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Abstract: Challenged by population increase, climatic change, and soil deterioration,
crop improvement is always a priority in securing food supplies. Although the production of
grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make
them important components of food security. Nevertheless, limited by severe genetic bottlenecks
during domestication and human selection, grain legumes, like other crops, have suffered from a
loss of genetic diversity which is essential for providing genetic materials for crop improvement
programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various
environments were shown to maintain high genetic diversity. In this review, we focused on nine
important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin,
and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop
breeding and improvement, and summarized the various genetic/genomic approaches adopted for
these purposes.

Keywords: domestication; genetic bottleneck; genetic diversity; genomics-assisted breeding; grain
legumes; wild germplasms

1. Introduction

Wild plants have been domesticated for thousands of years since the beginning of human
civilization, as a means to ensure a stable food supply. Through plant breeding activities over the
centuries, crop plants have been manipulated to develop new and desirable traits [1]. The artificial
selection processes based on phenotypes (Appendix A) drove the development of new varieties with
desirable features and are considered the most ancient form of plant breeding. Over time, these new
species or varieties have become genetically diverged from their original progenitors.

Challenged by the demand of the ever-increasing global population [2], the negative effects of
mono-cropping and climate change [3], there is constant need for crop improvement. Furthermore, the
genetic diversity of crops is generally low due to a strong bottleneck effect during domestication and
artificial selection, hence limiting the potential for crop improvement [4].

Wild relatives are potential genetic resources for crop improvement [5-7], as well as for exploring
new or alternative production systems. The rationale is straightforward: wild populations must
contain higher genetic variability as they were propagated in a wide range of habitats without human
selection [8]. Just to demonstrate this point, desirable traits such as biotic and abiotic stress resistances

Int. J. Mol. Sci. 2017, 18, 328; doi:10.3390/1jms18020328 www.mdpi.com/journal/ijms


http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms

Int. ]. Mol. Sci. 2017, 18, 328 2 0of 28

and special nutritional values important for crop improvement can be found in some of the wild
relatives [9,10]. On the other hand, since the genetic modification of food crops is still controversial
among the public, it is more acceptable to introduce genetic materials from wild relatives (of the
same or closely related species) into crop varieties through breeding, hybridization or some other
techniques [11] to generate improved crops. Although the use of wild relatives as sources of new
alleles (Appendix A) is challenging due mainly to the linkage drag (Appendix A), advances in genetic
and genomic researches of crop plants and their wild relatives have expanded our understanding on
complex traits and led to the discovery of new genes.

The idea of generating exotic genetic libraries in order to accelerate plant breeding is further
supported by the development of genomic and genetic tools in the post genomic era [12]. Nonetheless,
many genetic populations generated over the years have not been further genotyped or phenotyped
under different environmental conditions. It is also important to point out that wild genetic
materials are not always available, and therefore establishing formal holding institutions for each
crop worldwide, together with constant selection and conservation of this biodiversity, should be a
priority. Two recent review papers have summarized the main repository institutions in the world
for grain legumes as well as the number of introductions and collections of both cultivated and wild
pulses [13,14].

Molecular plant breeding has been hailed as the foundation of 21st-century crop improvement
and it integrates traditional plant breeding practices, molecular markers, genomic research and
biotechnology [15]. Undoubtedly, the development of tools and strategies over the past 30 years has
contributed multi-dimensionally to crop improvement and the information generated is huge and
complex. However, one should note that the success of any breeding program for crop improvement
depends on the plant material, and specifically on its variability for key traits.

Grain legumes refer to legumes the seeds of which are harvested for consumption. Commonly
known grain legumes include soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin and
pigeonpea. The current agronomic challenge is the generally lower yield in grain legumes compared to
cereals, together with the difference between their role as a diet staple for certain populations and the
geographical locations where they are grown [13]. However, unlike cereals, most of the grain legumes
are good sources of protein which make them good substitutes for animal proteins. The seeds of grain
legumes are also sources of edible oils and other compounds of high nutraceutical values [16]. Another
unique feature of legumes is that they are able to interact with soil rhizobium to fix atmospheric
nitrogen. Such a mutualistic relationship provides nitrogen to support the growth of the legume plant
and helps replenish soil fertility, thus minimizing the need for inorganic nitrogen fertilizers. As a result,
legume is usually used in crop rotation or intercropping practices to improve diversity, quality and
sustainability in traditional food production systems, providing an excellent solution for increasing
agro-ecosystem services.

In this review, we will focus our discussions on grain legumes as 2016 has been declared
the International Year of Pulses by the United Nations. We will include a brief history of their
domestication, a description on the impacts of genome sequencing on the studies of wild relatives
through the generation of genetic maps, the use of the new strategy of genotyping-by-sequencing
(GBS) and the search and introgression of wild alleles in breeding programs. Finally, we will discuss
our perspectives on the roles of wild relatives in the new challenges that arise in agriculture.

2. A Brief History of the Domestication of Major Grain Legumes

Grain legumes were planted as companion crops of wheat and barley when agriculture began in
the Near East [17,18], while some other important grain legumes have their origins of domestication
in Asia and the New World. The domestication of plants was generally associated with centers
of cultural diversity along with fascinating relationships between ancient human settlements and
particular phytogeographic characteristics. It is difficult to trace back the history of domestication,
but today a significant amount of information generated by agronomists, biologists, anthropologists
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and historians has been made available to support the community hypothesis on the centers of origin
and domestication. These descriptions painted a complicated picture of the domestication process
through the associations with different ancient civilizations, such as how it was done before and after
the existence of seed exchanges for cultivation, natural or intentional crossbreeding with wild relatives
in different parts of the world, etc. In this section, we will summarize the existing information about the
centers of origin and domestication of grain legumes analyzed in this review. This information allows
us to grasp their importance in ancient times, understand their history of domestication and identify
potential geographical locations of the divergence from their wild ancestors for future improvement.
In addition, the concept of “gene pool” proposed by Harlan and de Wet (1971) [19] is particularly
important for using wild relatives for crop improvement. The classification of crop related species
is not based on formal taxonomy, but on gene pools with different levels (possibilities) of crosses.
Primary, secondary and tertiary “gene pools” refer to subspecies or species that can, respectively:
(i) freely cross with crops to produce fertile hybrids; (ii) cross with crops to produce a degree of fertile
hybrids; and (iii) cross with crops only by using special approaches such as chromosome doubling,
embryos rescue, tissue culture, etc.

Soybean (Glycine max L.): Soybean is one of the oldest crops [20]. The cultivated soybean
was domesticated from an endemic wild species in China, Glycine soja Siebold & Zucc., probably
6000-9000 years ago [21]. Theodore Hymowitz, an eminent researcher in the history of soybean,
has suggested that it is unlikely we will ever know the exact time when soybean cultivation began,
and, based on early bronze inscriptions, domestication may have occurred during the Shang Dynasty
(1500-1100 B.C.) [22]. There is evidence that soybean appeared to be domesticated during Zhou dynasty
in northeastern China [22], corresponding to Vavilov’s Chinese-Japanese center [20]. The earliest
documented evidence of Glycine spp. use by humans came from a Neolithic site 7800-9000 years ago
in Jiahu, Henan Province, where charred remains of soybean were recovered [21].

