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Abstract: Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX), is an
enzymatic process essential for activating vitamin K-dependent proteins (VKDP) with important
functions in various biological processes. Mutations in the encoding GGCX gene are associated with
multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1)
is best known. Other patients have skin, eye, heart or bone manifestations. As genotype—phenotype
correlations were never described, literature was systematically reviewed in search of patients with
at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients.
Though this number was too low for statistically valid correlations—a frequent problem in orphan
diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain
in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the
principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe
in patients with both mutations in the same protein domain, though this could not be linked to a
more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be
dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that
there indeed may be genotype—phenotype correlations for GGCX-related phenotypes, which can
guide patient counseling and management.

Keywords: gamma-carboxylation; GGCX; cutis laxa; pseudoxanthoma elasticum; VKCFDI;
elastic fibers

1. Introduction

The gamma-glutamyl carboxylase enzyme (GGCX) catalyzes the conversion of specific glutamate
(Glu) residues to gamma-carboxyglutamate (Gla) residues, a process called gamma-carboxylation [1].
This posttranslational modification process uses vitamin K (VK) as an essential cofactor and is part
of the so-called VK cycle (Figure 1) [2]. Gamma-carboxylation is essential in the activation and
proper functioning of multiple VK-dependent proteins (VKDP), the most well-known of which
are involved in blood clotting, including coagulation factors (FII, FVII, FIX and FX) and natural
anti-clotting agents (protein C, protein S (ProS; OMIM*176880) and protein Z). Moreover, GGCX
catalyzes gamma-carboxylation of other VKDP, involved in various biological processes such as
inflammation (e.g., ProS, and gla-rich protein (GRP)), bone formation (osteocalcin (OC; OMIM*112260)),
cell proliferation (growth arrest-specific 6 (Gas6; OMIM*600441)) and soft tissue mineralization (matrix
gla protein (MGP; OMIM*154870)) [3,4]. Finally, several VKDP have a currently unknown function
(proline-rich gla proteins (PRGP), and transmembrane gla proteins (TMG)) [1,2,5-7].
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Figure 1. The Vitamin K cycle. Glu-residues are gamma-carboxylated by GGCX to Gla-residues,
an enzymatic process using VKHj,, O, and CO; as cofactors. During this process, VKH; is oxidized to
VK epoxide, which is then reduced to VK and in a second reduction step to VKH, by VKORC1. Then,
VKH,; can be reused, the reason for which this process is called the VK cycle. Gamma-carboxylation is
only performed in VKDP and is essential for their activation and downstream functioning in multiple
biological processes, such as blood clotting, bone formation, inflammation and cell proliferation.
Warfarin inhibits the VK cycle by preventing VK reduction. C: carbon; GGCX: gamma-glutamyl
carboxylase; Gla: gamma-carboxyglutamate; Glu: glutamate; H: hydrogen; O: oxygen; R: attached
hydrogen or a hydrocarbon side chain of any length; VK: vitamin K (quinone); VKDP: VK-dependent
proteins; VKHj: vitamin K hydroquinone; VKORC1: vitamin K epoxide reductase complex, subunit 1.

The GGCX enzyme is encoded by the GGCX gene, located on the reverse strand of chromosome
2p11.2 (chromosomal position in assembly GRCh38.p7: 85,544,723-85,561,509). The gene is not
considered to be polymorphic, as, according to the gnomAD database (combining data from the ExAc
and 1000 genomes databases), of the 409 exonic variants (missense and loss-of-function) that have been
identified in the GGCX gene, only two variants, i.e., 15699664 and rs6173310, have an allele frequency
of >0.0001 (Table S1) [8].

GGCX has 10 transcripts, of which the longest is NM000821.6 (ENST00000233838.8; Uniprot
P38435), comprising 15 exons and 7569 nucleotides. The protein encoded by this transcript is a
94 kDa, 758 amino acid (AA) transmembrane protein, expressed ubiquitously throughout the body and
localized on the lipid membrane of the endoplasmic reticulum (ER). The N-terminal part of GGCX is
localized in the cytoplasm, followed by 5 transmembrane domains (TMD), and the C-terminal portion
is localized in the ER lumen (Figure 2). To date, the crystal structure of the GGCX enzyme is still
incompletely resolved [9].

GGCX has multiple highly conserved domains (Figure 2), including the horizontally transferred
transmembrane domain (HTTM—AA 56-315), spanning the first four TMDs, the function of which
is currently unclear in humans [10]. Interestingly, in multiple species such as eukaryotes, bacteria
and archae, the HTTM-domain seems to play an important role in VK-dependent carboxylation [11].
Within the TMD, the proline-residue at position 378 in TMDS5 is proposed to play an important role in
the correct orientation of GGCX; replacing that proline by a leucine leads to an important decrease in
the formation of a disulfide bond in the protein, which is an important posttranslational modification
step (see below) [12]. However, apart from the disulfide bond other factors must play a role in
GGCX orientation, as even with a removal of the disulfide bond and a complete cleavage of GGCX
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between TMD4 and TMD5, the GGCX protein domains remain close together. Tie et al. suggested
that an interaction between TMD2 and TMD5 could play an important role in this process [12]. Other
important functional domains in the GGCX enzyme are the propeptide binding site (most recently
proposed to be localized at AA 491-507), suggested as the primary location of interaction between
GGCX and its substrates, and the glutamate binding site (AA 393—404), which interacts with the
Glu-containing regions of VKDP, a necessary step for gamma-carboxylation. Interestingly, L394 and
W399, which are localized in this predicted glutamate binding region, seem to play a role in polypeptide
binding by GGCX, hereby stimulating the connection between the propeptide binding sites and the
glutamate binding sites, thus facilitating gamma-carboxylation [9,13-15]. GGCX is further predicted
to contain an RmIC (deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase; EC5.1.3.13)-like jelly
roll fold, comprising a double-stranded beta-helix jelly roll fold as is identified in RmIC, from AA 526
until 607 [11]. The function of this domain is however currently unclear.

Finally, GGCX also undergoes posttranslational modifications, such as glycosylation of
4 asparagine residues (AA 459, 550, 605 and 627) and the formation of a disulfide bond (between
cysteine-residue 99 and 450), which stabilizes the protein leading to a more efficient enzymatic
function [16-18]. GGCX further has 2 autocarboxylating Gla-domains, suggested to be localized at
AA 625-647 and 729-758 in the C-terminal region of the enzyme in the ER lumen. Possibly, these
Gla-domains have a yet undiscovered role in other processes than VKDP gamma-carboxylation [19].
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Figure 2. Predicted gamma-glutamyl carboxylase (GGCX) topology. Adapted from [9]. This figure gives
an overview of the predicted localization of known or predicted GGCX domains on a GGCX topology
model. Green circles depict amino acid residues which undergo glycosylation. Connect: hydrophobic
domains important for interaction with vitamin K. ER: endoplasmic reticulum; HTTM: horizontally
transferred transmembrane domain; Gla: gamma-carboxyglutamate; Glu-BS: glutamate binding site;
PP-BS: propeptide binding site; RmIC: deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase
(EC5.1.3.13).
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In 1998, GGCX mutations were first linked to human disease by Brenner et al. in four patients with
a combined deficiency of all VK-dependent blood coagulation factors (factor II, VII, IX, X and ProS and
protein C) due to a homozygous missense mutation in the GGCX gene [13]. The disease was coined
VK-dependent clotting factor deficiency-1 (VKCFD1, OMIM#277450), an autosomal recessive disorder,
characterized by a mild to severe bleeding tendency and a moderate predisposition to thrombotic
events [13,20]. VKCFD1 was shown to be associated with skeletal (midfacial hypoplasia, reduced
bone mass, chondrodysplasia punctata) or cardiac abnormalities (patent ductus arteriosus Botalli,
septal closure defects) in some patients [13,21-30]. Next to VKCFD1, a second autosomal recessive
coagulation factor deficiency exists, VKCFD2 (OMIM#607473), caused by VKORC1 (vitamin K epoxide
reductase complex, subunit 1; OMIM*608547) mutations and is also characterized by a deficiency of all
VK-dependent clotting factors. In contrast to VKCFD], this general deficiency can usually be reversed
completely using low doses of VK (ca. 5-10 mg/week) [31,32]. Skeletal abnormalities (in particular
osteoporosis) have been described in VKCFD2 patients [33], but no cardiac involvement has been
identified yet.

More recently, biallelic GGCX mutations were shown to cause a phenotype characterized by
not only VKCFD1 but also elastic fiber (EF) mineralization and fragmentation, leading to loss
of skin elasticity and loosening of the skin with a cutis laxa appearance. In the original seven
patients, the phenotype was demonstrated to be similar to but more severe than the skin features in
pseudoxanthoma elasticum (PXE; OMIM#264800), an autosomal recessive ectopic mineralization
disorder. The disease was therefore called PXE-like disorder with combined coagulation factor
deficiency (OMIM#610842). Classic PXE is caused by EF mineralization in soft tissues due to
biallelic ABCC6 (ATP-binding cassette, subfamily C, member 6; OMIM*603234) mutations and features
yellowish skin papules and plaques in flexural areas (although in more severe cases an increase
in skin laxity may occur), ophthalmological symptoms (asymptomatic peau d’orange and angioid
streaks and in more advanced stages subretinal neovascularization, bleeding and scarring leading
to legal blindness when untreated) and cardiovascular symptoms (peripheral artery disease, cardiac
diastolic dysfunction) (Figure 3A) [34,35]. Strikingly, at first the seven patients with the PXE-like
syndrome had typical dermal EF calcifications leading to yellowish papules but later progressively
developed excessive skin folds, not only confined to flexural areas (Figure 3B) [36]. In contrast to PXE,
cardiovascular symptoms were absent and the retinopathy much milder, with mainly asymptomatic
lesions (peau d’orange and angioid streaks) [36]. Since the original report, additional patients have
been identified with a similar phenotype [21,37].

In 2011, we described a patient with a phenotype intermediate to PXE and the PXE-like syndrome
(Figure 3C). This boy had developed excessive skin folds, typical for the PXE-like syndrome, around the
age of 10, which at first were confined to the abdomen, but later progressively affected the axillae, upper
arms and elbows. Prior to the development of the skin folds, the skin had appeared to have an inflamed,
reddish aspect, but the skin aspect was not suggestive for an acquired post-inflammatory form of
cutis laxa [38]. Upon clinical inspection, a very mild yellowish reticular rash, typical for PXE, was
identified in the frontal neck. Further clinical workup included fundoscopic imaging, which revealed
peau d’orange and angioid streaks, abdominal ultrasound showing renal microcalcifications, and
normal coagulation tests (normal activated partial thromboplastin time (aPTT) and prothrombin time
(PT)). Moreover, histological, biochemical and immunohistochemical characteristics were intermediate
to PXE and the PXE-like syndrome. This patient was identified with compound heterozygous ABCC6
mutations as well as a functional single nucleotide polymorphism (SNP) in the GGCX gene [39].

In 2014, Kariminejad et al. described 14 patients from two unrelated families with a PXE-like
skin phenotype (cutis laxa) and a pigmentary retinopathy, caused by biallelic mutations in the GGCX
gene (Figure 3D). These patients all developed progressive vision loss with night blindness in early
childhood and yellowish skin papules on the back, the lateral sides of the neck, the chest and the
flexural body areas between the ages of 11 and 25 as well as an unusually loose skin on the trunk,
which gradually worsened and in later stages also affected the upper limbs. Ophthalmological workup,
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including an electroretinogram, identified non-detectable rod responses or rod responses with reduced
amplitude and prolonged implicit time, compatible with a pigmentary retinopathy, but failed to show
any PXE-related eye symptoms (such as angioid streaks, peau d’orange or subretinal hemorrhage).
A similar phenotype was seen in all affected patients, varying only in time of onset of the eye and skin
symptoms. An echocardiography showed no abnormalities. Interestingly, none of these patients had
VKCFD1 [40].

