N-terminal CXXC “knuckle”
followed by a long hydrophobic region, and a C-terminal (H)XCXXC knuckle (Figure 2). The CXXC
and HXCXXC motifs are highly conserved among invertebrates, mammals, and fish.

A phylogenetic tree was constructed by the neighbor-joining method based on entire amino acid
sequences of LITAFs from M. amblycephala and other species. As shown in Figure 3, all LITAFs were
split into five categories, including mammalian, avian, amphibian, teleost, and invertebrate LITAFs.
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Obviously, Malitaf was located into the fish LITAF group which was distinct from the mammalian
cluster. As expected, Malitaf showed the closest relationship to C. idellus. The results indicated that
Malitaf represents a new member of fish LITAF family.
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Figure 2. Multiple sequence alignment of LITAFs. The identical, highly conserved, and less conserved
amino acid residues are indicated by “*”, “:”, and “.”, respectively. The gaps in the alignment are
indicated by “-”. The LITAF domain was labeled above the sequences, and two motifs were indicated
with rectangles.
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Figure 3. The neighbor-joining phylogenetic tree of MaLITAF protein and other known homologues
from GenBank registered. The numbers at the nodes represent bootstrap values for 1000 replications and
the bar (0.1) indicates genetic distance. The sequences of LITAFs from other species were downloaded
from GenBank: C. idella (ACT68335), Danio rerio (NP_001002184), Ictalurus punctatus (NP_001187935),
Oncorhynchus mykiss (NP_001158593), Osmerus mordax (ACO09164), Salmo salar (ACI67257), Gallus gallus
(NP_989598), Xenopus tropicalis (NP_988970), Mus musculus (NP_064364), Homo sapiens (NP_004853), Bos
taurus (NP_001039717), Cricetulus griseus (XP_003496739), Ovis aries (XP_004020821), Rattus norvegicus
(NP_001099205), Solen grandis (AEW43450), Ruditapes philippinarum (ADX31291), Crassostrea gigas
(ABO70331), Cipangopaludina chinensis (AEX08893), Haliotis discus discus (ADI72430), Chlamys farreri
(ABI79459), Pinctada fucata (ACN70008), and A. japonicus (AIB51692).

2.2. Tissues Distribution of Malitaf

To further understand the potential function of this new gene, the presence of Malitaf mRNA
transcript in different tissues from healthy M. amblycephala was examined by quantitative real-time PCR
(qRT-PCR) analysis, which can accurately quantify transcripts at a low copy number [32]. Expression
was normalized to the tissue with the lowest observed mRNA level-kidney (set as 1). As shown
in Figure 4, the mRNA transcript of Malitaf was ubiquitously detected in a wide range of tissues
examined from healthy fish. However, the relative gene expression of Malitaf to kidney was the
highest in spleen (15.21-fold, p < 0.001), which was also observed in spleen of rock bream (Oplegnathus
fasciatus) [30], followed by head kidney (12.45-fold). The transcriptional level of Malitaf decreased
gradually in liver (11.12-fold), heart (4.9-fold), gill (2.29-fold), and muscle (1.75-fold).
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2.3. Temporal Expression of Malitaf and Matnfα after LPS Stimulation

To preliminarily unravel the potential role of Malitaf in innate immunity, we characterized the
temporal expression pattern of Malitaf in spleen in response to stimulation with LPS. As shown
in Figure 5A, the mRNA expression of Malitaf was rapidly up-regulated after LPS stimulation.
The expression reached a peak level at 2 h post-stimulation, which was about 1.29-fold higher than
control group (p < 0.05). Subsequently, it was found that its expression decreased gradually to the
control level as time elapsed. However, a significant decrease of Malitaf expression was observed at
12 h after LPS stimulation. Considering that litaf is an important regulator for tnfα expression, we
therefore tested the expression profile of Matnfα following the elevated expression of Malitaf under
LPS stimulations at different time points. As shown in Figure 5B, the transcription of Matnf maintained
the control level at 2 h post LPS stimulation. However, a sharp increase of Matnfα mRNA to peak
level was detected at 4 h post LPS stimulation (51.74-fold, p < 0.001), and then dropped to the original
level at 8 h post LPS stimulation. Interestingly, the transcription of Matnfα surged again to a higher
level at 12 and 24 h post LPS stimulation (3.66- and 1.71-fold, respectively) compared with that of the
control group.
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3. Discussion