Peanut (Arachis hypogaea L.): The center of origin of Arachis spp. is South America, with wild
species found in Bolivia, Brazil, Paraguay, Argentina and Uruguay. The oldest archaeological records of
A. hypogaea came from Huarmey Valley, Peru, dating from approximately 35004500 years ago [23,24],
although there is evidence suggesting that peanut could have originated in northern Argentina and
eastern Bolivia [25]. There are also records of peanut use by ancient people in Nanchoc Valley in
northern Peru approximately 7840 years ago, although these records may correspond to the use
of wild species or the very early stage of domestication [26]. Archaeological together with genetic
evidence suggests that A. monticola Krapov. & Rigoni is the tetraploid wild ancestor from which the
peanut was domesticated [26,27], in a complex scenario which involved natural evolution and human
domestication of diploid species distributed in Argentina and Bolivia [27]. Important evidence suggests
that two diploid wild species, Arachis duranensis Krapov. & W.C.Greg. (AA) and Arachis ipaensis
Krapov. & W.C.Greg. (BB), are the progenitors of cultivated peanut. A single hybridization event
between the two progenitors followed by genome duplication about 3500 years ago led to the origin of
cultivated peanut [28,29].

Pea (Pisum sativum): Pisum sativum L. has its origin and domestication in the Mediterranean,
primarily in the Middle East, about 10,000 years ago [30,31]. There are currently thousands of pea
varieties from hundreds of years of selection and breeding. The natural growing range of the wild
representatives of P. sativum (Pisum elatius M. Bieb. and Pisum humile Boiss. & Noé€) extends from
Iran and Turkmenistan through Anterior Asia, northern Africa and southern Europe. However, it is
difficult to precisely locate the diversity center given the early domestication and the diverse areas
of cultivation [32]. Three pea types are currently recognized: (i) Pisum sativum, which extends from
Iran and Turkmenistan through Anterior Asia, northern Africa and southern Europe; (ii) P. fulvum
Sibth. & Sm., which is found in Jordan, Syria, Lebanon and Israel; and (iii) P. abyssinicum A. Braun,
which is found from Yemen to Ethiopia [33]. It was suggested that both P. sativum and P. fulvum were
domesticated in the Near East about 11,000 years ago from an extinct ancestor of Pisum spp., and
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P. abyssinicum was developed from P. sativum independently in Old Kingdom or Middle Kingdom
Egypt about 4000-5000 years ago [34].

Chickpea (Cicer arietinum L.): Chickpea was domesticated from the wild progenitor, C. reticulatum
Ladiz., known from southeastern Turkey and adjacent Syria about 11,000 years ago [35,36]. It is
interesting that, unlike other legumes, the center of origin of the wild progenitor is confined to a
small specific area. Domesticated chickpeas have been found in archaeological sites corresponding
to the Pre-Pottery Neolithic period and is one of the “founder crops package” that gave rise to
farming [30]. Two main chickpea varieties are currently cultivated worldwide: the small-seeded desi
and the larger-seeded kabuli [37].

Common bean (Phaseolus vulgaris L.): Most Phaseolus species of small seed and leaf were originated
from Mesoamerican [38—40]. Common bean was domesticated in Mesoamerica and in the Andes about
5000 years ago and an important number of investigations have revealed and followed the complex
evolutionary and domestication history of the different genetic pools [41—43]. Interestingly, there is a
wide variety of common bean, all belonging to the same species and are classified as “landraces” with a
fascinating diversity of seed sizes, shapes and colors. They are the results of a complex and magnificent
history of domestication and selection. While P. vulgaris is the most economically important species of
Phaseolus, there are other species of the genus that have been domesticated: P. [unatus L., P. dumosus
Macfad., P. coccineus L. and P. acutifolius A. Gray.

Lentil (Lens culinaris Medik.): Lentil is one of the oldest crops cultivated and domesticated by
humans on the planet and has been recovered from archeological sites dating from the Neolithic
period [44]. Lentils were domesticated in the Near East in an area called “the cradle of agriculture’
about 11,000 B.C. [45] from the wild progenitor, Lens culinaris subsp. orientalis (Boiss.) Ponert.

Cowpea (Vigna unguiculata [L.] Walp.): Cowpea is widely cultivated in the semiarid and
sub-humid zones of Africa and Asia as one of the most important food for sub-Saharan populations,
adaptable to marginal and changing environments [14]. With sparse evidence, the history of cowpea
domestication remains to be elucidated, complicated by the diverse morphology and widespread
distribution of the wild species [46]. Central-southern Africa seems to be the center of origin of
cowpea, and west Africa and India are the first and second most probable centers of domestication
respectively [47,48]. The earliest archaeological evidence of cowpea cultivation in Africa dated
from 1830-1595 B.C. [46]. The wild progenitor of cowpea is V. unguiculata var. spontanea (formerly
var. dekindtiana).

Lupin or lupini bean (Lupinus L.): The Mediterranean region and the American continent are
two centers of wild lupin and of domestication. It was probably introduced into cultivation in the
Old World in ancient Greece. The earliest archaeological evidence of lupin dated from 2000 B.C. in
the tombs of Egyptian Pharaohs where domesticated seeds were discovered. Andean pearl lupin
(L. mutabilis) was domesticated in 6th—7th Century B.C. in America, by a pre-Incan culture in what is
modern-day Peru. L. albus L. (white lupin), L. luteus L. (yellow lupin), L. angustifolius L. (narrow-leafed
lupin), L. mutabilis Sweet (pearl lupin) and L. polyphyllus Lindl. (multifoliate or Washington lupin) are
currently under widespread cultivation for many different proposes [49].

Pigeonpea (Cajanus cajan [L.] Millsp): Populations of the wild progenitor, Cajanus cajanifolius
(Haines) Maesen, have been identified in eastern Peninsular India alongside a diverse group of other
Cajanus species. C. cajanifolius is rare today, probably due to habitat loss [50,51]. Archaeological evidence
suggests that pigeonpea could have been domesticated during the middle of the 2nd Millennium B.C.
by settlements in Orissa, close to the areas where the wild species grew (Cajanus cajanifolius Gopalpur
and Golbai) [51]. Currently, pigeonpea is widely cultivated in all tropical and semitropical regions.