Figure 3. Skin and eye symptoms of the known gamma-glutamyl carboxylase (GGCX)-related disease
entities. In each panel, two photos depict different aspects of the respective skin phenotypes (left
and middle), the right image shows a fundus typical for the disease entity: (A) PXE; (B) PXE-like
disorder with combined coagulation factor deficiency; (C) patient with PXE/PXE-like overlap; and
(D) PXE-like syndrome with pigmentary retinopathy. *: yellowish skin papules, °: skin plaques;
arrowheads: angioid streaks; spherical diagram: peau d’orange; +: skin loosening and excessive
skin folds; arrow: reticular rash; PXE: pseudoxanthoma elasticum; PXE-like: PXE-like disorder with
combined coagulation factor deficiency.

Next to the presence of phenotypes caused by mutations in the GGCX gene, the modifying effect of
GGCX variants on the response to warfarin treatment (amongst others on dose and time in therapeutic
range) has been suggested repeatedly in the past and has been extensively studied. However, the
results of these association studies are ambiguous, seem to be population-dependent and cannot be
seen separately from variants in other genes, relevant for warfarin metabolism. Hence, the effects of
these GGCX variants fall beyond the scope of this systematic review [41-44].

The variability of the GGCX-related phenotypes, as illustrated above and in Table 1, is striking
while their correlation with the underlying genotypes has to date remained unclear. Therefore,
we explored the possibility of genotype-phenotype correlations between GGCX mutations and the
different GGCX-related diseases.



Int. J. Mol. Sci. 2017, 18, 240

Table 1. Overview of the phenotypic features of the known gamma-glutamyl carboxylase (GGCX)-related disease entities.

6 of 34

Disease Coagu!a't ron Bone Cardiac Skin Ocular Other
Deficit
If present: midfacial
VKCED1 yes hypoplasia; reduced bqne If present: PDA; SCD no no no
mass; chondrodysplasia; (most frequent)
punctate (most frequent)
yellowish skin papules; skin
PXE-like yes no no elasticity loss; skin loosening peau d’orange; angioid streaks no
(resembling cutis laxa)
. reddish rash; excessive skin , . .. abdominal
PXE/PXE-like no no no folds; mild yellowish rash peau d’orange; angioid streaks calcifications
yellowish skin papules; loss of pigmentary retinopathy: rod
. R . responses non-detectable or
PXE + PR no no no skin elasticity; skin loosening . no
reduced amplitude; prolonged

(resembling cutis laxa)

implicit time

PDA: persistent ductus arteriosus Botalli; PR: pigmentary retinopathy; PXE: pseudoxanthoma elasticum; PXE-like: PXE-like disorder with combined coagulation factor deficiency; SCD:
septal closure defects; VKCFD1: vitamin K-dependent clotting factor deficiency-1.
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2. Results

2.1. Article Selection

Fifty-three articles were identified through a systematic Pubmed search of which 37 did not meet
the inclusion criteria: 25 papers described basic research (GGCX, gamma-carboxylation and VKDP
mechanisms of action; GGCX protein structure and function determination); five articles described
in vivo GGCX knockout models; three papers mentioned no relevant phenotypes; and four assessed
genotype-induced variability on warfarin dosing. Further, three papers, all meeting the inclusion
criteria, were manually added through reference scanning of the included papers from the Pubmed
search. In total 19 papers were included for this systematic review. The selection process followed the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) and is
shown in Figure 4 [45]. An overview of all reviewed publications can be found in Table S2.

i "
' N\ . N
Pubmed Manually added articles
= “GGCX OR gamma-glutamyl carboxylase OR
8 Vitamin K-dependent carboxylase OR y-
s carboxylase AND mutation *
o \ December 14th 2016 AN Citation scanning Y,
[
a l Inclusion criteria l
- * Allarticletypes
S 53 articles |- english, French, Dutch 3 articles
) + P1:21GGCXmutation
g l \' P2:2 1relevant symptom Y, l
2 4 = = g,
7 Screening (no duplicates to be removed)
[~ 4
9 n= 56 records
\ /

N—

—_ s \
[t p . 37 records excluded
= Full text articles assessed for eligibility * Basicresearch (25)

@ * Invivo GGCX KO model (5)
g n=56 * Norelevant phenotype (3)
\ / s

L = \_ Genotype and warfarin dosing (4) Y,
o
w 8 . |
S Articles included in systematic review
w] n=19
P4 \ J

—

Figure 4. Overview of the pipeline used for the systematic search of the literature. GGCX: gamma-glutamyl
carboxylase, KO: knockout, n: number, P1: first patient criterium, P2: second patient criterium.

2.2. Patient Data Extraction

Fifty individual patients with at least one GGCX mutation and minimally one relevant
GGCX-related phenotype were withheld from the included papers. Among these, three patients
with one GGCX mutation and mono- or biallelic ABCC6 mutations were excluded from the analysis
because in these patients the dermatological phenotype cannot be analyzed unambiguously, as both
ABCC6 and GGCX mutations may lead to skin symptoms belonging to the same spectrum [37,46]. Thus,
47 patients were withheld for the analysis (P1-P47; Table 2), encompassing 28 individual probands
(P1, P5, P7, P8, P10, P12-P23, P25-P30, P36, P41, P44, P46, P47). Nine patients were described twice
in literature (patients 10 and 11 by Goldsmith et al. and Li et al.; patient 13 by Rost et al. in 2004 and
2006; patients 16-20 by Vanakker et al. in 2007 and Watzka et al. in 2014; patient 21 by Rost et al. and
Watzka et al.) [21,23,36,47-49]. Patient characteristics (age, sex, ethnicity and age of first symptoms) of
the 47 patients included in the analysis can be found in Table 2.
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Table 2. Patient characteristics. This table gives an overview of all the patients included in this systematic review. For each patient the GGCX mutations are mentioned
(cDNA and protein annotation) as well as the protein domain in which the affected amino acid is situated. Further, for each patient, the age, nationality/ethnicity and
sex are provided.

Allele 1 Allele 2 Nationalitv/
Original " ationality,
Id . Age . . Sex References
Id c.Annotation p-Annotation Protel‘n c.Annotation p-Annotation Protein Domain 8 Ethnicity
Domain
1 no. 20 c1181T>G p.(L394R) Glu-BS c1181T>G p.(L394R) Glu-BS NP/14 Arabic F Br‘;l;ggr[f;]al"
2 no. 21 c1181T>G p.(L394R) Glu-BS c1181T>G p.(L394R) Glu-BS 5m/7 Arabic F Br;’;ggr[le;]al"
3 no. 22 c1181T>G p.(L394R) Glu-BS c1181T>G p.(L394R) Glu-BS NP/30 Arabic M Br;’gggr[f;]al"
4 no. 23 c1181T>G p.(L394R) Glu-BS c1181T>G p.(L394R) Glu-BS NP/30 Arabic F Brigggr[g]al"
5 proposita cA469T>C p.(W157R) HTTM (TMD3)  c.1772C>A p.(T591K) RmlC-like 2/11 Tunisian F Darzgo((’)‘ét?zz al,
6 brothers cA469T>C p.(W157R) HTTM (TMD3)  c.1772C>A p.(T591K) RmlC-like 1 Tunisian M Darzg(]%‘gt?zz al,
7 patient c458A>G p.(D153G) HTTM (TMD3)  ¢.521T>G p.(M174R) HTTM 4m nd F ZTgiEt[zaé]
I3 .763G>A p.(V255M) HITM .899C>T p-(S300F) HTTM (TMD4) 16 Caucasian F Li et al., 2009 [37]
II-1 .763G>A p.(V255M) HITM .899C>T p-(S300F) HTTM (TMD4) 19 Caucasian F Li et al., 2009 [37]
A.B. [39] Goldsmith et al.,
10 12 [40] C274C>T p.(R83W) HITM .1120C>T p.(Q374X) TMD5 13/48 Caucasian F 1982 [47],
Li et al., 2009 [48]
M.E [39] Goldsmith et al.,
11 3 [40] C274C>T p-(R83W) HITM .1120C>T p-(Q374X) TMD5 18/46 Caucasian M 1982 [47],
Li et al., 2009 [48]
12 patient c521T>G p.(M174R) HTTM .1595T>C p.(1532T) RmlIC-like 18 Italian M Luzr(‘)glkl“[%f‘l"
HTTM Rost et al., 2004
13 A ¢.215-1G>T p-(G72_L124del) ¢.1454G>C p-(R485P) near PP-BS 1 German M [23], Rost et al.,

(TMD1 and -2) 2006 [49]
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Table 2. Cont.

| Allele 1 Allele 2 Nationalitv/
Origina ationality,
8 Protein Age”™

Id c.Annotation p-Annotation Domain c.Annotation p-Annotation Protein Domain Ethnicity

Id Sex References

Spronk et al.,
2000 [22]

near PP-BS + . . Titapiwatanakun
RmIC-like birth/6  Mexican M et al., 2009 [25]

Vanakker et al.,
2007 [36],
Watzka et al.,
2014 [21]

Vanakker et al.,
2007 [36],
Watzka et al.,
2014 [21]

Vanakker et al.,
2007 [36],
Watzka et al.,
2014 [21]

Vanakker et al.,
2007 [36],
Watzka et al.,
2014 [21]

Vanakker et al.,
2007 [36],
Watzka et al.,
2014 [21]

Rost et al., 2006
c.1211A>C p-(H404P) Glu-BS ¢.1454G>C p-(R485P) near PP-BS 22/38 German F [49], Watzka
etal, 2014 [21]

Watzka et al.,
2014 [21]

14 pt4 ¢.1502G>C p-(W501S) PP-BS ¢.1502G>C p-(W501S) PP-BS 7d Lebanese M

15 patient c.214+1G>T Splice HTTM (TMD1)  c.1609+3A>G Splice

16 pt1 ¢.1478G>C p-(W493S) near PP-BS ¢.1478G>C p-(W493S) near PP-BS 46 Caucasian F

