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Abstract: Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal
dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently
need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major
clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms
remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M)
in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels
of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a
consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in
the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation.
A “gain of toxicity” model has, thus, been proposed based on these observations. However, studies
of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a “loss of function”, resulting
in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses.
We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely
define the disease mechanisms.

Keywords: CMT2B; peripheral sensory neuropathy; NGF; Rab7; mutations; axons; lysosomes;
autophagy

1. Introduction

Charcot Marie Tooth (CMT) neuropathies are clinically and genetically heterogeneous hereditary
diseases with a prevalence of ~1/2500 [1–9]. CMT has many subtypes (CMT1-4, CMTX) that affect
motor and/or sensory nerves resulting in progressive distal muscle weakness and atrophy, foot
deformities, distal sensory loss [10], and decreased or absent tendon reflexes [11–18]. Approximately
40 genes/loci have been identified to be associated with CMT [1], and no effective treatments are
presently available [7,19,20]. CMT1 is the demyelinating disease [1,7,20–22]. CMT2 displays prominent
axonal dysfunction [23]. CMT3 leads to severe infantile demyelinating neuropathy [2,4,5,12,13,21,22].
CMT4 represents subtypes of autosomal recessive demyelinating motor and sensory neuropathies.
CMTX is caused by a point mutation in the connexin-32 gene located on the X chromosome [4,13,21,22].

CMT2 also has many subtypes (A, B, D, E, H, I) [1,2,6,12]. These subtypes are clinically similar and
classified based on molecular genetic findings. Specifically, we discuss CMT2B, a hereditary peripheral
sensory neuropathy characterized by distal sensory loss, muscular weakness, and recurrent foot ulcers.
Onset typically occurs between the first to third decade of life [6]. Affected limbs are prone to muscle
atrophy and soft tissue infections, often leading to necessary amputation. Variable motor involvement
coupled with prominent sensory loss and associated ulcerations have made the distinction of CMT2B
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between a hereditary motor and sensory neuropathy (HMSN) and hereditary sensory and autonomic
neuropathy (HSAN) difficult [14,24,25].

While the prevalence of CMT is about 40 per 100,000 individuals [1,26], the prevalence of the
various CMT2 subtypes remains unknown. This is largely because other causative genes have yet
to be accounted for [27]. In addition, cultural standards and socioeconomic restraints in certain
population areas may prevent clinical manifestations from being reported and treated, such as the
Chinese-associated CMT2B N161I mutation [28]. Furthermore, patients with CMT2B may be difficult
to distinguish from those with HSAN1 caused by mutations in the SPTCL1 genes [29].

2. Rab7 Mutations Are Associated with CMT2B

The primary pathological feature of CMT2B is chronic axonal degeneration caused by mutations
in Rab7, a ubiquitously expressed GTPase that serves as the master regulator of vesicular trafficking,
maturation, and fusion in the late endocytic pathway [30]. Primarily localized in acidic pre-degradative
and degradative organelles, such as late endosomes, lysosomes, and autophagosomes, Rab7 presents on
the cytosolic surface of the vesicle membrane and interacts with various downstream effectors to carry
out its regulatory functions [31,32]. Specifically, Rab7 orchestrates the transition of early endosomes
into late endosomes, and the subsequent degradation of their associated cargos. This includes the
lysosome-mediated degradation of epidermal growth factor (EGF) and its receptor EGFR, nerve
growth factor (NGF), and tropomyosin receptor kinase A (TrkA). It has, therefore, been proposed
that neurodegeneration in CMT2B is attributable to disrupted neurotrophin trafficking by mutant
Rab7 [33].