7

3. Plant Domestication: More Than a Syndrome

Loss in genetic diversity due to the founder effect and domestication syndrome are two main
characteristics of cultivated crops. Domestication syndrome is defined as all the morpho-physiological
modifications that make the cultivated crops different from their wild ancestors, conferring adaptability
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for agriculture [43,52]. Some of these include changes in growth habits, seed dispersal mechanisms,
loss of germination inhibition, etc. These changes seem to have occurred in parallel in different
regions of our planet [53]. A conceptual framework has been proposed to distinguish between crucial
domestication and crop evolution/diversification traits, i.e., between short episodes and long-term
historical processes such as domestication [54]. In this context, it is worth noting that archaeobotany
has also characterized and contrasted different patterns of domestication, such as that between legumes
and non-legume crops. Regarding the seed size, grain legumes do not show evidence of seed size
increase with domestication, although selection pressure persisted for larger seeds in association
with animal-drawn ploughs (or ards) [55]. Others have proposed that the seeding depth by humans
might have contributed in some circumstances to increasing the biomass of the seed, but this did not
seem to have strong empirical support after testing [56]. This shows how agriculture is an interaction
between cultural behavior and management practices acting together on the available genetic diversity
of plants.

Likewise, the scientific discussion about conscious or unconscious selections is a topic of great
importance in relation to plant domestication. If cultivation practices and regimes were strong
selection pressures during the domestication of crops, we should also study the desires and decisions
of human beings [57]. There is increasing evidence suggesting that humans have actively modified
particular ecosystems to increase the availability of certain plant resources hundreds of years before
the manifestation of the indicators of domestication [58].

No matter what the situations were, it is encouraging to consider the progress that has been made
and what can be foreseen regarding the understanding of the spatio-temporal patterns of domestication,
the speed at which it happened, intentionality versus serendipity, etc. [59]. Finally, it is important to
keep in mind that the plant domestication process is still occurring at present [60]; that it is not only a
series of events from the past. There is still great potential yet, with the unprecedented development of
selection tools that would allow us to produce more and higher quality food for our planet.

4. Revisiting the Genetic Diversities and Potentials of Wild Relatives of Crop Plants

The release of the reference genome of the dicot model plant Arabidopsis thaliana in 2000 [61]
and the two rice genomes [62,63] marked the beginning of the age of plant genome sequencing.
Nevertheless, the cost of sequencing a crop genome was barely affordable at that time. The advances in
next-generation sequencing technologies have largely reduced the sequencing cost and labor required.
It is expected that the sequencing cost can be reduced from several million to several thousand US
dollars soon [64]. This makes sequencing of crop genomes more accessible to researchers and hence
more and more crop genomes are being sequenced in the hope of speeding up crop research. In recent
years, in addition to sequencing crop genomes, efforts have also been made to sequence the genomes
of their wild relatives (Table 1). The data would facilitate greater understanding of the evolution or
domestication relationship between the crops and their wild relatives, while at the same time they
would also provide a solid ground for the mining of important genetic resources from the wild species.
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Table 1. De novo whole-genome sequencing results for various grain legumes.

6 of 28

Assembled Genome

Predicted Genome

Available

Crop Genus Species Germplasm Size (Mb) Size (Mb) Database(s) * Reference
Soybean Glycine max Cultivated (William 82) 950 1115 1,2 [65]
Soybean Glycine s0ja Wild 868 1170 [66]
Soybean Glycine s0ja Wild 813-985 889-1118 [67]

Peanut Arachis duranensis Wild 1211 1250 3 [28]
Peanut Arachis ipaensis Wild 1512 1560 [28]
Pea Pisum sativum N/D N/D 4685 # 4,5 [13]
Chickpea Cicer arietinum Cultivated (desi-type) 520 740 6,4,7 [68]
Chickpea Cicer arietinum Cultivated (kabuli-type) 532 738 [69]
Chickpea Cicer arietinum Cultivated (desi-type) 511 740 [70]
Chickpea Cicer reticulatum Wild 416 817 [71]
Common bean Phaseolus vulgaris Landrace 473 587 6,4,8,2 [41]
Common bean Phaseolus vulgaris Breeding lines 550 587 [72]

Lentil Lens culinaris N/D N/D 4032 # 4 [13]
Cowpea Vigna unguiculata Cultivated (IT97K-499-35) Not complete 620 9 [73]

Lupin Lupinus angustifolius Cultivated (Tanjil) 609 951 6,10,11 [74]

Lupin Lupinus angustifolius Cultivated (Tanjil) 598 1153 [75]

Pigeonpea Cajanus cajan Cultivated (Asha) 606 833 6 [76]
Pigeonpea Cajanus cajan Cultivated (Asha) 511 858 [77]

* Major online databases for de novo genome information:

N/D no data available; # The predicted genome size is extracted from [13]: 1, http://soybase.org;

2, https:/ /phytozome jgi.doe.gov/pz/portal.html; 3, http:/ /peanutbase.org/home; 4, http:/ /knowpulse.usask.ca/portal/; 5, https:/ /urgi.versailles.inra.fr/Data/Genome/Genome-
data-access; 6, http:/ /legumeinfo.org/genomes; 7, http:/ /nipgr.res.in/CGAP /home.php; 8, http://phaseolusgenes.bioinformatics.ucdavis.edu/; 9, http://cowpeagenomics.med.

virginia.edu/CGKB; 10, http:/ /www.lupinexpress.org/node/6; 11, http:/ /www.ncbi.nlm.nih.gov /bioproject/PRJNA179231.
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Comparative population genomic analyses have confirmed that wild species tend to have higher
genetic diversities, making the wild relatives promising natural reservoirs of potential genes/alleles
for crop improvement. Wild soybeans have been shown to have higher genetic diversities over
cultivated soybeans [78]. In addition to the overall genetic diversity, researchers have also uncovered
specific gene sequences unique to wild soybeans that confer enhanced disease resistance and metabolic
functions [78], which serve as good candidates for soybean improvement. In contrast, a study using
wild soybeans in Korea also identified possible gene loss events in wild species [79]. The discrepancy in
these two studies may imply that the outcome of any comparative genomic study on wild germplasms
really relies on the diversity of the wild collections. Qi et al. (2014) [66] conducted the de novo
sequencing of a wild soybean, Glycine soja (G. soja) W05 helping to build a deeper understanding
of the wild soybean genome and demonstrating the potential of its use for crop improvement.
Liet al. (2014) [67] also published the de novo assembly of 7 wild and cultivated soybeans and
provide a pan-genome analysis identifying lineage-specific genes, copy number variations and
mutations that are eventually associated with positive human selection for certain agronomic traits,
making this an important source of information regarding wild soybean genetic diversity. Using
a complete re-sequencing approach, Zhou et al. (2015) [80] analyzed the genomic diversities of
302 lines of wild soybeans, landraces and improved varieties. They also characterized important
genomic regions associated with domestication and improvement for important agronomic traits using
genome wide association studies and discovered that some traits are closely associated with specific
geographic regions.