17 pt3 c.1426C>T p-(R476C) near PP-BS - - - 67 Caucasian F

18 pt4 c.1427G>A p-(R476H) near PP-BS - - - 32 Caucasian F

19 pt5 ¢.1120C>T p-(Q374X) TMD5 ¢.1610G>C p-(G537A) RmlIC-like 46 Caucasian F

20 pté c.1120C>T p-(Q374X) TMD5 ¢.1610G>C p-(G537A) RmlIC-like 44 Caucasian M

B [41],

21 A19]

22 B c.944G>A p-(W315X) HTTM ¢.1454G>C p-(R485P) near PP-BS 14/20 German F

former Watzka et al.,
23 C1 c.610C>T p-(R204C) HTTM c.610C>T p-(R204C) HTTM 2d/11 Yugoslavia F 2014 [21]
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Table 2. Cont.
| Allele 1 Allele 2 Nationalitv/
Origina " ationality,
Id . Age N Sex References
Id c.Annotation p-Annotation Protel.n c.Annotation p-Annotation Protein Domain Ethnicity
Domain
24 2 c.610C>T (R204C) HTTM c.610C>T (R204C) HTTM 10/14 former F Watzka et al,
’ p- ’ p- Yugoslavia 2014 [21]
25 D .248G>T p.(R83P) HTTM .248G>T p.(R83P) HTTM 1/3 Turkish F W%le;a[; ]al"
. Watzka et al.,
26 E c.610C>T p.(R204C) HTTM c.610C>T p.(R204C) HTTM 2m/4 Turkish M 2014 [21]
27 F cA69T>C p.(WI57R) ~ HTTM (TMD3)  c.2085-5T>C Splice near Gla domain ~ 12/14 Italian F W;(’;ﬁa[;fﬁl"
Watzka et al.,
28 G .850T>C p.(S284P) HTTM C944G>A p.(W315X) HTTM 11/13 German F 2014 [21]
29 H 373G>A (G125R)  HTIM (TMD2)  c.1601A>T (D534V) near 5m/5 German- M Watzka et al,
' p- : p- PP-BS+RmlIC-like Tunisian 2014 [21]
30 patient ¢1502G>C p-(W501S) PP-BS ¢.1502G>C p.(W501S) PP-BS 3d/3,5 Lebanese F Moésggiego? al,
HTTM HTTM . Kariminejad
31 V4 ¢.373+3G>T p-(F74_G125del) (TMD1 and -2) ¢.373+3G>T p-(F74_G125del) (TMD1 and -2) 11/40 Iranian F etal,, 2014 [40]
HTTM HTTM . Kariminejad
32 A% ¢.373+3G>T p-(F74_G125del) (TMD1 and -2) c.373+3G>T p-(F74_G125del) (TMD1 and -2) 12/52 Iranian M etal,, 2014 [40]
HTTM HTTM . Kariminejad
33 V7 c.373+3G>T p-(F74_G125del) (TMD1 and -2) ¢.373+3G>T p-(F74_G125del) (TMD1 and -2) 12/37 Iranian M etal,, 2014 [40]
HTTM HTTM . Kariminejad
34 V10 c.373+3G>T p.(F74_G125del) (TMDI1 and -2) c.373+3G>T p-(F74_G125del) (TMD1 and -2) 25/48 Iranian F et al,, 2014 [40]
HTTM HTTM . Kariminejad
35 Vil c37343G>T  p(F74.GI25de) oty oy €37343GST  p(F7AGIZSdel) oy o 14/40 Iranian F ctal, 2014 [40]
HTTM HTTM . Kariminejad
36 V12 c37343G>T  p(F74.GI25de) oty oy €37343GST  p(F7AGI2Sdel) o o 12/34 Iranian M ctal, 2014 [40]
37 V14 c373+3G>T  p.(F74_G125del) HTIM c373+3G>T  p.(F74_G125del) HTTM 14/16 Iranian F Kariminejad

(TMD1 and -2)

(TMD1 and -2)

et al., 2014 [40]
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Table 2. Cont.

11 of 34

Original Allele Allele 2 " Nationality/

d Id c.Annotation p-Annotation g:;(::liiir:l c.Annotation p-Annotation Protein Domain Age Ethnicity ex References
38 V16 c373+3G>T  p.(F74_G125del) (TMISEIr\fd gy CITHIGT  p(F74G125del) (TMngr\l/[d ) 10/21 Iranian M ef;r,,h;éﬁj?ﬁ)]
39 V17 c373+3G>T  p.(F74_G125del) (TMISEIr\fd gy CITHIGT (74 G125del) (TMgHIr\lAd ) 16/23 Iranian M efir.fri‘éi‘ffﬁ)]
40 V18 c373+3G>T  p.(F74_G125del) (TM%EIr\fd gy CITHIGT (74 G125del) (TM%EII\:Id 2 11/29 Iranian M ef;f?é;‘fﬁﬁ)]
41 V1 c373+3G>T  p.(F74_G125del) (TMEKIXICI o) C733GST  p(F74.Gl25del) (TM%EI:Z 2 14/21 Iranian M ef;rjr;é;‘zjfﬁ)]
42 V5 c373+43G>T  p.(F74_G125del) (TM%EI::Id o) C733GST  p(F74.Gl25del) (TM%ziAd 2 12/28 Iranian M effff?éﬁjﬁﬁ)]
43 V6 c373+3G>T  p.(F74_G125del) (TM%EIr\:Id gy C3TIGT  p(F74 G125de) (TM%gI;Ad 2 12/21 Iranian F ef;r.,i?éﬁj?j)]
44 AK. 14 bp del T1 - - 14 bp del I1 _ _ 3m/9 : M Th;étolgs[ze;lal.,
45 D.K. 14 bp del 11 - - 14 bp del I1 - _ 6/15 : F Th;étolgs[ze;lal.,
46  propositus  ¢.1479G>T p.(W493C) Near PP-BS 2110C>T p.(R704X) Glaii?;ain Birth/1 French M Darggg;g‘;]t al,
47 infant c441G>A  p.(DI5_F71del) Iﬁ;ﬁ?}?\z‘;) C441G>A  p.(DI5_F7ldel) Hﬂ;ﬁ?}ﬁ;{) l4m/4  Caucasian M 23?66[;31]

C.annotation: cDNA-annotation; p.annotation: protein annotation; d: days; m: months (in “Age” column only); F: female (in “Sex” column only); Gla: gamma-carboxyglutamate; Glu-BS:
glutamate binding site; HTTM: horizontally transferred transmembrane domain; Id: identification number; M: male (in “Sex” column only); m: month(s) (in “Age” column only); NP:
neonatal period; PP-BS: propeptide binding site; pt: patient; RmlIC: deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase (EC5.1.3.13); RmlC-like: RmIC-like jelly roll fold; splice:

splice site mutation; TMD: transmembrane domain; 14 bp del I1: 14 base pair deletion in intron 1 of the GGCX gene; * age is stated in years, unless otherwise specified; notation: age of first
symptoms or of first examination/age a last follow-up.
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2.3. Genotype Analysis

Mutations were annotated according to transcript NM000821.6 in 12 out of 19 papers. Five
publications used reference sequence BC013979, in which +1 is located at the —28 position of
NMO000821.6 [22,36,37,48,50]. Therefore, the annotation of these mutations was corrected accordingly
(Table 3). The genotypes of P18 and P19 were already corrected by Watzka et al., but for one mutation,
i.e., ¢.1339G>T, the mutation remained incorrectly annotated and was corrected in this paper [21,36].
Two publications used unspecified reference sequences, leading to different cDNA-annotations, but
the same protein annotations; cDNA annotations were updated to reference sequence NM0000821.6.

Table 3. Update of the mutation annotation according to reference sequence NM00082. In the original
articles, reference sequence BC013979 was used (+1 located at the —28 position of NM000821).

cDNA Annotation Corrected cDNA

in Original Article Annotation Protein Annotation Original Article
c.791G>A c.763G>A p-(V255M) Li et al., 2009 [37]
c.927C>T ¢.899C>T p-(S300F) Li et al., 2009 [37]
¢.1148C>T ¢.1120C>T p-(Q374X) Li et al., 2009 [48]
¢.1454G>C c.1426C>T p-(R476C) Vanakker et al., 2007 [36]
c.1455G>A c.1427G>A p-(R476H) Vanakker et al., 2007 [36]
¢.1149C>T ¢.1120C>T p-(Q374X) Vanakker et al., 2007 [36]
¢.1339G>T ¢.1610G>C p-(G537A) Vanakker et al., 2007 [36]
¢.1530G>C ¢.1502G>C p-(W501S) Spronk et al., 2000 [22], Moussalem et al., 2001 [50]
¢.1358+1G>T c.214+1G>T Splice site mutation Titapiwatanakun et al., 2009 [25]
c.10364+3A>G c.1609+3A>G Splice site mutation Titapiwatanakun et al., 2009 [25]
¢.1565G>T ¢.1565G>T p-(W493C) Darghouth et al., 2009 [29]
c.2196C>T ¢.2100C>T p-(R704X) Darghouth et al., 2009 [29]

For Darghouth et al., 2009 and Titapiwatanakun et al., 2009 the reference sequence was not mentioned.

Thirty-two different mutations were identified, 14 of which were located in the HTTM-domain
(amongst others one in TMD1, two in TMD1 and -2, one in TMD2, two in TMD3 and one in TMD4), one
mutation affected the N-terminal region and the first part of the HTTM-domain (TMD1), one mutation
was located in TMD5, three at or near the glutamate binding site, six at or near the propeptide
binding site, three mutations were found in the RmIC-like jelly roll fold, two mutations near the
propeptide binding site and RmIC-like jelly roll fold and one near the most C-terminal autocarboxylated
Gla-domain. One mutation was a 14 bp deletion in intron 1, not leading to a change at the protein level
(Table 2). This mutation was proposed to influence expression of GGCX in the affected patients, as the
deletion destroyed a reverse palindromic sequence (TTGAGGCAA), often associated with cis-acting
elements (involved in protein expression) [27]. Interestingly, in P47, harboring a homozygous splice
site mutation leading to the deletion of exon 2, paternal uniparenteral disomy was identified [30].

2.4. Exploring Possible Genotype-Phenotype Correlations in GGCX-Related Phenotypes

GGCX mutations were identified mainly in combination with five distinct phenotypes:
ophthalmological, dermal, cardiac and osseous symptoms, and coagulation abnormalities. These
phenotypes can be related to PXE (ophthalmological and dermatological symptoms), VKCFD1 or the
fetal warfarin or DiSaia syndrome (cardiac, skeletal and facial abnormalities).

2.4.1. Cardiac Phenotype

Eight patients were reported to have congenital heart defects, i.e., a persistent ductus arteriosus
Botalli (P13, and P27), septal closure defects (P5, P6, P25, P28, and P47), Wolff-Parkinson-White
syndrome (P47) and a congenital supravalvular pulmonary stenosis and peripheral pulmonary artery
stenosis (P8) (Table 4). Apart from P8 and P26, all patients also had facial dysmorphisms and/or
skeletal features. P8, the only patient with confirmed congenital pulmonary stenosis, has a sister (P9)
carrying the same GGCX genotype with no cardiac phenotype.
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Table 4. Cardiac involvement in patients with GGCX mutations. This table gives an overview of all
patients in the analyzed cohort with cardiac involvement. For each patient, the GGCX mutations on
both alleles and the affected protein domain are stated (protein annotation). Further, a brief overview
of the cardiac symptoms is shown.

Allele 1 Allele 2
Id . . SCD PDA Other
Annotation Protel.n Annotation Protel'n
Domain Domain
5 p-(W157R) HTTM (TMD3) p-(T591K) RmlIC-like X
6 p-(W157R) HTTM (TMD3) p-(T591K) RmlC-like X
8 p-(V255M) HTTM p-(S300F) HTTM (TMD4) *
HTTM
13 p-(G72_L124del) (TMD1 and -2) p-(R485P) near PP-BS X
25 p-(R83P) HTTM p-(R83P) HTTM X
¢.2085-5T>C near Gla
27 p-(W157R) HTTM (TMD3) (splice) domain X
28 p-(5284P) HTTM p-(W315X) HTTM X
N-terminus + N-terminus + +
47 p-(D15_F71del) HTTM (TMD1) p-(D15_F71del) HTTM (TMD1) X

Gla: gamma-carboxyglutamate; HTTM: horizontally transferred transmembrane domain; Id: identification
number; PDA: patent ductus arteriosus Botalli; PP-BS: propeptide binding site; RmIC: deoxythymidine-6-deoxy-
D-xylo-4-hexulose 3,5 epimerase (EC5.1.3.13); RmIC-like: RmlC-like jelly roll fold; SCD: septal closure defects; splice:
splice site mutation; TMD: transmembrane domain; * congenital supravalvular pulmonary stenosis and peripheral
pulmonary artery stenosis; ¥ Wolff-Parkinson-White syndrome.

Seven different genotypes and in total 11 different GGCX mutations were identified in the eight
patients with a cardiac phenotype; and 7/11 GGCX mutations were located in the HTTM domain
(1 in TMD1 and -2, one in TMD3, and one in TMD4), one mutation affected the N-terminal region
and the first part of the HTTM-domain (TMD1), one mutation was localized in the RmlC-like jelly roll
fold, one near the propeptide binding site and one near the C-terminal Gla domain. The mutation
p-(W157R) was identified in three patients, of whom two siblings with p.(T591K) on the other allele and
one unrelated patient with ¢.2085-5T>C as the second mutation. The genotype p.(V255M); p.(S300F)
was identified in one patient (P8) with a cardiac problem and in this patients’ sibling (P9) with no
cardiac abnormalities. Overall, all patients with a cardiac defect had at least one mutation in the
HTTM domain.