Cytokines are the key regulators of innate immunity against pathogens [33]. Until now, litaf gene
had been cloned and characterized from many organisms including both vertebrate and invertebrate
animals, which suggested a conserved function in innate immunity. In mammals, the litaf has been



Int. J. Mol. Sci. 2017, 18, 233 7 of 12

reported as an important transcript factor for the regulation of TNFα and transcription of various
inflammatory cytokines in mammals [34]. However, the information on the systemic reaction of fish
litaf s during bacterial infection was rather rare. Therefore, we cloned the novel litaf gene from blunt
snout bream and examined their expression profiles to understand its potential role in innate immunity.

The LITAF domain, which is a key feature for the LITAF family, exists in viruses, fungi, plants,
and Metazoa, [35]. In the present study, the amino acid alignment indicated a highly conserved
LITAF domain with N-terminal CXXC and C-terminal HXCXXC knuckles that formed a compact
Zn2+-binding structure. These characteristics are a key feature of intracellular Zn2+-binding domains
that the N-terminal region binds to the intracellular molecule and the hydrophobic region does not
span the membrane [36]. These observations indicated that the LITAF domain of Malitaf appears
to be capable of responding similarly to the mammalian LITAF. In a phylogenetic tree of selected
vertebrate and invertebrate LITAF amino acid sequences, the MaLITAF was obviously separated from
the mammalian cluster and formed one distinct cluster with other teleost LITAFs, suggesting that it is
a fish-specific LITAF.

We performed qRT-PCR to monitor the transcriptional level of Malitaf in various tissues from the
healthy fish. The results showed the constitutive distribution of Malitaf, indicating that its important
role in immune defense against invaders and its immune responses could be occurring in the whole
fish body. In teleost fish, spleen and head kidney could be considered as the important central immune
organs synthesizing proteins involved in fish immune defense [37]. Therefore, the higher expression
level of Malitaf in spleen and head kidney also particularly suggested its crucial role in immune
defense against potential pathogens. In other teleost fish, the constitutive expression of litaf mRNA
has been reported in a wide range of tissues, but with varying expression levels. For example, the
relative gene expression of litaf1 of rock bream was the highest in spleen. In Japanese flounder, the
litaf mRNA was detected in all examined tissues with the greatest amount in gill, followed by blood,
skin, gonad, hepatopancreas, head kidney, heart, brain, trunk kidney, and spleen in a descending
order [28]. The grouper litaf gene was also widely expressed in different tissues analyzed, including
liver, spleen, kidney, head kidney, intestine, skin, gill, brain, muscle, heart, and stomach [29]. However,
the relatively low expression levels were detected in muscle and liver. In grass carp, the litaf gene
was found to express in various tissues but with a high expression level in gill [31]. The inconsistent
constitutive expression of litaf gene among different fish species may be a reflection of physiological
differences among these species, or even environmental influences. Furthermore, the differences in litaf
gene expression are thought to be possibly due to different expressing cells and functions of litaf gene.
Certainly, further studies on functional differentiation of litaf gene between fish and other species may
yield more novel information on the immune regulatory response of fish.