In 2014, a high-quality reference genome of Andean (Peruvian) common bean (P. vulgaris) landrace
(G19833) was published along with the pooled re-sequencing analysis of 30 wild individuals from
the Mesoamerican and Andean populations. The results suggested that the wild Mesoamerican
populations are more genetically diverse than those from the Andes. Both populations are also
substantially different based on F; values (fixation index) (Appendix A), and the divergence probably
occurred ~165,000 years ago. An interesting contradiction occurred when comparing landraces and
wild relatives within each of the two genetic pools. Landraces from Mesoamerica are less diverse
than their wild counterparts while the Andean landrace populations are more diverse than their wild
Andean relatives [41]. Likewise, the recently published genome assembly of common bean BAT93 with
a Mesoamerican origin, together with transcriptomic and phylogenetic analyses, suggests that most
of the bean-specific gene family expansions predated the differentiation between Mesoamerican and
Andean gene pools and consequently prior to domestication. The latter results suggest that pre-existing
adaptations could contribute to the subsequent domestication process [72]. However, a complete
analysis of 577 accessions of common bean revealed the existence of several genetic groups and the
presence of varying degrees of diversity in Mesoamerica and the Andes based on the genetic-spatial
patterns of wild common bean. An interesting landscape genetics approach demonstrated that
demographic processes and natural selection are correlated with the characterized genetic structure.
This can be a source of potentially important genes associated with the adaptation to specific local
environmental conditions [81].

The draft genome sequence of chickpea (Cicer arietinum CDC Frontier, a kabuli variety) published
in 2013 together with the re-sequencing of 29 elite (17 desi and 12 kabuli) varieties allowed us to
get a first glimpse at the genetic history of chickpea accessions [69]. The results suggested that the
genetic diversity in the desi group was slightly higher than in the kabuli group, but population structure,
diversity and phylogenetic analyses showed a mixing of desi and kabuli genotypes (Appendix A) during
breeding processes [69]. In the same year, the draft genome sequence of chickpea (Cicer arietinum
ICC4958, a desi variety) was also published [68] and the final version of this genome was released in
2015 [70]. The evidence suggests that the kabuli-type chickpea was recently derived from the desi-type
through artificial selection for increased seed size, from a small gene pool [82]. This hypothesis is
supported by results showing that the divergence of the two chickpea types occurred about 8000 years
ago. However, an older initial divergence can also be detected about 160,000 to 250,000 years ago [70].
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Recently, the SNP (Appendix A)-genotyping of 93 wild and cultivated Cicer spp. accessions on a
genome-wide scale revealed the natural allelic diversity, population genetic structure, phylogeny, etc.,
within a wider genetic pool [83]. High intra- and inter-specific polymorphic potential (66%—-85%)
and broader natural allelic diversity (6%—64%) were described, suggesting a great potential for the
discovery of new alleles of importance for specific geographical origin and phenotypic characteristics
in the wild Cicer primary gene pool [83].

Peanut (Arachis hypogaea) is an allo-tetraploid (AABB-type genome; 2n = 4x = 40) apparently
derived from a hybridization between two diploid species and further polyploidization [29,84].
A recent sequencing effort reported the genome sequences of its diploid ancestors, Arachis duranensis
and Arachis ipaensis, carrying the A and B subgenomes. The information generated, together
with empirical evidence by the crossing of these two species support the proposed hypothesis of
the origin of the cultivated peanut [28]. Armed with this genomic information on the diploid
ancestors, the researchers were able to characterize some genomic regions and genes probably
associated with disease resistance, and describe important genomic information such as gene
evolution, DNA methylation, and transposons, thus laying the foundation for more in-depth peanut
genomics studies.

Since the initiation of the pigeonpea genome project [85], a concerted international effort has been
made to elucidate the first draft genome of pigeonpea. The cultivated pigeonpea genome information
shows extensive synteny between pigeonpea and other legumes, including those belonging to different
clades but lacking the recent genome duplication as that found in soybean [76]. Population structure
analyses using SNPs from 79 pigeonpea accessions and 31 wild relatives disclosed information about its
domestication history and relationships with wild species. Evidence suggests that the recent gene flow
between cultivated and non-cultivated forms occurred probably as a result of frequent cross-pollination
between this diploid crop and its wild relatives. The gene pool of wild pigeonpea shows high genetic
diversity and the presence of rare alleles is potentially important for crop improvement [86].

Sequencing the genomes of lentil, pea and cowpea are being undertaken by the scientific
community. Lentil Genome v1.2 is available in a pre-release form [87]. Pea genome data are now
available at the Unité de Recherche Génomique Info (URGI; [88]). The elucidation of the cowpea
genome is moving forward by the Cowpea Genomics Initiative (CGI; [89]) and important progress has
been achieved to understand the genetic diversity among Vigna species, mainly by using traditional
markers [90-94]. A recent work using genotyping-by-sequencing of globally cultivated cowpea
genotypes (768 genotypes from 56 countries) revealed the worldwide distribution of genetic diversity
and structures, suggesting the existence of three genetically well-differentiated populations associated
with areas where the genotypes were collected, supporting the hypothesis of two areas of domestication:
West and East Africa as the first and India as a sub-domestication region of cowpea [95]. A previous
report also showed extensive gene flows between wild and domesticated types [96].

Lupin is an interesting complex of species of the genus Lupinus, and its domestication and
cultivation have origins in both the New and the Old World. There are more wild germplasms that
the cultivated ones, and the main repository institutions are summarized in an excellent review [14].
However, much work still needs to be done to research the genomic information for all lupin species.
The lupin genomes vary widely in terms of chromosome numbers. The taxonomy has been confusing
but it is being improved constantly [14,49,97-99]. Different morphological and ecological adaptations
are associated with lupins from the New World versus those from the Old World [100]. Given the
current importance of L. angustifolius, a draft genome of the narrow-leafed cultivar Tanjil has recently
been published, providing useful information for understanding the genetic basis in the genistoid
clade of Papilionoideae legumes and for facilitating genomics-based breeding approaches [74].

Complete genome releases and constant genome quality improvement will undoubtedly
accelerate the improvement of important traits of cultivated grain legumes [101,102]. The availability
of genomic information on incompletely sequenced grain legumes is critical, considering that many
of them are important staples in many poor countries. Therefore more time and money should be
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invested in increasing our knowledge of these neglected grain legumes, in order to facilitate the
improvement of specific features suitable for very small family farmers and/or alternative production
systems [13].

The genome information of both the crops and their wild relatives have also served as
the foundation for studies such as comparative genomics, functional genomics (transcriptomics,
proteomics and epigenomics), association mapping (Appendix A) and gene discovery. High-density
markers generated by sequencing are important for precise marker-assisted selections
(Appendix A) [103] of targeted beneficial genomic regions and the removal of undesirable regions
carried over from the wild species. Furthermore, genome-wide high-density markers are also important
for genomic selections [104] and the current unprecedented availability of technologies and genomic
information should have a significantly positive impact on the quality, diversity and speed of breeding
programs. The major breeding strategies of grain legumes, taking into consideration the genome size,
ploidy, genome availability and number of accessions in the main holding institutes in the world,
have been recently summarized [13,14].