2.4.2. Dermatological Phenotype

Twenty-three patients had dermatological PXE-like symptoms, i.e., yellowish papules and
excessive skin folds reminiscent of cutis laxa (Table 5). Affected regions included the neck and
flexural areas (amongst others the axillae), but also the trunk, groins and/or chest. The age of onset of
the skin lesions was under the age of 10 in one patient, between 10 and 20 years in 17 patients, above
the age of 20 in two patients and not mentioned in three adult patients with skin symptoms. Overall,
in this cohort of 47 patients, 21/24 patients older than 18 years had PXE-like skin symptoms. P17
already had skin symptoms at three years of age, which became more severe during puberty.

Nine different genotypes were associated with skin symptoms, encompassing 11 different GGCX
mutations. Five mutations were located in the HTTM domain, four near the propeptide binding site,
one in the glutamate binding site, one in the RmlC-like jelly roll fold and one in TMDS5. In P17 and
P18, only one GGCX mutation could be identified. In all other patients, compound heterozygous or
homozygous GGCX mutations were present.
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Table 5. GGCX-related skin manifestations in analyzed patient cohort. This table gives an overview of

all patients in the analyzed cohort with skin features. For each patient, the GGCX mutations on both

alleles and the affected protein domain are stated (protein annotation). Further, a brief overview of the

skin symptoms is shown.

Allele 1 Allele 2 Age of Onset
Id . Protein . Protein CL YP (years)
Annotation . Annotation .

Domain Domain

8 p-(V255M) HTTM p-(S300F) HTTM (TMD4) X 10

9 p-(V255M) HTTM p-(S300F) HTTM (TMD4) X early teens

10 p-(R83W) HTTM p-(Q374X) TMD5 X X 27

11 p-(R83W) HTTM p-(Q374X) TMD5 X X nd

16 p-(W493S) near PP-BS p-(W493S) near PP-BS X 18

17 p-(R476C) near PP-BS - - X X 3

18 p-(R476H) near PP-BS - - X X 18

19 p-(Q374X) TMD5 p-(G537A) Rmlc-like X X -

20 p-(Q374X) TMD5 p-(G537A) Rmlc-like X X -

21 p-(H404P) Glu-BS p-(R485P) near PP-BS X X puberty
HTTM HTTM

31 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 11
HTTM HTTM

32 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 12
HTTM HTTM

33 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 12
HTTM HTTM

34 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 25
HTTM HTTM

35 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 14
HTTM HTTM

36 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 12
HTTM HTTM

37 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 14
HTTM HTTM

38 p-(F74_G125del) (TMDI1 and -2) p-(F74_G125del) (TMD1 and -2) X X 10
HTTM HTTM

39 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 16
HTTM HTTM

40 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 11
HTTM HTTM

41 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 14
HTTM HTTM

42 p-(F74_G125del) (TMD1 and -2) p-(F74_G125del) (TMD1 and -2) X X 12

43 p-(F74_G125del) HTTM p-(F74_G125del) HTTM X X 12

(TMD1 and -2)

(TMD1 and -2)

CL: cutis laxa; Glu-BS: glutamate binding site; HTTM: horizontally transferred transmembrane domain;
Id: identification number; PP-BS: propeptide binding site; RmlC: deoxythymidine-6-deoxy-D-xylo-4-hexulose
3,5 epimerase (EC5.1.3.13); RmlC-like: RmIC-like jelly roll fold; TMD: transmembrane domain; YP: yellow papules.

2.4.3. Ophthalmological Phenotype

Eighteen patients were diagnosed with ophthalmological symptoms, including isolated angioid

streaks (P10, P16, and P17), angioid streaks and peau d’orange (P11, and P18) and a pigmentary
retinopathy of variable severity (P31-P43) (Table 6). All 18 patients with ophthalmological symptoms
also had PXE-like skin symptoms.

The eye symptoms were associated with six different genotypes comprising eight different
mutations: four mutations were located in the HTTM domain, three near the propeptide binding
site and one in TMD?5. In three of the six genotypes associated with eye problems in this cohort, at
least one mutation was located N-terminally of the propeptide binding site (i.e., p.(R476H), p.(R476C),
p-(W4935)). The arginine-residue at position 476 is part of a highly conserved seven AA-long sequence
(N-NDRFQQR-C) and the tryptophan-residue at position 493 is highly conserved among different
species (11/11) (Table S3). The GGCX genotype p.(F73_G125del); p.(F73_G125del), leading to a
homozygous deletion of exon 3, is the only genotype that is associated with a pigmentary retinopathy
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in all affected patients (P31-P43). Interestingly, all examined patients in these families were affected by
this retinopathy [40]. Another mutation with the same functional consequence was already shown
in P13, being present in combination with the p.(R485P) mutation and without an ophthalmological
phenotype. The exact intronic nucleotides affected by the mutation leading to this deletion are different
in both cases (c.373+3G>T versus ¢.215-1G>T).

Table 6. Eye phenotype in patients with GGCX mutations. This table gives an overview of all patients

in the analyzed cohort with ophthalmological manifestations. For each patient, the GGCX mutations on

both alleles and the affected protein domain are stated (protein annotation). Further, a brief overview

of the eye symptoms is shown.

Allele 1

Allele 2

Id AS Pd'O PR
Annotation Protein Domain Annotation Protein Domain

8 p.(V255M) HTTM p-(S300F) HTTM (TMD4)

10 p-(R83W) HTTM p-(Q374X) TMD5 X

11 p-(R83W) HTTM p-(Q374X) TMD5 X X

16 p-(W493S) near PP-BS p-(W493S) near PP-BS X

17 p-(R476C) near PP-BS - - X

18 p-(R476H) near PP-BS - - X X

31 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

32 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

33 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

34 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

35 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

36 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

37 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

38 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

39 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

40 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

41 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

42 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

43 p-(F74_G125del) HTTM (TMD1 and -2) p-(F74_G125del) HTTM (TMD1 and -2) X

AS: angioid streaks; HTTM: horizontally transferred transmembrane domain; Id: identification number; Pd’O: peau
d’orange; PP-BS: propeptide binding site; PR: pigmentary retinopathy; TMD: transmembrane domain.

2.4.4. Osseous Phenotype

Eleven patients had facial dysmorphisms and/or a skeletal phenotype (Table 7). Facial
dysmorphisms included midfacial hypoplasia with flat nasal bridge and a short nose (P5, P6, P13,
P22-P24, P27, and P29). The skeletal phenotype comprised reduced bone mass (P22-24, P27, and
P29), chondrodysplasia punctata (P22, and P29), stunted growth (P5, and P6), clinodactyly (P47) and
brachytelephalangy of the fingers (P7). Only P22 and P29 had a full osseous phenotype, comprising
facial dysmorphia, reduced bone mass and chondrodysplasia punctata. Brachytelephalangy of
the fingers is a distinct characteristic of Keutel syndrome (OMIM#245150), an autosomal recessive
disorder caused by mutations in MGP, a VKDP that is carboxylated by GGCX. After biallelic GGCX
mutations were identified in this patient, functional analysis showed an abolished carboxylation
of MGP, which remained in the inactive state, thus mimicking part of the Keutel syndrome
phenotype [28]. The same mimicry also occurred for two other patients with a skeletal phenotype: P13
at birth had facial dysmorphia similar to Williams-Beuren syndrome (OMIM#194050) and P22 had
chondrodysplasia punctata similar to Conradi-Hiinermann syndrome (X-linked chondrodysplasia
punctata; OMIM#302960). None of the patients had causal genetic defects for these syndromes. Apart
from the clinodactyly P47 also had ectopic calcification with nephrocalcinosis and mineralization of
the trachea and bronchi.

Bone symptoms were associated with nine different genotypes and 13 different mutations, eight
of which were located in the HTTM domain (two in TMD1 and -2 and two in TMD3), one mutation
affected the N-terminal region and the first part of the HTTM-domain (TMD1), one mutation was
localized in the RmIC-like jelly roll fold, one near the C-terminal Gla domain and two near the
propeptide binding site. In three patients (P23, P24, and P47), a homozygous genotype was identified:
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(p-(R204C); p.(R204C)) in P23 and P24 and c.44-1G>A in P47; all other patients had compound
heterozygous mutations. The mutation p.(R485P), located near the propeptide binding site (cf. supra),
was found twice in compound heterozygous state, respectively, with p.(G72_L124del) and p.(W315X)
on the other allele; p.(W157R) was identified in three patients, respectively, with p.(T591K) (P5, P6)
and c.2085-5T>C (P28) in trans. All patients with an osseous phenotype had at least 1 mutation in the
HTTM domain.

Table 7. Osseous involvement in patients with GGCX mutations. This table gives an overview of all
patients in the analyzed cohort with osseous manifestations features. For each patient, the GGCX
mutations on both alleles and the affected protein domain are stated (protein annotation). Further,
a brief overview of the bone features is shown.

Allele 1 Allele 2
1d ee ee FD CP RBM Other
Annotation Protein Domain Annotation Protein Domain
5 p-(W157R) HTTM (TMD3) p-(T591K) RmlIC-like X *
6 p-(W157R) HTTM (TMD3) p-(T591K) RmlC-like *
7 p-(D153G) HTTM (TMD3) p-(M174R) HTTM ¥
13 p-(G72_L124del) HTzl:lAd(gl;ADl p-(R485P) near PP-BS X
22 p-(W315X) HTTM p-(R485P) near PP-BS X X X
23 p-(R204C) HTTM p-(R204C) HTTM X X
24 p-(R204C) HTTM p-(R204C) HTTM X
27 p-(W157R) HTTM (TMD3) C'2085-.5T>C Gla domain X X X
(splice)
28 p-(5284P) HTTM p-(W315X) HTTM X
29 p.(G125R) HTTM (TMD2) p.(D534V) near x

PP-BS+RmlC-like
N-terminus + N-terminus +

§

HTTM (TMD1) p-(D15_F71)del HTTM (TMD1)

CP: chondrodysplasia punctata; FD: facial dysmorphia; Gla: gamma-carboxyglutamate; HTTM: horizontally
transferred transmembrane domain; Id: identification number; PP-BS: propeptide binding site; RBM: reduced bone
mass; RmlC: deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase (EC5.1.3.13); RmlC-like: RmIC-like jelly
roll fold; splice: splice site mutation; RmlC-like: RmlC-like jelly roll fold; TMD: transmembrane domain; * stunted
growth, t skeletal abnormalities, ¥ telebrachydactyly, § clinodactyly, nephrocalcinosis and calcification of the trachea
and bronchi.

47 p-(D15_F71del)

2.4.5. VKCFD1

Thirty-three patients had VKCFDI1 (Table 8), 25 of which had a deficiency of all VK-dependent
coagulation factors (P1-P7, P9, P12-P16, P19-P22, P25, P26, P28-P30, P44, and P47). Defective FX
activity was present in all patients, FII impairment in 30 patients, FVII deficiency in 31 patients and FIX
was abnormally low in 24 patients. Of note, FIX deficiency was only present in those patients in whom
all coagulation factors were deficient. Of the 33 patients with VKCFD1, 21 had symptoms of increased
bleeding tendency, including intra-articular bleeding (e.g., knee hemarthrosis), abnormal bleeding after
injuries, vaccination or surgery (e.g., after dental extraction) and spontaneous bleeding (e.g., vaginal,
cerebral, and gingival). Ten patients were severely affected with symptoms before the age of one year
(P1, P2, P7, P15, P16, P23, P26, P30, P44, and P46): all but P23 had a combined deficiency of FII, FVII,
FIX and FX; for P46 the FIX function was not determined; and none of the severely affected patients
had cutis laxa or other PXE-like skin or eye manifestations. Eleven patients developed a bleeding
phenotype at an older age (P5, P6, P10-P12, P17, P19, P24, P25, P29, and P47), four of which had
skin symptoms (P10, P11, P17, and P19) and three eye manifestations (P10, P11, and P17) at the time
of publication.
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Table 8. VKCFDI1 in patients with GGCX mutations. This table gives an overview of all patients in the analyzed cohort with VKCFD1. For each patient, the GGCX
mutations on both alleles and the affected protein domain are stated (protein annotation). Further, an overview of the coagulation factor function (percent of normal
activity or in U/dL or U/mL), aPTT and PT is given, it is stated if patients were symptomatic within the first year of life. Reference values are stated between brackets

if they were mentioned in the original article.