Conformational changes to the nucleotide binding pocket permit Rab7 to switch between its
active (GTP bound) and inactive (GDP bound) forms. However, in CMT2B, five missense point
mutations (L129F, K157N, N161T/I, and V162M) [17,28,34,35] occurring near the nucleotide binding
pocket (Figure 1) decrease nucleotide affinity, causing unregulated nucleotide exchange [36–38].
The resulting mutants are more prone to bind GTP and behave similarly to constitutively active
Rab7Q67L [39]. Numerous studies have proposed that disease pathogenesis is attributable to increased
Rab7 activity [33,37–40], suggesting treatment development should focus on inhibiting mutant
pathways. However, some studies using Drosophila have proposed CMT2B pathology results from
partial loss of Rab7 function [41]. To resolve this controversy, we conducted a comprehensive
review of previous literature characterizing CMT2B associated Rab7 mutants. Ultimately, our
findings suggest that CMT2B pathology is induced likely by overall gain of functionality in Rab7
mutants, characterized by excessive protein activation resulting in enhanced effector interactions and
dysregulated endolysosomal transport.
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3. Possible Pathogenic Mechanisms

All known CMT2B Rab7 mutations cause pathology in heterozygosity. As such, CMT2B is
classified as an autosomal dominant disease [14]. Most dominant mutations lead to a gain of protein
function, typically manifesting as increased activity, novel functionality, or abnormal expression
of the gene product. However, some dominant mutations are associated with a loss of function;
these mutations are typically dominant negative or result in haploinsufficiency. Prior experiments
have demonstrated that CMT2B Rab7 mutations are not dominant negative. For example, CMT2B
mutants can bind GTP similarly to wild-type and constitutively-active Rab7Q67L [39]. On a cellular
level, CMT2B mutants in HeLa cells coupled strongly with effector Rab-interacting lysosomal protein
(RILP) to facilitate EGF degradation, while dominant negative RabT22N inhibited degradation due
to weak interactions with RILP [39]. In addition, CMT2B and constitutively active Rab7 mutants
reduced neurite outgrowth while dominant negative Rab7T22N showed no significant effect both
in vitro and in vivo in PC12 cells and zebrafish embryos [33,43]. In fact, inhibition of Rab7 activity by
overexpressing Rab7T22N was shown to trigger NGF-induced neurite outgrowth in PC12 cells [44].
While Rab7 CMT2B mutants are known to increase Erk1/2 phosphorylation in PC12 cells upon
NGF-TrkA signaling, phosphorylated Erk1/2 was shown to accumulate in the cytosol rather than the
nucleus, which could explain the inhibitory effect on neurite outgrowth [45]. Ultimately, these findings
suggest CMT2B pathogenesis is likely caused by a gain of function in Rab7, and not attributable to
dominant negative mutations.

Studies have also demonstrated that CMT2B pathology is not attributable to Rab7
haploinsufficiency. CMT2B mutants demonstrated active functionality by rescuing Rab7 function
after endogenous Rab7 expression in transfected HeLa cells was silenced [39]. In addition, CMT2B
mutant levels at and below endogenous Rab7 levels rescued Rab7 haploinsufficiency in Drosophila
photoreceptor neurons [41]. Ultimately, the dominant nature and rescue of Rab7 function by CMT2B
mutants support a gain of function characterization.

It is worth noting that although CMT2B Rab7 mutants show decreased general nucleotide
affinity [37,39], there is little evidence to suggest an intrinsic GTPase defect or a net reduction in protein
activation, which would support a loss of function hypothesis. Indeed, hydrolysis of radiolabeled
GTP by CMT2B mutants occurred at significantly slower rates in competition with excess unlabeled
GTP compared to wild-type Rab7 [37,39]. While this can be explained by an intrinsic GTPase defect,
the results were ultimately attributed to an increased rate of GTP dissociation in CMT2B mutants, as
demonstrated by partial rescue of the GTPase defect after omitting the competing unlabeled GTP from
the assay [37]. Consistently, increased concentration of the radiolabeled GTP further restored GTPase
activity in the same experiment, and a structural characterization of Rab7L129F showed alterations to the
nucleotide-binding pocket while conformations in catalytic sites were normal [37]. It is therefore worth
emphasizing that reduced nucleotide affinity and a lower rate of hydrolysis per nucleotide binding
event does not necessitate a net reduction in protein activation when GTP is in constant supply, as is the
case in vivo [37]. In fact, dysregulated nucleotide exchange in CMT2B mutants resulted in an increased
fraction of active, GTP-bound Rab7 [37,39], consistent with the gain of function characterization of
CMT2B mutations.