In the following section, we will discuss the population approaches for dissecting the genetic
variabilities and looking for important genomic regions associated with traits for nine grain legumes,
especially focusing on the use of wild relatives as potential reservoirs of variability.

5. Traditional and Sequencing-Based Genetic Mapping Using Wild Relatives

In the past, through genetic mapping, we could locate the approximate positions of target loci
represented by the distance from gene markers in ¢cM. To identify the target gene, a large genetic
population is needed to pinpoint a small region in the genome. BAC (bacterial artificial chromosome)
sequencing or primer walking may be needed to identify the genes linked to the genetic markers.
With genome sequencing, the situation has improved. First, the physical positions of markers can be
found in well annotated reference genome. Secondly, sequences and gene models within the locus
of interest can be examined to pinpoint possible gene candidates for more in-depth studies. Thirdly,
by examining the genomic sequences, non-synonymous SNPs, InDels, and CNVs can be discovered,
which can then be used to explain the phenotypic differences.

An advantage of using wild crop relatives over the use of unrelated species is that the former
is more likely to produce fertile offspring with the domesticated crops for generating mapping
populations or for breeding purposes. Genetic mapping can involve the generation of different
kinds of populations, such as unrelated populations (mini-core collections), advanced backcross
populations (A-BC) [105], recombinant inbred lines (RILs) [106], near isogenic lines (NILs) [107], nested
association mapping (NAM) populations [108] and multi-parent advanced generation inter-cross
(MAGIC) population [109], and so on. Each method has its own advantages and serves a unique
purpose (Figure 1) [110].

Wild relatives have played unique roles in association mapping. In general, crop genomes have
long linkage disequilibrium (LD) half-lives [78,111-113]. The resolution of genome-wide association
mapping (GWAS) is usually dependent on the size of the LD block. Therefore, the resolution of maps
generated from cultivated varieties alone tends to be low owing to the low LD decay rate. Due to the
higher genetic diversity and probably higher outcrossing rate among wild germplasms, the genomes
of the wild relatives usually have higher linkage disequilibrium decay rates [78,111-113], and thus
they can serve as better materials for GWAS compared to the cultivated crops.

On the other hand, it has also been demonstrated that some QTLs (Appendix A) fixed
by domestication can hardly be mapped using cultivated populations. For example, two
100-seed weight loci on Chromosome 12 of the soybean genome suggested to be related to
domestication were only found in the wild soybean-derived populations and not the cultivated
soybean-derived populations [114]. Hence, mapping involving wild relatives may help discover more
domestication-related loci which may also be important for crop improvement.
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Figure 1. Population approaches commonly used in genetic studies. Marker-assisted backcrossing

or gene pyramiding is the most successful method using genomics information, and are specially
used in the introgression (Appendix A) of wild traits. For the identification of genomic regions/genes
associated with a certain trait, three major mapping strategies are being used: QTL mapping (linkage
mapping), association mapping (linkage disequilibrium mapping) and joint linkage-association
mapping (Appendix A). Here are the main population approaches based on initial: bi-parental (A,B);
or multi-parental (C) crosses for mapping. (A) F,: Individual F; plants are self-pollinated to produce
an F, population; Doubled haploids (DH): genotypes formed when haploid cells (pollen/egg) are
subjected to chromosome doubling. Recombinant inbred lines (RILs): a population generated from
F, individual plants that are repeatedly self-pollinated n times. Advanced intercrossed recombinant
inbred lines (AI-RILs): a population generated by randomly and sequentially intercrossing the F; lines
followed by repeated self-pollinations n times; (B) Backcross inbred lines (BILs): repeated backcrossing
(Appendix A) of Fy lines with one of its parents; Near isogenic lines (NILs): backcrossing of F;
with recurrent parent using lines that are identical except for differences in a few genetic loci; and
(C) Multi-parent advanced generation inter-cross (MAGIC): a population produced by intercrossing
families from multiple parents, followed by self-pollination # times.
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Genetic mapping is important for the identification of genes/loci controlling specific agronomic
traits. There have been a lot of mapping studies using wild crop relative-derived populations.
In this review, we specifically collected all the information about population approaches in pulses.
For any crop, the variability in the genomes of the wild relatives is high and thus provides a higher
number of genetic markers for mapping. In addition to the traditional markers such as variable
length polymorphisms, variable number of repeats, InDel markers and SNPs, there is currently an
increased reliance on array-based and sequencing-based markers such as Diversity Arrays Technology
(DART) [115], restriction site-associated DNA markers (RAD) [116], reduced-representation libraries
(RRLs), complexity reduction of polymorphic sequences (CRoPS) [117], bin markers [118] and other
new technologies [119]. Meanwhile, whole-genome sequencing has played a pivotal role in genetic
mapping. In theory, whole-genome sequencing can generate the highest density of markers. While
array-based SNP detection is limited by the number of probes on the array, as long as an SNP is
covered by sequencing reads, it can be used as a marker. However, in reality, constrained by the
sequencing depth (a factor of the operation cost) and the high error rates of next-generation sequencing,
a ”“bin”, which is an array of high-confidence SNPs detected by a sliding window, is often used instead
of any single SNP [120]. Genotyping-by-sequencing (GBS)-based mapping was successfully first
demonstrated in rice [120]. GBS can greatly reduce the financial cost and labor required for linkage
mapping compared to traditional mapping using PCR-based markers [120,121].

GBS have thus far been used to map many important production-related loci in crops.
Nevertheless, up till now, there have been limited successful cases describing the mapping of genes
from wild relatives in grain legumes. GBS of a unique RI population of G. max x G. soja has successfully
identified a major QTL conferring salt tolerance in wild soybean [66]. Combined with the association
study of resequencing consensus of 20 unrelated germplasms and the comparison of de novo genomes
of cultivated soybean and wild soybean, the authors have identified the causal gene for salt tolerance
in the wild parent to be a gene encoding a cation/proton exchanger (GmCHX1) [66]. Similarly,
a recent potential multidrug and toxic compound extrusion (MATE) transporter has been identified
to be associated with the total contents of antioxidants, phenolics, and flavonoids in soybean seeds.
This common genomic region for the three groups of compounds can explain up to 64% of the
phenotypic variance under field conditions [9] (Table 2). Another trait studied using GBS is the
resistance to sclerotinia stem rot disease in soybean. After genotyping 101 soybean lines with different
levels of resistance, the researchers found three major QTLs, distributed on chromosomes Gm03,
GmO08 and Gm20 [122] (Table 2). An excellent approach using a big soybean collection including wild
germplasms and whole-genome resequencing allowed researchers to identify important genes related
to domestication and crop improvement, making use not only of the new sequencing technologies but
also of the information generated during many years of characterizing QTLs and genes in soybean [80].
Soybean root architecture [123] and total fresh weight [124] seem to be clearly associated with a specific
region in the soybean genome. Same results have been generated by two independent groups using
different wild and cultivated soybean populations and approaches (Table 2).