1d Al - Allele : PT INR aPTT FII FVII FIX FX Symptoms in
Annotation gl(::sir; Annotation gf)(:rt:; 1st Year of Life
1 p-(L394R) Glu-BS p-(L394R) Glu-BS 1205 - 51805 Tl L (s Ol (55160 GYdl] yes
2 P-(L394R) Glu-BS P-(L394R) Glu-BS - - - [77?2?@}&] [633f32/51}dL] [63—8135/$du [553261361}@] yes
3 p-(L394R) Glu-BS p-(L394R) Glu-BS nd * nd * nd * nd * nd * nd * nd * no
4 p-(L394R) Glu-BS p-(L394R) Glu-BS nd * nd * nd * nd * nd * nd * nd * no
5 p.(WI57R) HTTM (TMD3)  p.(T591K) RmiC-like [ﬁ:g ] i 605 [30's] 99 * 6% * 79%* 5%* no
6 p.(WI57R) HTTM (TMD3)  p.(T591K) RmIC-like e o . : 565 [30s] 14% * 7% nd * 7% o
7 p-(D153G) HTTM (TMD3)  p.(MI174R) HTTM [700/:—110/50%] - [Baz;f-}gf] [50%21310/30%1 [500/:—110/5000/01 [50°/3—2;/§0°/o] [500/3—310/;00/01 yes
8 P-(V255M) HTTM p-(S300F)  HTTM (TMD4) [112%115551 [o.§;21.21 Pé?ﬁf’ff [60"/0611;/&030%] [60"}0(1??00/0] [60"/?—2;/200/0] [60%3—3;200/01 no
o P-(V255M) HTT™M PSSO HTTM(IMDY) 1S 0 o) TSN GAA6%] %6l [60%160% ne
10 P-(R83W) HTT™™ P{(Q374%) TMD5 [ﬁj}; a - - 1659 2701/50] [5?4/_711155/1 [5(;1?171136] [6529_—21§é 0] no
n P(R83W) HTTM p(Q374X) T™MD5 [ﬂjzlx J - - [65“/3;/;0%] [55%853;/;;50/01 [500/5—6;200/01 [65"/32@5%] no
12 p-(M174R) HTTM p-(1532T) RmlC-like - [o.§i71(,}14] [Baggii;l;l] [700/02910/31%] [69"/0311;/;)40/0] [710/;4—210@90/0] [70(%90{030/01 no
13 p.(G72_L124del) (TM%HII\:[d 5 pRSSD) near PP-BS i : - 21%* 2%+ nd* 36%* 1o
14 p.(W501S) PP-BS p.(W501S) PP-BS >100s - PTT. >100 s nd* 1% 9% 26% * ves
15 c214+1G>T (splice)  HTTM (TMD1) C'1?25E33>G nﬁizlpcpli?: [8.2382.50 sl 7 [214—532 sl [70%2—0{u30%1 [65%?5,{’210“/0] [65%151[210%] [600/:—310/500/01 yes
16 p-(W493S) near PP-BS p-(W493S) near PP-BS - [ 0'311.2] - (907 /06_6I 5 0%] [900/022; 0%] 9 00/: 9;;00 "] 15 [90%-150%] no
7 P-(R476C) near PP-BS - - - [0.1;'7917.2] - [900/353;/50%1 [90%5?10/;00/01 [9001331?00/01 [90%2?;/;00/01 no
18 p-(R476H) near PP-BS - - - [o.%;flg 2] - [90‘7355;/;0%] [90<foiéo‘x>1 [90"/3?;/;0"0] [90%17:/;0%] no
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Allele 1 Allele 2 s ¢ .
1d - - PT INR aPTT FII FVII FIX FX ymptoms in
Annotation Pl’Otel'Il Annotation Pmtel.n 1st Year of Life
Domain Domain
. 20% 74% 48% 20%
19 P-(Q374X) TMD5 P(G5374) RmlC-like - 17[08-12] - [90%-150%] [90%-150%] [90%-150%] [90%-150%] no
, 18% 88% 56% 18%
2 P-(Q374X) TMD5 P{(G5374) RmIC-like - 19[08-12] - [90%-150%] [90%-150%] [90%-150%] [90%-150%] 1o
21 p.(H404P) Glu-BS p.(R485P) near PP-BS - - - 35%* 7% 54% * 13% no
2 p.(W315X) HTTM p.(R485P) near PP-BS ; - - 30% * 37% 53% * 29% * no
23 p-(R2040) HTTM p.(R204C) HTTM - - - - 15% lga/f)“ir VK - 6%* yes
2 p.(R204C) HTTM p.(R204C) HTTM R R R R 31%* - 20%* o
2 p.(R83P) HTTM p.(R83P) HTTM R 17+ R 27%* 77%* 56% * 3% * o
2% p.(R204C) HTTM p.(R204C) HTTM R R R R R nd* nd * ves
27 p.(W157R) HTTM (TmMD3) ~ C20855T>C near Gla - - - - 54% * - 28% * no
(splice) domain
28 p.(5284P) HTTM p.(W315X) HTTM - - - 1%~ 27%* nd * 18% * no
near PP-BS + _ _ _ o % o % . o %
2 p.(G125R) HTTM (TMD2)  p.(D534V) oar P58 30% 9% nd 28% o
30 p.(W5015) PP-BS p.(W5015) PP-BS 95% * 35% * nd * 30%* e
HTTM (TMD1 HTTM
31 p.(F74_G125del) ) P74 GL25del) b ; ; ; ; ; ; ; no VKCFDI
HTTM HTTM 100% PTT: 3325 76.2% 86.5% 70.5% 67.1%
82 pE7AGI2del) oy ng gy POEAGIZNED) iy nd o) [80%-100%] - [25-45 5] [70%-80%] [>60%] [64%-84%] (53%-1229] " VKCEDI
HTTM HTTM 100% PTT: 362 5 73.2% 94.8% 68.7% 72.4%
3 p(F74 G125del)  pyimy and gy PF7AGI25deD) iy ooy 180%-100%] - [25.45 5] [70%-80%] [>60%] [64%—84%] [53%-122%] no VKCFD1
HTTM HTTM 100% PTT: 3855 78.8% 119.3% 69.8% 58.3%
3 p(FAGIDdel) vy g gy PO7AGIZeD) g oy (80%-100%] - [25-45 5] [70%-80%] [>60%] [64%—84%] [53%-122%] no VKCFD1
HTTM HTTM 100% PTT: 326 741% 126.7% 9% 66.8%
3 pAGIRde)  qypgand ) PEACIBAED  myn and ) [80%-100%] - [25-45 5] [70%-80%] (>60%] (64%-84%]  [53%-122%] " VKCFDI
HTTM HTTM 94.7% PTT:43.15 73.1% 76.3% 70.4% 71.2%
86 p(7AGI2Ndel) g ang ) POAGIZNED g nd o) [80%-100%] - [25-45 5] [70%-80%] [>60%] [64%-84%] (53%-1229] " VKCEDI
HTTM HTTM 100% PTT: 3155 o 79% 76.9% 58%
87 p(F74 G125del) iy and gy PF7AGI25de) iy i o) 180%-100%] - [25-45 5] 83% [70%-80%] [>60%] [64%-84%] [53%-122%] no VKCFD1
HTTM HTTM
3 pEAGISd) bW pO7AGIde) i ; ; ; ; ; ; ; no VKCFD1
HTTM HTTM 100% PTT: 3785 77.8% 73.7% 55.9%
3 pEAGIRde)  qypand)  PEACIBAED  mynand 2)  [80%-100%] - [25-45 5] [70%-80%] [(>60%] - 53%-122%] " VKCFDI
m p.(E74_G125del) HTTM p.(74_G125del) HTTM - - - - - - ; no VKCFD1

(TMD1 and -2)

(TMD1 and -2)
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Table 8. Cont.
Allele 1 Allele 2 s ¢ .
1d : - PT INR aPTT FII FVII FIX FX ymptoms in
Annotation Pl’Otel'Il Annotation Protelvn 1st Year of Life
Domain Domain
HTTM HTTM 96.4% PTT: 3895 78.1% 81.9% 70% 67.7%
4 p(F74.G125del) iy ang gy PF7AGI25deD oy nd o) 80%-100%] - [25.45 5] [70%-80%] [>60%] [64%-84%] [53%-122%] no VKCFD1
HTTM HTTM 100% PTT: 389 74.2% 129.3% 68.5% 72.8%
42 P(F74.G125del) g ang gy POF7AGI25deD oy ond o) [80%-100%] - [25-45 5] [70%-80%] [>60%] [64%-84%] [53%-122%] no VKCFDI
HTTM HTTM 100% PTT: 3185 76% 106% 68.6% 71.5%
43 p(F74 G125del)  py iy ang gy PF7AGI25deD) iy o oy 180%-100%] - [25.45 5] [70%-80%] [>60%] [64%—84%] [53-122%] no VKCFD1
44 /(14 bp del 1) - /(14 bp del I1) - >100's - >150' 035U/mL * 0.08 U/mL * ndt 021U/mL* yes
45 /(14 bp del T1) - /(14 bp del T1) - 30s - 38s 0.09 U/mL * 021U/mL* 0.59 U/mL 017 U/mL* no
near >100 s o % o % R o %
46 p-(W493C) near PP-BS p-(R704X) Gla-domain [12.8] - - 3% 2% 3% yes
N-terminus + N-terminus + o % o % o % o %
47 p(DI5_F7idel)  rfTriT PADIS F7Idel) AT 9895 9 53.1s 2% 1.7% 47% 2% no

14 bp del I1: 14 base pair deletion intron 1; aPTT: activated partial thromboplastin time; FII: coagulation factor II; FVII: coagulation factor VIL; FIX: coagulation factor IX; FX: coagulation
factor X; Glu-BS: glutamate binding site; HTTM: horizontally transferred transmembrane domain; Id: identification number; INR: international normalized ratio; nd: not described; PT:
prothrombin time; PP-BS: propeptide binding site; RmIC: deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase (EC5.1.3.13); RmlC-like: RmIC-like jelly roll fold; splice: splice site
mutation; TMD: transmembrane domain; VK R/: vitamin K therapy; * no reference values in original article or no values, but clearly stated in full-text as deficient. deficient factor IX
confirmed at 9 years of age.
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Twenty-five VKCFDI1 patients received a treatment with VK, the details of which are summarized
in Table 9. Regarding the hematological parameters, 17 patients responded well to the treatment
(P1, P2, P7, P10, P12 (only international normalized ratio (INR) and aPTT), P13, P15, P21, P22, P23,
P24, P27, P28, P29, P44, P45, and P46), five patients showed no or only a limited response (P5,
P12 (coagulation factors), P25, P30, and P47) and for three patients the initial VK deficiency was
mentioned in the manuscript without details on the individual clotting parameters so an evaluation of
the effect of the VK treatment was not possible (P3, P4, and P26). Non-hemostatic parameters were
determined before treatment and after initiation of the VK therapy in six patients: in five patients
the ratio uncarboxylated(uc) OC/gamma-carboxylated(c) OC decreased significantly but remained
supranormal (P21, P27, P28, P29, and P47), in one patient the desphospho-uncarboxylated MGP
serum level was measured with no response to treatment (P7). Nine patients had no new bleeding
episodes after initiation of the VK treatment (P2, P3, P4, P7, P10, P12, P15, P30, and P46), two patients
had recurrent bleeding on VK treatment (P1, and P47) and for six patients the clinical outcome was
not mentioned (P5, P14, P21, P23, P24, and P44). In three patients, VKCFD1 was an asymptomatic
incidental finding with either no new bleeding after start of VK supplementation (P13, and P22) or
no mentioning of the clinical effect of the treatment (P45). In six patients the clinical effect of the VK
treatment was mentioned. For five of these patients, a good response to VK supplementation was
mentioned without details on the clinical outcome (P25, P26, P27, P28, and P29).

