Supplementary Materials: Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

Minyong Kang, Kyoung-Hwa Lee, Hye Sun Lee, Chang Wook Jeong, Cheol Kwak, Hyeon Hoe Kim and Ja Hyeon Ku

Gefitinib

Figure S1. Non-significant anti-cancer effects of epithelial growth factor receptor (EGFR) inhibitors on J82 human bladder cancer cells and autophagy activation. (A) clonogenic assay evaluating the anti-cancer effects of lapatinib and gefitinib $(5 \mu \mathrm{M})$ for 10 to 14 days on J82 human bladder cancer cells. (B) Western blot analysis of autophagy activation by determining the expression of LC3I/II under (a) different dosages $(0,2.5,5$ and $10 \mu \mathrm{M})$ and (b) different treatment times $(0,4,8$ and 12 h$)$.

A

a

Figure 2. Synergistic anti-cancer effects of EGFR inhibitors and autophagy inhibition on J82 human bladder cancer cells. (A) Evaluation of anti-cancer effects of gefitinib ($5 \mu \mathrm{M}$) in J 82 human bladder cancer cells by performing cell viability analysis under different treatment combinations (control, gefitinib, autophagy inhibitors and both agents). The autophagy inhibitors used in this study were 5 nM of bafilomycin A1 (BFA1), $10 \mu \mathrm{M}$ of chloroquine (CQ) and 10 mM of 3-methyladenine (3-MA). Cell viability is shown as the mean percentage (\%) of the control $\pm \operatorname{SEM}(n=3, * * p<0.01, * * * p<0.001)$. (B) (a) Western blot analysis to determine the knock-down efficiency and autophagy suppression by transfection of ATG12-siRNA (si_ATG12) (50 nM) for 48 h in J82 cells, combined with $5 \mu \mathrm{M}$ of gefitinib treatment. Scramble siRNA (si_Con) (50 nM) was used as a negative control of si_ATG12. (b) Under the same treatment conditions of gefitinib $(5 \mu \mathrm{M})$ and 50 nM of si_ATG12 for 48 h , the cell viability assay was performed and data are represented by the mean percentage of the control \pm SEM ($n=3$, * $p<0.05$).