The Malitaf expression was significantly induced in spleen by LPS, a compound that mimics
a Gram-negative bacteria infection, which was similar to the previous reports on human THP-1
cells [17], mouse [38], chicken macrophages [39], Pacific oyster [22], and scallop hemocytes [23].
The results strongly suggested its significantly responsive to LPS and involvement in innate immune
response against Gram-negative bacteria. After 12 h of LPS stimulation, the Malitaf mRNA has
significantly decreased, which might possibly prevent the excess production of cytokines, and then
the innate immune response to pathogens could be efficiently controlled [33]. The expression pattern
of Malitaf appeared to be similar to Japanese flounder litaf with respect to the expression profile in
response to LPS stimulation [28]. TNFα effects can be both beneficial and detrimental to the host [40].
TNFα must be tightly regulated because over-production can be lethal to the host as in septic shock
syndrome. The mouse litaf gene induces activation of tnfα gene expression by itself [38]. Inhibiting
human litaf expression in a human monocytic cell line leads to a reduction in the tnfα transcript [15].
Therefore, in the present study, we tested the expression profile of Matnfα following the elevated
expression of Malitaf under LPS stimulation. The Matnfα was also induced and rapidly peaked at
4 h, not at 2 h, post LPS administration indicating that Malitaf may significantly contribute to the
up-regulated Matnfα expression in the spleen. In addition, the associated up-regulation of Malitaf and
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Matnfα in spleen during the early phase of LPS stimulation process indicated that Malitaf may be an
essential regulator involved in M. amblycephala innate immune response, probably through regulation
of Matnfα expression.

4. Materials and Methods

4.1. Fish, LPS Stimulation, and RNA Isolation

Adult M. amblycephala (weight: 405 ± 12.4 g) were obtained from a fish farm (Changsha, China).
Fish were maintained with a flow-through water supply at room temperature. After acclimating for
one week, the normal fish were used for the stimulation experiments. LPS isolated from Escherichia
coli (L2880, Sigma, St. Louis, MO, USA) was suspended into sterilized phosphate buffered saline
(PBS), and then was intraperitoneally injected into fish at a dose of 0.1 mg/100 g fish. Afterwards,
fish were anesthetized with MS-222 (3-aminobenzoic acid ethyl ester; Sigma). Various tissues from
three healthy individuals, including kidney, head kidney, muscle, liver, spleen, gill, and heart, were
collected. Similarly, the spleen from three individuals was collected at different time points (0, 2, 4, 6,
8, 12, and 24 h) after stimulation. Total RNA from above tissues was extracted using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA), and quantified based on the absorbance at 260 nm. The integrity
of RNA was checked by agarose gel electrophoresis. The animal experiments were approved by the
Ethics Committee of School of Life Sciences of Central South University with the following reference
number (SLSEC0028) in 10 March 2015. The tissues collected at 0 h were from fish injected with the
same volume of PBS.

4.2. Cloning and Characterization of Malitaf

To obtain the partial cDNA of Malitaf, the degenerate primers were designed based on an
alignment of its counterparts from other teleost fish (Table 1). Gene-specific primers were used
to amplify each end according to the manufacturer’s instructions. All resulting PCR products
were purified and then cloned into the pMD18-T vector (TaKaRa, Dalian, China) and sequenced
bi-directionally at Sangon (Shanghai, China). The open reading frame (ORF) of Malitaf cDNA was
detected using the ORF finder (available on: http://www.ncbi.nlm.nih.gov/project/gorf). Protein
domains were predicted by the Simple Modular Architecture Research Tool (SMART) [41]. Multiple
sequence alignments were created using the Clustal W program [42]. Phylogenetic and molecular
evolutionary analyses were constructed by the Neighbor-Joining method in Molecular Evolutionary
Genetics Analysis (MEGA) software (version 7.01, Tokyo Metropolitan University, Tokyo, Japan), and
support for each node was bootstrapped with 1000 replicates [43].