Twenty-one distinct genotypes were associated with VKCFD1, encompassing 33 individual
mutations. Fourteen mutations were located in the HTTM domain (one in TMD1, one in TMD?2, two
in TMD1 and -2, two in TMD3, and one in TMD4), one mutation affected the N-terminal region and
the first part of the HTTM domain (TMD1), seven mutations were located in or near the propeptide
binding site, two in the glutamate binding site, three in the RmlC-like jelly roll fold, one in the
RmlC-like jelly roll fold /near the propeptide binding site, two near the C-terminal Gla-domain, one in
TMDS5, and one mutation was located in intron 1 of the GGCX gene. In the whole cohort of patients
with VKCFD1, 14/33 harbored homozygous mutations, whereas in the severely affected cohort 6/9
genotypes were homozygous. Moreover, in the severe cohort, both mutations were located in or near
the same domain in all but two patients (P15, and P46). In P17 and P18 only one GGCX mutation
could be identified. The genotype of 15/33 patients contained no mutations in the HTTM domain.
The mutational spectrum between patients with a good or bad response to VK supplementation
(clinical and hemostatic parameters) seems similar. With regards to the non-hemostatic parameters,
four out of five patients with a decreasing ratio ucOC/cOC harbor at least one mutation in the HTTM
domain. There are no patients mentioned who did not have an alteration in this ratio so a potential
difference in the mutational spectrum cannot be assessed.
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Table 9. Vitamin K treatment in VKCFD1 patients with GGCX mutations. This table gives an overview of all patients who received vitamin K treatment for their

coagulation factor deficiency and the response to treatment. For each patient, an overview of the PT, aPTT, coagulation factor function (percent of normal activity or in

U/dL or U/mL) prior to therapy is given (in italics) and extrahepatic (non-hemostatic) before treatment parameters are shown (in italics), if determined. Further,

the clinical response to treatment is mentioned. For P21, P27, P28, and P29, the response to treatment for the ucOC/cOC ratio is given, but the specific vitamin K dose

at the time of blood sampling is not mentioned in the original article. Reference values are stated between brackets if they were mentioned in the original article.

Extrahepati New
1d VK R/(age) PT INR aPTT FII FVII FIX FX PC ProS Xoranepatic Bleeding
Proteins .
Episodes
2 U/dL 3 uydL 8 u/dL 2u/dL
1 before treatment >120s : >180s [77-125U/L]  [63-139 U/AL]  [63-155 U/dL]  [55-160 U/dL] - -
10 mg sc/week ) ) 18 U/dL 25U/dL 37U/dL 15U/dL 45U/dL 34U/dL B s
& [77-125U/dL]  [63-139 U/dL] [63-155U/dL] [55-160 U/dL] [65-146 U/dL] [74-126 U/dL] Y
24 U/dL 23 U/dL 8 u/dL 20 U/dL 42 U/dL 35 U/dL
2 before treatment - - -
[77-125 U/dL] [63-139 U/dL] [63-155 U/dL] [55-160 U/dL] [65-146 U/dL] [74-126 U/dL]
10 mg sc/week ) 235 45U/dL 43U/dL 89 U/dL 27 U/dL 73U/dL 35U/dL B no
& : [77-125U/dL]  [63-139 U/dL] [63-155U/dL] [55-160 U/dL] [65-146 U/dL] [74-126 U/dL]
3 before treatment nd * nd * nd * nd * nd * nd * nd * nd * nd *
31U/dL 23 U/dL 55U/dL 17U/dL 84 U/dL 28 U/dL
10 mg sc/week - - - - no
[77—125U/dL] [63-139U/dL] [63-155U/dL] [55-160U/dL] [65-146 U/dL] [74-126 U/dL]
4 before treatment nd * nd * nd * nd * nd * nd * nd * nd* nd *
10 mg sc/week . . 24U/dL 47U/dL 33U/dL 16 U/dL 71U/dL 57 U/dL i N
g sc/wee [77-125U/dL]  [63-139 U/dL] [63-155U/dL] [55-160 U/dL] [65-146 U/dL] [74-126 U/dL] ©
5 before treatment 49.55[11.55] - 605 [30s] 9% * 6% * 7% * 5% * - -
10 mg/d IM 2 weeks ?
(VK1) no effect - no effect - - - - - - - ?
” before treatment 11% . ratio 1.65 26% <1% 12% 13% 7% 10% dp-ucMGP: 2387 pM
[70-100%] [0.84-1.21] [50%-150%] [50%-150%] [50%-150%] [50%-150%] [70%-140%] [60%—120%] [35-546 pM]
a. 10 mg/day po 3 36% R ratio: 1.24 46% 21% 53% 27% 13% 6% dp-ucMGP 2750 n
months (VK1) [70-100%] [0.84-1.21] [50%-150%] [50%—-150%] [50%-150%] [50%-150%] [70%-140%] [60%—-120%] PM [35-546 pM] °
b.20mg/dpo>1y t 42% B ratio 1.02 38% 21% 54% 31% 21% 8% dp-ucMGP 2407 no
(VK1) [70-100%] [0.84-1.21] [50%-150%] [50%-150%] [50%-150%] [50%-150%] [70%-140%] [60%-120%] PM [35-546 pM]
1 before reatment 21-31s ] . 20% 74-117% 48-71% 20-22% . . .
fore treatmen [11-145] [65%-150%]  [55%—185%]  [50%-180%]  [65%—185%]
a. 1x parenteral (VK1) - normal - - - - - - - - no
b.10 mg(%(;(/lc; 2 weeks - - - normal - normal normal - - - no
149 PTT:259s
c. 5 mg/d (VK1) [12.3-14.6 5] ) [27.3-35.3] - ) ) - - ) ) no
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Table 9. Cont.
Extrahepatic New
1d VK R/(age) PT INR aPTT FII FVII FIX FX PC ProS Pt Bleeding
Episodes
1 before treatment 2.76 ratio 1.4 20% 34% 42% 20% 47% i i
fore tre [0.9-1.14]  [0.83-1.18]  [70%-131%]  [69%-134%]  [71%-139%]  [70%-135%]  [65%-132%]
. 1.94 ratio: 1.26 24% 34% 54% 18% 47% i ] o
P [09-1.14]  [0.83-1.18] [70%-131%] [69%-134%]  [71%-139%]  [70%-135%]  [65%-132%]
o 1.98 ratio: 1.16 20% 35% 54% 18% 47% 67% i o
[09-1.14]  [0.83-1.18] [70%-131%] [69%-134%]  [71%-139%]  [70%-135%]  [65%-132%]  [62%-131%]
13 before treatment - - - 21% * 42% * nd * 36% * - - - In;ldafntal
finding
2mg/d 6 weeks - - - 40% 62% - 65% - - ucOC: >9.4 pg/L* no
14 before treatment >100 s - PTT: >100 s nd * <1%* 9% * 26% * - - -
5mg/d po (VK1) - - - - - - - - - - ?
69.8 s 2% 3% 4% <3%
15 before treatment [8.4-12.05] 7 5213351 700, 130%]  [65%-140%]  [65%-140%]  [60%-130%] - - -
16.1s 20% 22% 46% 23% 45% 9%
a.5mg/2days po [8.4-12.05] - 2523l 700, 130%]  [65%-140%]  [65%-140%]  [60%-130%]  [70%-130%]  [65%-130%] - no
32% 43% 58% 25%
b. 30 mg/d po . . - [70%-130%] [65%-140%] [65%-140%] [60%-130%] - - - no
21 before treatment - - - 35% * 37%* 54% * 13% * 56% 37% e 5‘530[%5]00
a.70 mg (38 ) - - - 71% 69% 90% 28% 63% 48% ratlolll.l;O[SQ]cOC: ?
b. 70 ug (47 y) - - - 77% 79% 84% 30% 81% - - ?
c. 105 ug (47 y) - - - 94% 76% 100% 37% - - - ?
22 before treatment - - - 30% * 37%* 53% * 29% * - - - incidental
finding
a.6mg (l4y) - - - 34% 53% 63% 39% - - - no
b. 14mg (20 y) - - - 41% 51% 59% 26% 30% 17% - no
. 70mg (20 y) - - - 53% 59% 91% 39% - - - no
23 before treatment - - - - 15% (VK R/) * nd 6% * - - -
a. 1 x 1 mg (10 days) - - - - - - 30% - - - ?
b. 1 x 1 mg (17 days) - - - - - - 22% - - - ?
c.30mg (7y) - - - - 80% - 42% - - - ?
d. 50 mg (11y) - - - 34% 47% 40% 33% 55% 27% - ?
e.90mg (11y) - - - 51% 68% 54% 51% 69% 35% - ?
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Table 9. Cont.
Extrahepatic New
Id VK R/(age) PT INR aPTT FII FVII FIX FX PC ProS P Bleeding
Proteins .
Episodes
24 before treatment - - - - 31% * - 20% * - - -
a.30mg (10y) - - - - 65% - 41% - - - ?
b. 50 mg (14 y) - - - 38% 38% 46% 40% 47% 25% - ?
c. 90 mg (14 y) - - - 69% 80% 67% 71% 67% 38% - ?
25 before treatment - 1.7* - 27% * 77% * 56% * 33% * - - -
a.1x3mg(ly) - 14 - 46% 60% 61% 50% - - - ?
b.175mg (3y) - 13 - 61% 65% 51% 67% - - - ?
26 before treatment - - - - - nd * nd * - - -
a. 140 mg (3 months) - - 174 s - - - - - - - ?
b. 21 mg(1y) - 1.6 - - - 37% - - - - ?
c.233mg (3y) - 2.4 - 35% 40% 49% 25% 27% 10% - ?
d.233mg (4y) - 17 - - - - - - - - ?
) . . . o % . o % . . ratio ucOC/cOC:
27 before treatment 54% 28% 66.91.2]
o o o o o o ratio ucOC/cOC: »
a. 140 mg (13 y) - 12 - 89% 108% 121% 55% 53% 36% 39.3 [1.2] ?
b. 140 mg (14 y) - 11 - 87% 83% 131% 53% 52% 59% - ?
o % o % " o) % o B ratio ucOC/cOC:
28 before treatment - - - 41% 27% nd 18% 76% 13[1.2]
ratio ucOC/cOC:
_ _ _ % % _ A % _ ?
a.21mg (12y) 62% 60 48% 106% 39[12]
b. 21 mg (13y) - - - 60% 67% 98% 31% - - - ?
c. 70mg (13 y) - - - 76% 65% - 57% 99% - - ?
o % o % . o % . . ratio ucOC/cOC:
29 before treatment - - - 30% 49% nd 28% 25.8[1.2]
ratio ucOC/cOC:
_ _ _ % % % % % % ?
70 mg (5y) 56% 75 63% 41% 30% 16% 9.9[12]
30 before treatment 21% 3.8* 41s[285s] 9% * 35% * nd * 30% * - - -
a.2 x 5mg/d 3 days 40% 2 365 [28s] 13% 69% 13% 38% 38% - - no
b. multiple doses no abnormalities at 3.5 y (2 years after cessation treatment) - no
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Table 9. Cont.
Extrahepatic New
1d VK R/(age) PT INR aPTT FII FVII FIX FX PC ProS P Bleeding
Proteins .
Episodes
44 before treatment >100s - >150's 0.11 U/mL 8 0.12 U/m S 0.30 U/mL S 0.09 U/mL 8 - - -
modest
- - - - - - ?
2 mg po good response response good response  good response ?
45 before treatment 305 - 38s 0.09 UjmL * 0.21 U/mL * 0.59 U/mL 0.17 U/mL * - - - ”j‘;‘z:";"
1mgiv - - - good response  good response no response no response - - - ?
46 before treatment >100s [12.8] - - 3% * 2% * - 3% * - - -
infusion 14.8s[12.8 5] - - 72% 62% 62% - - - no
a7 before treatment 98.9 9% 53.1s 2% * 1.7% * 47%* 2% * - - ratio ;;‘;E/COC-‘
VKL 5;3)({;‘1?1/)‘1 POOT  g54s+119s 89408 400s+73s  37%+09%  32%+17%  91%+£28%  47%+21%  41%+21%  56%+£08% O “;C;E/ coc: yes