As such, several previous studies have proposed gain of function mechanisms [33,37–40] to
explain the dominant phenotypes of mutant CMT2B genes. Compared to wild-type Rab7, CMT2B
mutants L129F and V162M showed increased interactions with its specific effectors, including
dynein-dynactin recruiting RILP, vacuolar protein sorting-associated protein 13 (Vps13C), and
cholesterol sensor oxysterol-binding protein-related protein 1L (ORP1L) [37,39] (Table 1). CMT2B
mutants also showed stronger affinity for clathrin heavy chain, intermediate filament protein
peripherin, and increased phosphorylation of vimentin in HeLa and Neuro2A cells compared to
wild-type Rab7 [37,40,46]. There is also evidence that CMT2B mutants could interact more frequently
with effector Rabring7, an ubiquitin ligase that regulates EGFR degradation. Upregulating Rabring7
activity was shown to increase perinuclear aggregation of lysosomes [47]. Expression of constitutively
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active Rab7 also led to clustering of late endosomes in the perinuclear region, which delayed entry
of EGFR into late endosomes. This subsequently delayed EGFR degradation and led to a prolonged
mitogen-activated protein kinase (MAPK) activation [48], consistent with the effect of CMT2B mutants,
which activate Rabring7 in a nucleotide-dependent manner [45,47].

Table 1. Impact on effectors by Rab7 mutations in CMT2B.

Effector Function CMT2B Rab7 Reference

HOPS Complex Tethering (regulates endosomal
membrane fusion)/GEF

Possible decreased interaction.
CMT2B mutants can exchange
GTP in GEF-independent manner.

[30,37,49–53]

RILP/ORP1L

Recruit and activate dynein-dynactin
motor complex. Regulate late
endosome/lysosome organization
and transport

Increased interaction shown in
L129F and V162M mutants. [37,54–57]

Vps13C Vacuolar protein
sorting-associated protein

Increased interaction shown in
L129F and V162M mutants. [37]

Retromer Core
Complex

Regulates retrograde transport from
endosomes to trans-Golgi network.

Possible increased interaction.
Rab7 binds in nucleotide
dependent manner.

[58,59]

Rabring7 Ubiquitin ligase that regulates
EGFR degradation

Possible increased interaction.
Rab7 binds in nucleotide
dependent manner.

[45,47,48,60]

A potential consequence of increased Rab7-effector interactions could be altered axonal transport
speeds of mutant-containing vesicles. Indeed, all CMT2B mutant-containing vesicles moved at faster
anterograde speeds in rat DRG neurons compared to their wild-type counterpart [33]. In Drosophila
sensory neurons and mammalian neuroblastoma neurites, axonal transport of mutant L129F-containing
vesicles paused less often compared to wild-type vesicles [61]. Similarly, mutant N161T and
V162M-containing vesicles paused less often in vertebrate zebrafish embryos [43]. However, the
same study showed reduced vesicle transport speeds in L129F and K157N containing vesicles [43].
The contradictory findings from different models and cell types illustrate the diverse and complex
nature of CMT2B Rab7 mutants and their effects on neurobiology. However, increased interaction
with downstream effectors and altered vesicle transport are both attributable to Rab7 hyperactivity,
collectively validating a gain of function characterization of CMT2B Rab7.