Populations and mapping using cultivated x wild or landrace of common beans have been
developed to dissect agronomic traits such as white mold resistance (NILs and BC) [125,126] as well as
seed weight, seed size, days to flowering, yield, plant height and concentration of minerals such as Zn
and Fe in seeds [127,128] (Table 2). The recently available information on the common bean genome
(Table 1) together with the re-sequenced genome, transcriptome and methylome [41,72,129,130] will
allow the scientific community to speed up the dissection of important traits for this grain legume
using GBS approaches [131-133].
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Table 2. Trait-related QTLs/genes in grain legumes characterized using wild relatives.
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Grain Legume Trait/s Population Strategy Genotyping/Mapping Strategy QTL/Gene Reference
Salt tolerance, seed anthocyanin content, pod
and seed number per plant, growth period, seed . .
Soybean coat color, pod color, trailing growth, leaf RILs (cultivated x wild) GBS-WGR CHX cation anti-transporter for Sz.ﬂt [66]
A . tolerance, QTLs for the others traits
length /width ratio, nodule number per plant
with cultivated incompatible rhizobia strain
Nodule fresh weight per plant, root fresh
Soybean weight, total plant fresh weight and ureides RILs (cultivated x wild) GBS-WGR QTLs [124]
(umol per plant)
Soybean Antioxidants, phenolics, and flavonoids in seeds ~ RILs (cultivated x wild) GBS-WGR MATE transporters [9]
Soybean Sclerotinia stem rot resistance 101 lines GBS-association mapping QTL [122]
Root traits (tap root length and lateral root . .
Soybean number) and shoot length BC,F5 (cultivated x wild) SSR and SNP markers QTLs [123]
Qil content, flower color, seed coat color,
Soybean pubescence form and reported 302 wild and cultivated accessions ~ GBS-association mapping GWAS signals associated [80]
domestication-related QTLs
Soybean Yield, height and maturity BC,Fy (cultivated x wild) SSR markers QTLs [134]
Soybean Soybean cyst nematode resistance RILs (cultivated x wild) SSR markers QTLs [135]
Soybean Soybean cyst nematode resistance 235 wild soybean accessions GBS-GWAS QTLs [136]
Common bean White mold resistance NILs source of resistance from InDel, S.CAR, SNP and QTLs [126]
Andean genotype Jatu Rong phaseolin markers
Seed weight, seed size, days to flowering, yield, . . Microsatellite, SCAR, and
Common bean plant height BC;F35 (cultivated x wild) phaseolin markers QTLs [127]
Common bean White mold resistance BCoFs (cu1t1vate.d x wild) BC1Fy5 SSR, SRAP, TRAP markers QLTs [125]
(landrace x cultivated)
Seed weight, seed mineral accumulation: iron [128] and
Common bean concentration (ppm), zinc concentration (ppm),  BC,F3;5 (cultivated x wild) Microsatellite markers QTLs

iron content (mg/seed), zinc content (mg/seed)

cited herein

Germplasm collection (93
cultivated desi and kabuli and 79

GBS-WGR-association and

Chickpea Seed coat color wild) and RILs QTL mapping MATE transporter [137]
(landrace x landrace)
. o Ger¥nplasm Cgllectlon (9% ) Genome-wide GBS- and candidate Eight l:'noter}tlal known'/ candidate
Chickpea Flowering time cultivated desi and kabuli including ene-based genotvpin. flowering time-regulating genes [138]
beaded, landraces and wild) g 8 ypmng and QTLs
Chickpea 100-seed weight, pod and branch number/plant RILs (cultivated x wild) SSR and SNP polymorphism QTLs and seed weight regulating [139]

and plant hairiness

marker-based

ABI3VP1 transcription factor
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Table 2. Cont.

13 of 28

Grain Legume Trait/s Population Strategy Genotyping/Mapping Strategy QTL/Gene Reference
. . Two F5 mapping populations g
Chickpea Pod number and seed yield per plant (cultivated x wild) GBS-WGR SNP InDel markers QTLs [140,141]
Chickpea 100-seed weight RILs (cultivated x landrace) GBS-WGR QTLs [137]
Root-knot nematodes resistance, drought-related . . SNF markers and integrated
Peanut traits and agronomic/domestication traits RILs (wild x wild) consensus map from QTLs [143]
& Shirasawa et al. 2013 [142]
Water availability, flowering precocity, seed and 87 B.C3F1 and.Ss BC.2F2 [cgltlva'ted
Peanut . . x wild amphidiploid (A. ipaensis x ~ SSR markers QTLs [144]
pod number, length and size, and pod maturity .
A. duranensis)]
Peanut Root-knot nematode resistance BC4E2 populatlgn RAPD markers Resistance associated to markers [145]
(cultivated x wilds)
Chromosome segment substitution
Plant growth habit, height of the main stem, lines (CSSLs). [wild synthetic
Peanut plant spread and flower color allotetraploid (A. ipaensis x SSR markers QTLs [146]
A. duranensis) x cultivated]
Peanut Late leaf spot resistance Fy (A. duranensis x A. stenosperma) Microsatellite, AFLP and legume QTLs [142]
anchor markers
Pea Mycosphaerella pinodes resistance RILs (cultivated x wild) RAPD, Sequence-tagged site and QTLs [147]
expressed sequence tag markers
Set of five recombinant inbred
Seed weight, root/‘ shoot ratio, flowering pop}llatlons: w‘11d X cultlyated F1p; Morphological Markers, allozyme
Pea response, pod dehiscence, seed dormancy, plant  cultivated x wild Fg; cultivated x o QTLs and genes [148]
. . R o . variation and RAPD
height, basal branching primitive BCyFy; primitive x wild
Fy; cultivated x landrace Fg
Pigeonpea Cleistogamous line F5 (cultivated x wild) N/A Gene [149]
. . . . . Traditional breeding
Pigeonpea High protein Cultivated x wild N/A (pedigree method) [150]
Pigeonpea Male sterility lines BC,, (cultivated x wild) N/A Traditional breeding [151]
. Drought tolerance and pod borer . . . .
Pigeonpea insect resistance F, (wild x cultivated) Single feature polymorphisms (SFPs) ~ Genes [152]
Anthracnose resistance, seed yield, biomass, N/A potential material
Lentil straw yield, seed weight, harvest index, RILs (wild x cultivated) N/A for brge din [153]
podding ability and stand at maturity &
Floral scent compounds, seed size, pod fiber
Cowpea layer thickness, seed weight, time of flower RILs (cultivated x wild) SSR QTLs [154-156]
opening, days to flower
Yardlong bean (Vigna
unguiculata ssp. unguiculata Pod length BC1F; (cultivated x wild) SSR QTLs [157]
cv.-gr. sesquipedalis)
Yardlong bean Domestication related traits BC1F; (cultivated x wild) SSR QTLs [158]
Yardlong bean Pod tenderness BC;F; and F; (cultivated x wild) SSR QTLs [159]
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In the case of chickpea, the role of wild species for mapping and crop improvement has been
extensively reviewed [160,161] and huge efforts have been made to develop different mapping
populations including wild chickpea and landraces (Table 2) for traits such as flowering time, 100-seed
weight, pod and branch number per plant, plant hairiness, seed yield per plant, etc. [137-141].
During the past several years, important articles reporting on the genetics and genomics of
chickpea have deepened our understanding of this legume and contributed to the possibility of
developing new approaches to improve this crop by characterizing the genetic diversity in the wild
species [68-71,83,140,162-165].