?: not mentioned (in column “new bleeding episodes”); 14 bp del I1: 14 base pair deletion intron 1; (a) PTT: (activated) partial thromboplastin time; d: day (only in column “VKR/”),
cOC: gamma-carboxylated osteocalcin; dp-ucMGP: desphospho-uncarboxylated matrix gla protein; FII: coagulation factor II; FVII: coagulation factor VII; FIX: coagulation factor IX; FX:
coagulation factor X; Id: identification number; IM: intramuscular; INR: international normalized ratio; nd: not described; VK R/: vitamin K therapy; PC: protein C; po: per os (oral); ProS:
protein S; PT: prothrombin time; s: seconds (only in columns “PT and aPTT”); sc: subcutaneous; TMD: transmembrane domain; VK: vitamin K; ucOC: uncarboxylated osteocalcin; y: year
(only in column “VK R/”); * therapy also included: +41 mg MK-4/day and 2 mg MK-7/day for 6 months; MK-4 and MK-7 are homologue of vitamin K2; * no reference values in original
article or no values, but clearly stated in full-text as deficient; 2 x 5 mg VK IM/week (2 weeks), then 5 mg VK IM/week (4 weeks), then 5 mg VK IM/month (16 months), then cessation
therapy with continued normal coagulation parameters; 8 deficient factor IX confirmed at 9 years of age.
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3. Discussion

For this systematic review, we assessed all patients described in literature with cardiac,
dermatological, ophthalmological, osseous and/or coagulation abnormalities, caused by GGCX
mutations, and explored possible genotype—phenotype correlations. As the number of patients
suffering from these orphan diseases is too small to allow valid statistical interpretation of the data,
we did not perform a meta-analysis. However, based on the data, we identified a trend that the
presence of at least one GGCX mutations in the HTTM domain may predispose for the occurrence
of a cardiac and/or osseous phenotype. Further, there seems to be an association between aging
and the occurrence of a skin and, less clearly, an ocular phenotype rather than a link with a specific
genotype. However, most of the patients with an ophthalmological phenotype also had at least one
HTTM domain mutation. Regarding the bleeding phenotype, severely affected patients seem to have
homozygous mutations or compound heterozygous mutations affecting the same protein domain.

3.1. Cardiac Phenotype

To date, no direct pathophysiological link has been established between GGCX mutations and
cardiac abnormalities. However, Gas6—a VKDP gamma-carboxylated by GGCX—activates AXL
(AXL receptor tyrosine kinase; OMIM*109135), a receptor tyrosine kinase (RTK) that interacts with
non-muscle myosin IIB, an essential protein for normal development of the murine heart [51,52]. As all
patients with cardiac involvement had at least one mutation located in the HTTM domain, possibly
this domain plays a role in Gas6 carboxylation, which could explain the cardiac problems in patients.
Cardiac anomalies were found in 8/47 patients (17%) with GGCX mutations, in contrast to 4/63
patients (6%) with fetal warfarin syndrome, caused by inhibition of gamma-carboxylation by warfarin
administration during pregnancy [53]. A possible explanation for this discrepancy is that warfarin is a
dose-dependent inhibitor of the VK cycle and GGCX mutations lead to a permanent and persistent
defect in gamma-carboxylation [54]. Deficiency of another VKDP, MGP, has also been associated with
cardiac involvement, including pulmonary artery stenosis and ventricular septal defects [55,56].

As in the study cohort all patients with cardiac problems have at least one mutation in the HTTM
domain, patients with a GGCX mutation in this domain might benefit from an echocardiography to
rule out possible anomalies or to enable early initiation of treatment if a heart defect is identified. This
is for example the case in patients with a small to moderate patent ductus arteriosus Botalli, who may
remain asymptomatic during childhood, leaving the defect thus undetected. Some of these patients
develop congestive heart failure in early adulthood due to a chronic, left heart overload [57]. Early
diagnosis can enable early surgical closure of the patent ductus arteriosus Botalli, hereby preventing
the development of heart failure.

3.2. Dermatological Phenotype

The patients diagnosed with skin symptoms were often described with a less severe bleeding
phenotype, suggesting the presence of a residual carboxylation capacity. Recently, an exon 3 deletion,
present in P13 and P31-P43 was proven to completely inactivate the GGCX enzyme. In P31-P43, this
mutation (c.373+3G>T), which is localized in TMD1 and -2, was present homozygously and led to
cutis laxa, a pigmentary retinopathy but no VKCFD1. Interestingly, P13 harbored a heterozygous exon
3 deletion, caused by another splice site mutation c¢.215-1G>T, with the p.(R485P) mutation on the
other allele and had VKCFD1 but no dermatological phenotype. Jin et al. showed that p.(R485P) led to
a GGCX enzyme with some residual function, which according to the authors played an important
role in the development of a bleeding phenotype, as a high dose of VK was necessary to ameliorate
the phenotype [58]. These data could indicate that TMD1 and -2 have no significant role in the
carboxylation of VK-dependent coagulation factors. Indeed, only four patients with VKCFD1 (P13,
P15, and P29) have a heterozygous mutation in TMD1 and/or TMD2, and all but one had a second
mutation in another GGCX domain. P47 had a homozygous GGCX mutation affecting the HTTM
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(TMD1) and only had VKCFD1 and no skin phenotype. However, the mutation also affected the
N-terminal region of the protein, which may be an explanation for the VKCFD1 phenotype in this
patient. Further, the absence of a skin phenotype could be due to the young age of the patient when it
was described in literature (four years of age at last described follow-up).

Regarding the severity of the skin manifestations, PXE-like dermatological symptoms—mainly
cutis laxa—are typically more severe compared to classic PXE patients with regard to their location
(beyond flexural areas), number of additional skin folds and the time span during which they develop
and aggravate [36]. Interestingly, 21 /24 patients discussed in this paper who are older than 18 years,
have typical PXE-like skin manifestations (Tables 2 and 5). This could indicate that skin symptoms
may be due to an accumulation of certain substances which only leads to symptoms when a critical
threshold is reached, irrespective of the patients’ genotypes. In this respect, Vanakker et al. showed
an accumulation of uncarboxylated MGP and OC, two potent mineralization inhibitors, in patients
with PXE-like disorder with multiple combined coagulation factor deficiency [36]. Although the age
of onset of skin problems is variable between the described patients (P3-P40), this would indicate
that most, if not all, patients with biallelic GGCX mutations develop skin lesions in the course of
their disease.

For P13, at birth the putative diagnosis of Williams-Beuren syndrome was made based on his
facial gestalt. Even though there is no direct link with VKDP and VKCFD], this disease is caused
by a deletion of the WBSCR (Williams-Beuren syndrome critical region), including the ELN gene
(elastin; OMIM*130160), responsible for the arteriopathy in Williams-Beuren syndrome. Further,
cardiac involvement (most commonly supravalvular aortic stenosis) and a skin phenotype (soft loose
skin) are features of this disease [59]. Moreover, heterozygous ELN mutations are associated with an
autosomal dominant type of cutis laxa (ADCL1; OMIM#123700) [60]. These clinical findings might
indicate a possible link between these disease entities, although only one patient in the whole cohort
was described with a facies resembling the Williams-Beuren syndrome, rendering the assumption
less likely.

Of the remaining 24 patients without skin manifestations, 20 were 18 years old or younger and
21/24 had VKFCD1 (deficiency of the VK-dependent coagulation factors (Tables 2 and 8). Hence,
VKFCD1 and the PXE-like disorder with multiple coagulation factor deficiency could belong to a
disease spectrum with partly overlapping etiopathogenetic mechanisms, but in whom different GGCX
domains are important for the activation of the involved VKDP. However, the young age of these
patients could also be an explanation for the absence of a skin phenotype. In severe cases, the additional
skin folds may lead to restriction of normal physical activities and may be predilection sites for (severe)
skin infections, which is important in patient counseling and follow-up.

Finally, in the analyzed literature, three patients are described with skin symptoms and a digenic
inheritance of ABCC6 and GGCX mutations [37,46]. These patients were not included in this analysis
because an unambiguous interpretation of the skin features is not possible, as both GGCX and ABCC6
mutation may lead to related skin phenotypes. Typically, the skin phenotype in these patients is less
severe than in patients with biallelic GGCX mutations, so it may be worthwhile to perform additional
sequencing of the ABCC6 gene in those patients in whom only one GGCX mutation is withheld as it
will influence genetic counseling and management.

3.3. Ophthalmological Phenotype

Regarding the eye symptoms, all patients with a homozygous skip of exon 3 were diagnosed with
a pigmentary retinopathy, a disease mimicking retinitis pigmentosa. In mice, it has already been shown
that absence of both ligands of the RTK MerTK (Mer tyrosine kinase proto-oncogene; OMIM*604705),
Gas6 and ProS, leads to retinitis pigmentosa [61]. In analogy, such a mechanism could play a role in
the development of a pigmentary retinopathy in the two families with a homozygous skip of exon
3 in the GGCX gene. As this mutation is located in the HTTM domain, this could again point to its
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putative roles in the carboxylation of both Gas6 and ProS, similar to what is observed in patients with
a cardiac phenotype.

Furthermore, as in 17 of the 24 patients over 18 years of age an ophthalmological phenotype
was identified and in only four out of 23 patients with cutis laxa no accompanying eye disease
was reported, possibly, the major determinant of developing a GGCX-related retinopathy is also
increasing age. Although this link seems less convincing compared to skin manifestations, it should
be noted that (mild) angioid streaks are asymptomatic and can easily be overlooked during a routine
ophthalmological checkup. In the spectrum, PXE-like skin and eye symptoms may be phenotypes that
occur in most patients with increasing age, whereas VKCFD1 may be more variable, with neonatal
complications in severe forms to apparent normal coagulation in very mildly affected patients, such as
those patients described by Kariminejad et al. [40] with PXE-like skin symptoms, an eye phenotype
but no apparent VKCFD1. As mentioned above, possibly distinct GGCX domains play an important
part role in the gamma-carboxylation of involved VKDP.

Overall, the PXE-like ophthalmological symptoms (P8, P10, P11, P16, P17, and P18) seem less
severe compared to the dermatological features with no functional complications in the described
patient cohort. However, as this cohort is small, we cannot exclude the possibility that in some
patients with biallelic GGCX mutations more severe PXE eye symptoms may occur with subretinal
neovascularization and hence loss of vision if not treated immediately. Further, a pigmentary
retinopathy with severe visual dysfunction may occur in some patients. It therefore seems appropriate
to follow patients ophthalmologically, certainly from the time they start to develop skin symptoms.
In mildly affected patients the typical PXE-like angioid streaks may be very small and thus only be
picked up by very sensitive funduscopic imaging, for which confocal near-infrared reflectance imaging
is superior compared to other techniques [62,63]. If symptoms are stable for a long time, follow-up
may become less stringent; however, to our knowledge, there has thus far not been a comprehensive
long-term follow-up study of eye symptoms in patients with biallelic GGCX mutations.