4.3. Spatial and Temporal Expression Analysis of Malitaf and Matnfα

The quantitative real-time PCR (qRT-PCR) was performed to investigate Malitaf mRNA expression
levels in different tissues of healthy M. amblycephala. In addition, the mRNA expression pattern of
Malitaf and Matnfα was determined in spleen after LPS stimulation by qRT-PCR. The β-actin and
18S rRNA was selected as an internal control to verify the successful reverse transcription and to
calibrate the cDNA template in spatial and temporal expression analysis, respectively. The qRT-PCR
was implemented using an ABI 7500 Real-time PCR system (Applied Biosystems, Foster, CA, USA)
in a total volume of 20 µL, including 10 µL SYBR® Premix Ex Taq™ II (2×) (TaKaRa, Dalian, China),
0.4 µL ROX Reference Dye II (50×), 0.4 µL of each primer (10 µmol·L−1), 2 µL 1:5 diluted cDNA, and
6.8 µL of PCR-grade water. The thermal profile was 95 ◦C for 30 s followed by 40 cycles of 95 ◦C for
5 s, 60 ◦C for 34 s, and 72 ◦C for 30 s. Melting curve analysis of the amplified products was performed
at the end of each PCR to confirm that a single PCR product was generated. The 2−∆∆Ct method was
used to analyze the expression levels of Malitaf and Matnfα genes [32]. The data obtained from three
independent biological replicates were subjected to statistical analysis and the values represented the
n-fold difference relative to the references (kidney and 0 h).

http://www.ncbi.nlm.nih.gov/project/gorf
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Table 1. Sequences of primers used in this study.

Primer Sequence(5′–3′) Comment

LITAF-F AARCGCTTTGYTTRTCGCTC Gene cloning
LITAF-R AGGTGYAAMTTGTTTCCCCG

3′-Adaptor primer GCTGTCAACGATACGCTACGTAACGGCATGACAGTG(T)18

3′RACE
3′-Primer GCTGTCAACGATACGCTACGTAACG

3′-Nested primer CGCTACGTAACGGCATGACAGTG
LITAF-3′-GSP ACAGCAACACTTGTGGGACACCCGCCT

LITAF-3′-NGSP AGCCTGGTCTGGTGTTCGGGACTGTT

AAP GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG

5′RACE
AUAP GGCCACGCGTCGACTAGTAC

LITAF-5′-GSP CTGTGCCTCCATATTCAACACAAG
LITAF-5′-NGSP GTTGGGATCAAACCCAATGTACC

LITAF-qF CACCAGTCCTGTTGTATCGG

Real-time PCR

LITAF-qR CGCACAAGAGAGCCAGACTA
TNFα-qF CTGCTGTCTGCTTCACGCTC
TNFα-qR TAAATGGATGGCTGCCTTGG
β-actin-qF CGGACAGGTCATCACCATTG
β-actin-qR CGCAAGACTCCATACCCAAGA

18S rRNA-qF CAAGACGGACGAGAGCGAAA
18S rRNA-qR GCGGGTTGGCATAGTTTACG

4.4. Statistical Analysis

All data of qRT-PCR were presented as means ± SD and checked for homogeneity of variances
and normality. Statistical analysis was performed using GraphPad Prism 5.0 (GraphPad Software Inc.,
San Diego, CA, USA). Significant differences among samples were determined by one-way analysis
of variance (one-way ANOVA) followed by a Tukey’s multiple comparison test. Differences were
considered significant at p < 0.05 and extremely significant at p < 0.01.

5. Conclusions

We identified and characterized a new member of LITAF family, Malitaf, in M. amblycephala.
We confirmed that Malitaf mRNA constitutively expresses in all examined tissues and displays a
higher expression level in spleen and head kidney than in other tissues. We also demonstrated that
Malitaf expression could be induced by bacterial endotoxin LPS stimulation. Furthermore, we showed
that the expression of Matnfα, a pleiotropic cytokine regulated by Malitaf, was up-regulated associated
with the enhanced expression of Malitaf in vivo. Our results significantly suggested that Malitaf may
play a key role in blunt snout bream innate immunity. Further studies on the functions of Malitaf
will contribute to a better understanding of the fish immune system and may help elucidate fish
immunoregulatory pathways.
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