The developing of mapping populations using wild or diploid ancestors of peanut has presented
a special challenge, given the ploidy difference and sexual incompatibility between wild and cultivated
peanut. Therefore generating the mapping populations sometimes involves the development
of wild synthetic allotetraploids [166]. Still, there are five examples of using wild relatives to
successfully map important genetic regions controlling root-knot nematode resistance, drought- and
agronomic/domestication-related traits, flowering precocity, seed and pod numbers, pod length
and size, pod maturity time, height of the main stem, plant spread, flower color and late leaf spot
resistance [142-144,146,167] (Table 2). Janila et al. (2016) [29] also summarized up to the present,
the history and perspectives of genetics and genomics-assisted breeding (Appendix A) in peanut,
highlighting the importance of wild relatives as a source of novel alleles.

In the case of pea, an RIL population between the wild relative, Pisum sativum subsp. Syriacum,
and a cultivated line has been developed, revealing six QTLs related to Mycosphaerella pinodes resistance
(Table 2). Interesting QTLs related with domestication features have been described using five
populations generated by crossing lines representing different stages of domestication (e.g., wild,
landrace, etc.) (Table 2). Pea landraces tolerant of abiotic stresses such as frost, drought and high
temperature have been identified with great potential as germplasms for breeding target [168].
Although there have not been many studies on QTL mapping using wild relatives together with
traditional or new GBS-derived markers up to now, the use of GBS is starting to rise for pea [101].
For instance, a study using RILs from cultivated lines has yielded high-density and high-quality SNP
markers with great potentials [169]. A recent review summarized the current status of genomic tools
in pea breeding programs [102], which could be applied to better explore wild germplasm of pea.

As a globally popular food crop, lentil has attracted more and more attention from researchers.
The wild lentil relative, Lens ervoides “Brign”, was crossed with the cultivated lentil line, “Eston”, and
the resulting RIL population was then phenotyped for 23 important and complex traits including
anthracnose resistance. There is great potential for this population to be genotyped using new
technologies and further explored [153] (Table 2). In addition, next-generation sequencing of both the
wild and cultivated lentils revealed a large collection of SNPs and improved the genotyping platform
for the mapping of the L. culinaris genome [170].

Pigeonpea is a cross-pollinated diploid crop. Great efforts have been made by the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT) over the years to increase productivity.
Diverse breeding strategies are continuously being developed for pigeonpea improvement [171].
The developments of cytoplasmic male sterile lines for hybrid breeding have systematically and steadily
been generating the most promising materials available [151,172-174]. Incompatible crossing barriers
between cultivated pigeonpea and its wild relatives have not hindered its improvement [175,176].
A number of interesting examples show the improvements on this grain legume using features in alien
germplasms, such as abiotic stress (salinity) tolerance and resistance to biotic stress (fusarium wilt,
phytophthora blight and cyst nematode), genetic dwarfs, high protein content and special nutritional
value, cleistogamy, male sterility lines, etc. [149-152,175,177] (Table 2). A recent excellent review
summarized the current status of genomics-assisted breeding in pigeonpea [175] after the release of
the first draft genome.

Cowpea is a readily self-pollinating crop. Using cultivated cowpea as well as wild relatives and
landraces, an important number of mapping populations have been developed during the past
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30 years. Close cross-compatible relatives have been explored as genetic reservoirs and parent
donors of important agronomic traits [178-180]. The available high-marker-density linkage map
using synteny with other legumes have increased the possibilities to search for regions and genes
associated with agronomically important traits and a series of databases strongly facilitate cowpea
breeding [181]. Most of them have been developed using cultivated cowpea genotypes, demonstrating
a great potential for increasing the genetic diversity of this cultivated pulse [178]. A set of traits,
such as floral scent compounds, seed size, pod fiber layer thickness, seed weight, time of flower
opening, days to flower, have also been improved using genetic resources from wild relatives [154-156]
(Table 2). Some population approaches evaluating pod length, pod tenderness and domestication
related traits have also been developed in yardlong bean (Vigna unguiculata [L.] Walp. ssp. unguiculata
cv.-gr. sesquipedalis), which, interestingly, has evolved from cowpea by divergence domestication in
Asia [157-159].

In the case of lupins, mapping studies have been done, either through traditional molecular
markers or high-throughput sequencing techniques, to complement breeding programs for different
species within the complex [75,99,182-185]. However, total or low-frequency crossing barriers between
species of Lupinus make the scenario of interspecific gene transfer too complicated to improve specific
agronomic traits [100]. Some examples of interspecific crosses have been reported but the situation is
far too complicated to be a useful tool for lupin breeding [186].

6. Use of Genetic Diversity in Wild Relatives to Improve Grain Legume Performance

Taking advantage of the genetic diversity of wild relatives of crop plants to improve the
performance of crops is not a novel concept, but it is worth noting that, for grain legumes, it is
often difficult to trace back the breeding history and the real impact on crop production. In contrast,
the record-keeping on other major crops seems to be a little more comprehensive [187]. It seems that
grain legumes, especially those cultivated in more limited geographical areas, have been systematically
neglected [13].

The advent of genomics and genomics-assisted breeding have expanded our understanding of
complex traits, allowing us to dissect the genetic bases of traditional and new important agronomical
traits, not only to increase productivity or adapt to climate change, but also to develop alternative food
production systems tailored to poor areas and small farms to grow more and better food.

The use of genomics-assisted breeding using wild relatives, particularly in grain legumes, should
be intensified. The skepticism of plant breeders to make use of wild and exotic plant genetic resources
due to associated linkage drag is gradually overcome because the exploration of expanded gene pools
is providing us with unprecedented opportunities to discover major genes controlling important
traits. Once the major genes or genomic regions have been characterized, it would be worthwhile
to move forward the introgression from the cultivated populations and even consider transgenesis,
genome editing or the less controversial mutagenesis. Scientific developments and the knowledge
generated thereof using wild relatives are revolutionizing our understanding of biological processes.
However, it has been cautioned that the improvement of specific traits using wild relatives masks
the true potential of genetic diversity in the wild relatives for breeding [188]. Clearly, the potential
with using wild relatives goes beyond crop improvement itself. It is a promising scenario where
international collaborations shall arise and deepen in order to contribute to increased food production,
environmental sustainability and better quality of life for future generations.