3.4. Osseous Phenotype

Bone symptoms in patients with GGCX mutations show an important clinical overlap with other
genetic syndromes, such as X-linked chondrodysplasia punctata (an autosomal recessive disorder
caused by mutations in the ARSE gene (arylsulphatase E; OMIM*123700), encoding ARSE), Keutel
syndrome, due to MGP gene mutations; and the fetal warfarin syndrome [64]. Interestingly, Vanakker
et al. confirmed an accumulation of uncarboxylated MGP and OC in patients with the PXE-like
syndrome; similarly, an in vitro model for the mutation leading to the Keutel syndrome-like phenotype
in P7 showed an abolishment of MGP carboxylation [28,36]. For ARSE, no data are available of a
direct association with GGCX. However, it was shown that ARSE is specifically inhibited by warfarin,
therefore having a possible role in warfarin embryopathy, thus ARSE could have a role in the VK
cycle, which would explain the phenotypic overlap with patients with biallelic GGCX mutations [65].
Further investigation of this interaction proves a valid way to further unravel the association between
the VK-dependent pathway and skeletal development.

Finally, all patients with skeletal and/or facial symptoms had at least one GGCX mutation in the
HTTM-domain, so putatively this domain not only plays a role in Gas6 and ProS carboxylation but
also in MGP (and OC) carboxylation. Because of the association with osteopenia and osteoporosis,
patients with a mutation in the HTTM domain may benefit from an early densitometry (as P23 had
already developed osteoporosis at 12 years old, first densitometry may be most valuable at a younger
age) to facilitate early treatment when a decreased bone density is present. There is no genotypic
difference between patients with a complete bone phenotype (chondrodysplasia punctata, reduced
bone mass, facial dysmorphisms) or with only some of the osseous features. Therefore, early bone
densitometry may better be advised to all patients with at least one mutation in the HTTM domain.
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3.5. VKCFD1

Overall, VKCFD1 seems to be variable in severity, clinical presentation and response to VK
supplementation in the analyzed patient cohort. However, there seems to be a trend that the genotypes
of patients with very early onset of bleeding symptoms (<1 year of age) mainly comprise homozygous
mutations or compound heterozygous mutations in or near the same protein domain. Possibly, biallelic
hits in the same protein domain lead to a more severe malfunctioning of the carboxylase and thus
more severe VKCFD1 symptoms occur in these patients at a younger age. However, this could not
be confirmed by the activity of the coagulation factors in these patients, even though it is difficult to
compare such values between patients whose coagulation factor function is measured in different labs,
as different units and reference values are used, which cannot easily be compared to each other.

None of the patients with severe bleeding symptoms had a skin or eye phenotype. However, this
could be a bias, as these severely affected patients are often described at a very young age and no
follow-up studies are available, so putative development of cutis laxa or other PXE-like skin and/or
eye manifestations at a later age remains a possibility, which is exemplified by the presence of skin
symptoms in some of the patients who have a rather mild bleeding phenotype.

In a small subset of the patient cohort carboxylation status of extrahepatic VKDP were measured,
and OC carboxylation seemed to respond (to a variable extent) to VK supplementation. Interestingly,
in one of these patients, VK treatment did not influence the bleeding phenotype with no significant
change in hemostatic parameters and recurrent bleeding episodes after initiation of the treatment.
In contrast, another patient showed a distinct amelioration of the coagulation factor function on
VK treatment, whereas MGP carboxylation did not increase. This variability in response to VK
supplementation may result from different mechanisms in gamma-carboxylation of hemostatic and
extrahepatic VKDP [28]. Moreover, different GGCX mutations affect different regions of the GGCX
protein, which could interfere with propeptide binding of different VKDP [21]. The cohort is however
too small to make definite conclusions.

4. Materials and Methods

4.1. Article Selection and Patient Data Extraction

For this review, Pubmed was systematically searched for all papers about GGCX-related
phenotypes on 14 December 2016, using the following key words: “GGCX OR gamma-glutamyl
carboxylase OR Vitamin K-dependent carboxylase OR y-carboxylase AND mutation”. The inclusion
criteria were as follows: all article types were included (case reports and series, systematic reviews,
original articles), as the data about the subject is limited; neither the date of publication nor the journal
played a role in the selection; only articles in English, French or Dutch were considered; only articles of
which the full text was available were included in the analysis; patients should have at least 1 relevant
GGCX-related symptom (cardiac, dermatological, ophthalmological, osseous or coagulation feature)
with no limitations regarding age, ethnicity or symptoms.

Only articles meeting the inclusion criteria were included in this systematic review. For each
patient, patient characteristics (age, sex, nationality or ethnicity, age of first skin symptoms),
genotype and the GGCX-related phenotypes (cardiac, dermatological, ophthalmological, osseous
and coagulation dysfunction) were extracted from the original article. For the bleeding phenotype,
biochemical values of the VK-dependent coagulation factors (FII, FVII, FIX and FX), PT, INR, aPTT
an extrahepatic VKDP (if mentioned) were collected. Coagulation factor function was abnormal
when they were not within the normal range of the reference value given in the original paper or,
if no reference values were mentioned in the article, when it was clearly stated in the report that the
coagulation factor function was deficient. Patients with bleeding symptoms under the age of 1 year
were defined as severely affected VKCFD1 patients. Patients were only classified in the severe group
when the exact age was clearly mentioned in the original article.
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4.2. Genotype Analysis

Mutations were annotated according to the Human Genome Variation Society (HGVS)
recommendations at the cDNA and protein level. Further, for each mutation the corresponding protein
domain was mentioned if possible (Table 2). Reference sequence NM000821.6 (ENST00000233838.8) of
the GGCX gene was used to verify the annotation of all mutations at the cDNA and protein level, as this
represents the longest transcript and encodes the longest GGCX isoform. If mutations were annotated
incorrectly by using a different reference sequence or another unspecified sequence, the annotation
was updated using reference sequence NM000821.6, in order to enable comparison of all genotypes
and to establish genotype-phenotype correlations in the complete patient cohort.

5. Conclusions

Gamma-carboxylation is an essential process in the activation of VKDP, which are important
in numerous biological processes, such as blood clotting, inflammation, bone formation and cell
proliferation. This posttranslational modification process is executed by the GGCX enzyme. Mutations
in the gene encoding GGCX have been linked to multiple distinct phenotypes, affecting the heart,
skin, eyes, blood clotting and bone metabolism. This review highlights the importance of mutations in
the HTTM domain for at least the cardiac and bone phenotype, as all of the patients had at least one
mutation in this domain, whereas multiple patients without cardiac or osseous manifestations had no
mutations in the HTTM domain. Further, age was identified as the most important determinant of
the development of PXE-like skin symptoms and to a lesser extent ophthalmological manifestations.
Finally, distinct parts of the HTTM domain seem to have a specific role in the development of skin
symptoms and not of VKCFD1. Based on our results, patients should be informed during genetic
counseling about the possibility of skin lesions appearing in the course of their disease, taking into
account that these lesions may be subtle at onset. In all, a detailed ophthalmological evaluation should
be performed and adequate follow-up should be organized, as apart from a (mild) typical PXE-like
retinopathy a pigmentary retinopathy with significant functional implications may also occur. Because
of its association with reduced bone mass, a bone densitometry should be offered to all patients
harboring at least one mutation in the HTTM domain of GGCX.

The main limitations of this systematic review are the low number of patients with GGCX-related
phenotypes and the presence of consanguinity in some of the assessed families. There is a possibility
that homozygosity at other loci could play a role in the occurrence of the other GGCX-related
phenotypes in these patients. However, for most of these phenotypes, there are clinical discrepancies
between siblings, which makes this less suggestive, even though the possibility of variable penetrance
cannot be ruled out. These limitations are inherent to this type of autosomal recessive disorders,
because most of them are rare hence making it impossible to have large cohorts with only individual
probands. Another limitation is the incomplete information regarding the (non-)hemostatic parameters
in some of the original papers, which do not mention reference values, making it impossible to
correctly interpret the values in comparison to other patients, as the reference values tend to be highly
laboratory-dependent. Further, the details of the VK treatment, with regards to mode of administration,
VK dose, specific subtype of VK, and duration of the therapy, are often not or incompletely mentioned.
These details could possibly influence the response to treatment in the described patients. However,
the main purpose of this systematic review was to combine all known and described patients with
GGCX-related phenotypes and to explore the possibility of genotype—phenotype correlations for the
different phenotypes. This manuscript can be used as a guideline for future research on the GGCX
protein structure and function, which then can lead to new insights in the VK cycle.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/240/s1.

Acknowledgments: We would like to acknowledge Ariana Kariminejad for providing us with clinical pictures
of the PXE-like phenotype with a pigmentary retinopathy; Eva Y. G. De Vilder is a PhD fellow of the Research
Foundation-Flanders (Belgium) (FWO14/ASP/084); Olivier M. Vanakker is supported by a BOF research
fellowship from the Ghent University; Olivier M. Vanakker is a Senior Clinical Investigator of the research


www.mdpi.com/1422-0067/18/2/240/s1

Int. ]. Mol. Sci. 2017, 18, 240 30 of 34

Foundation-Flanders (Belgium); This research was also supported by a Methusalem grant of the Special Research
Fund (Bijzonder Onderzoeksfonds—BOF) from Ghent University (BOF08/01M01108).

Author Contributions: Eva Y. G. De Vilder and Jens Debacker collected the data; Eva Y. G. De Vilder reviewed
and corrected the data; Eva Y. G. De Vilder wrote the manuscript; Olivier M. Vanakker reviewed the manuscript;
and Jens Debacker designed Figure 2.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA amino acid

ABCC6 ATP-binding cassette, subfamily C, member 6
ADCL1 autosomal dominant cutis laxa, type 1

aPTT activated partial thromboplastin time

ARSE arylsulphatase E

ATP adenosine triphosphate

AXL AXL receptor tyrosine kinase

cOC gamma-carboxylated osteocalcin

EC Escherichia coli

EF elastic fiber

ER endoplasmic reticulum

FII coagulation factor II

FIX coagulation factor IX

FVII coagulation factor VII

FX coagulation factor X

Gasb6 growth arrest-specific 6

GGCX gamma-glutamyl carboxylase

Gla gamma-carboxyglutamate

Glu glutamate

GRP gla-rich protein

HGVS Human Genome Variation Society

HTTM horizontally transferred transmembrane domain
INR international normalized ratio

kDa kiloDalton

MerTK Mer tyrosine kinase proto-oncogene

MGP matrix gla protein

ocC osteocalcin

OMIM online mendelian inheritance in man

P[1-45] patient identification

PRGP proline-rich gla protein

PRISMA-P preferred reporting items for systematic reviews and meta-analysis protocols
ProS protein S

PT prothrombin time

PXE pseudoxanthoma elasticum

RmIC deoxythymidine-6-deoxy-D-xylo-4-hexulose 3,5 epimerase; EC5.1.3.13
RmlC-like RmIC-like jelly roll fold

RTK receptor tyrosine kinase

SNP single nucleotide polymorphism

TMD transmembrane domain

T™MG transmembrane gla protein

ucOC uncarboxylated osteocalcin

VK vitamin K

VKDP vitamin K-dependent protein

VKORC1 vitamin K epoxide epoxide reductase complex, subunit 1

WBSCR Williams-Beuren syndrome critical region
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