Variations among observed mutant phenotypes could exist due to differences in cell types, motor
proteins, and sub-cellular signaling processes. Steric effects could also vary between different CMT2B
mutations and differentially impact endosome dynamics. Indeed, RabK157N was the first CMT2B
mutant associated with a loss of function. Studies have shown that K157N, unlike other CMT2B
mutants, does not interact with the retromer complex [62,63]. This supports the postulate that a
slower membrane cycling of CMT2B Rab7 mutants inhibits trafficking and degradation of endocytosed
growth factor receptors [64]. The alternative hypothesis suggests that pathogenesis stems from more
rapid degradation of the endocytosed growth factor receptors [33,38]. However, we propose that both
postulations could be explained by a consensus increase in anterograde axonal transport speeds of
CMT2B mutant-containing vesicles [33]. Unlike in normal neurons (Figure 2A), increased Rab7 activity
and subsequent upregulated anterograde axonal transport of both degradative and non-degradative
systems could prematurely degrade (Figure 2B) or hinder (Figure 2C) critical trophic signals from
reaching the nucleus. Collectively, both hypotheses suggest that differential interactions of CMT2B
mutants with their specific effectors disrupt the efficiency of normal endosomal protein sorting and
trafficking. This would be particularly detrimental in the long axons affected in CMT2B patients [62].
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Figure 2. Proposed models of pathogenic mechanism. Under normal conditions, Rab5 and Rab7 
deliver trophic signals to the soma under tight regulation. Upon delivery of the signal, Rab5-positive 
early endosomes transition to late endosomes/lysosomes facilitated by Rab7 (A). In CMT2B, 
hyperactive Rab7 vesicles with greater affinity for downstream effectors could travel at faster 
anterograde speeds, resulting in premature fusion and degradation of signal-carrying Rab5 
endosomes (B). Alternatively, hyperactivation of Rab7 vesicles could lead to aggregation of late 
endosomes/lysosomes near the nucleus and in the axon, consequently blocking trophic signals from 
reaching the soma (C). 

An accurate functional characterization of CMT2B mutants is crucial to directing therapeutic 
development towards either inhibiting or upregulating endogenous Rab7 function in patients. More 
studies could be done to further test for gain of Rab7 functionality of CMT2B mutants. For instance, 
changes in effector interactions could be assessed for the homotypic fusion and protein sorting 
(HOPS) tethering/GEF complex, Vps35-Vps26-Vps29 core retromer complex, and Rabring7. In 

Figure 2. Proposed models of pathogenic mechanism. Under normal conditions, Rab5 and Rab7 deliver
trophic signals to the soma under tight regulation. Upon delivery of the signal, Rab5-positive early
endosomes transition to late endosomes/lysosomes facilitated by Rab7 (A). In CMT2B, hyperactive
Rab7 vesicles with greater affinity for downstream effectors could travel at faster anterograde speeds,
resulting in premature fusion and degradation of signal-carrying Rab5 endosomes (B). Alternatively,
hyperactivation of Rab7 vesicles could lead to aggregation of late endosomes/lysosomes near the
nucleus and in the axon, consequently blocking trophic signals from reaching the soma (C).

An accurate functional characterization of CMT2B mutants is crucial to directing therapeutic
development towards either inhibiting or upregulating endogenous Rab7 function in patients. More
studies could be done to further test for gain of Rab7 functionality of CMT2B mutants. For instance,
changes in effector interactions could be assessed for the homotypic fusion and protein sorting (HOPS)
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tethering/GEF complex, Vps35-Vps26-Vps29 core retromer complex, and Rabring7. In addition,
overexpression of Rab7 was shown to reduce toxic cholesterol accumulation in Niemann-Pick type
C cells [65]. As such, Rab7 overexpression could be replaced with endogenous levels of CMT2B
mutants to see if a similar effect occurs. Gene targeting could also be used in future studies to compare
phenotypes between heterozygous and homozygous CMT2B knock-ins, and to determine if CMT2B
genes are haplosufficient. However, findings from previous studies encompass extensive genetic and
biochemical analyses that strongly support a gain of function classification of CMT2B mutations. These
results reaffirm the current consensus that future treatments should aim to ultimately inhibit Rab7
hyperactivity in affected patients.

4. Conclusions

CMT2B peripheral sensory neuropathy is a rare genetic disorder caused by single point mutations
in Rab7. Since Rab7 is expressed ubiquitously, it is extremely intriguing why only peripheral sensory
neurons, are affected in the disease. Current studies have indicated that enhanced lysosomal and
autophagic activities are likely responsible for diminishing NGF trafficking and signaling and inducing
axonal degeneration in CMT2B. A thorough understanding of the disease mechanisms will reveal the
fundamental biology of Rab7. In addition, these efforts will have important implications in research of
other neurodegenerative diseases, since Rab7 has also been implicated in Parkinson’s diease [66–69]
and Niemann Pick disease [65].
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