In Table 2, we summarize published works on genes or genomic regions associated with a wide
range of important traits from reproductive features to interactions with microorganisms, by mining
the genetic resources in wild relatives for different types of population development. In this work,
we have compiled the most up-to-date information on population approaches using wild relatives
of the nine grain legumes. Only a few of these major works have been performed using available
genotyping technology by deep sequencing, and even fewer of them explored the diversity of genomic
information for the characterized regions. Finally, the various grain legume populations already
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generated and summarized in this review are in themselves great resources for further exploration
and deeper genomic and genetic analyses, especially with respect to the -omics information on their
wild versus cultivated germplasms.

7. Conclusions and Perspectives

Although we have long recognized the value of wild relatives in the past, there always seem to be
a repeated pattern of recognizing their potential importance following periods of calamities in food
production. An example of great interests in wild crop relatives after the Second World War [189], and a
second, after the devastating losses in maize production occurred in USA in 1970. Both periods led to
significant advances in the collection and evaluation of wild materials culminating in the formation
of the International Plant Genetic Resources Institute (today operating under the name, Biodiversity
International) [4].

The contribution of wild relatives to modern agriculture, helping to increase yield, quality and
disease resistance, is significant. Joint efforts from plant breeders and collaborative institutions across
the world have contributed to the examples of success. The linkage drag and reproductive barriers are
a hard hurdle to overcome and the contributions made thus far to dealing with this issue should be
especially recognized. However, the genetic erosion of the most important crops remains problematic,
particularly when we are facing more frequent periods of flooding, drought and/or diseases with
global warming, coupled with intensive agricultural systems. In this regard, the use of wild relatives
may be the solution.

Tanksley and McCouch [4] proposed the paradigm shift from “looking at the phenotype” to
“looking at the gene” during the screening of exotic germplasm, shifting away from selecting potential
parents based in phenotype to evaluate directly the presence of novel genes. The examples given in
this review are some of the biggest successes and plant breeders have continued working on this idea.
With the emergence of next-generation sequencing techniques, several studies using wild relatives
have been published, generating important information about genetic diversity, population structure,
gene expression, methylation patterns, adaptation mechanisms, etc. Our abilities to characterize and
understand the genetic variability are the basis for this paradigm shift, based on examining the genetic
composition rather than the phenotype. We face a big challenge related to the scattering of characterized
genetic diversity information generated by researchers around the world and deposited in various
genetic resource centers. It is important to emphasize the importance of characterizing not only the
traditional morpho-agronomic traits but also those more complex traits that are crucial for enhancing
the potential to adapt to future climate scenarios. Characterization and accessibility to core and mini
core collections of pulses diversity is a fundamental requirement for any breeding approach [190,191].
The organization and availability of this vast amount of new information must be made a worldwide
priority in order to facilitate the use of these genetic resources [192,193]. In an excellent review for
the International Year of Pulses, the number of accessions and locations of grain legume collections
around the world have been collated [13]. The discovery of new wild alleles controlling specific traits
in specific crops should be more easily facilitated with the centralization of genomics information into
big databases that contain important information such as specific gene expressions in different tissues,
at different developmental stages or under different stress conditions [194].

One major limitation in the utilization of crop wild relatives in breeding programs is due to major
gaps in the genetic diversity of “gene pools”. The availability of crop wild relatives could be hampered
by many factors, such as loss of natural habitats. “Gap analysis” is a tool to assess genetic conservation
and to formulate conservation strategies by prioritizing among taxa containing gaps due to sampling,
geographic and environmental factors. The power of this tool was demonstrated by a case study of
Phaseolus gene pool [195,196].

A big international effort is underway with the aim to adapt agriculture to climate change, which
includes collecting, protecting and preparing crop wild relatives. Several pulses are among the major
targets: common bean, adzuki bean, chickpea, cowpea, faba bean, groundnut, lentil, lima bean,
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mung bean, pea, pigeonpea, soybean, urd bean and vetch [197,198]. The information generated and
systematized from this project certainly will be a unique source of information and materials facing
the current and futures challenges for agriculture in the context of crop wild relatives use.
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Abbreviations

QTL Quantitative trait locus

InDel Insertion/deletion

CNV Copy number variation

PAV Present/absent variation

M Centimorgan

A-BC Advanced backcross population

RIL Recombinant inbred line

NIL Near-isogenic line

NAM Nested association mapping

MAGIC Multi-parent advanced generation inter-cross

LD Linkage disequilibrium

GWAS Genome-wide association studies

SNP Single nucleotide polymorphism

DArT Diversity Arrays Technology

RAD Restriction site-associated DNA marker

RRL Reduced-representation library

CRoPS Complexity reduction of polymorphic sequence

GBS Genotyping-by-sequencing

IBL Inbred backcross line

MATE Multidrug and toxic compound extrusion

SRAP Sequence-related amplified polymorphism

TRAP Target region amplification polymorphism

SRR Simple sequence repeat

RAPD Random amplified polymorphic DNA

AFLP Amplified fragment length polymorphism

Appendix A
Gene A DNA sequence that determines the appearance of

hereditary characteristics in living organisms

Allele Each alternative form of a gene, occupying the same

position in each pair of homologous chromosomes

Measure of population differentiation due to the

Fst (fixation index) genetic structure

A set of inherited characteristics that is dependent on
Phenotype .
both the genes and the environment

A set of genes that are characteristic of each organism

Genotype or individual
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QTL (quantitative trait locus)

A locus on the chromosome that is associated with
the quantitative variation of a trait

Association mapping

A germplasm-based approach to characterize QTLs
or variations by exploiting the historic linkage
disequilibrium to associate phenotypes with the
underlying genotypes

Joint-linkage association mapping

A family-based approach to characterize QTLs or
variations that are shared across families. It differs in
power and scope from the characterization of QTLs
based on bi-parental populations.

A set of tools that use gene markers to select, in a

Marker-assisted selection precise manner, the plants with the genetic potential

to produce the desired trait for breeding

Genomics-assisted breeding

A set of genomics tools (using high-throughput
approaches) to select in a targeted manner the plants
with the genetic potential to produce the desired trait
for breeding

The gene flow from one genetic background

Introgression (individual) to another gene pool (individual) by

backcrossing with one of its parent

Backcross

Crossing of offspring lines with one of the original
parental line

Linkage drag

Offspring with undesirable genetic background
inherited from one of the parental lines

SNP (Single Nucleotide Polymorphism)

Single-nucleotide variations on the DNA sequence
within a population or between paired chromosomes
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