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Confocal laser scanning microscopy (CLSM) [1–3] and localization microscopy (LM) [4–7] are
called far-field microscopy methods, and are discriminated from near-field approaches [8], indicating
that the distance between the specimen observed and the optical system used for imaging are separated
by a distance greater than the wavelength of the light used for image generation [9]. In both optical
methods, interference processes generate an intermediate image—a process which can be described by
a mathematical operation called the Fourier transformation (FT) [10]. In this intermediate image, the
fine details of the specimen structure (as well as the optical noise) are projected to the outer regions,
while the large specimen structures and the unstructured background (as well as the incident light
fraction which did not interact with the specimen) are concentrated around the intermediate image
center [11]. By practical means (namely the geometrical maximum diameter possible for the bundle
of image rays), the outer areas of the intermediate image are cut off in the imaging pathway [12].
In this way, the capacity of the imaging system to discriminate two specimen points of a certain
distance is limited by the spatial restriction of the intermediate image [13]. This is called the optical
resolution limit of the particular optical system (i.e., the microscope). A Fourier transformation-based
formulation of the imaging system properties is called the object transfer function (OTF). The OTF can
be approximated as the realistic form for the idealized microscope’s FT. In practice, the image of two
sharp specimen points displays both points superposed by an optical smear, with an overlap between
the points making it impossible to resolve one point from the other.

In both CLSM and LM, the specimens are the same. A fluorescent dye is specifically accumulated
in a non-random fashion, usually by binding the dye molecule to a specific antibody and binding
the antibody to the cell’s target structure (i.e., the antibody-binding cell protein). In the CLSM case
(Figure S1a–c) the fluorophores are excited and emit fluorescence light which is recorded and reflects
the cell spatial epitope distribution. During image acquisition, the dye bleaches, and the integral area
under the bleaching time course is the determining factor for signal-to-noise ratio and image quality.
In the LM case (Figure S1a′–c′) the dye population used for image generation by CLSM recording
is bleached and does not contribute to image generation. In contrast, after removal of the main
fluorescence molecule population (Figure S1b′), the remaining population develops exotic photocycling
and subsequently a characteristic burst-like emission behavior (Figure S1c′). A characteristic difference
between CLSM and LM is reflected by the integrals under the fluorescence emission time course curves.
While the exponential decaying emission contributes to CLSM image generation, this component is
explicitly excluded from LM image generation. In the LM imaging, the isolated bursts are collected
over time (Figure S1c′) and re-consolidated in a common matrix with an image of the fluorescence
burst localities or a population number weight distance distribution diagram being typical expressions
of the data set. A main difference is the emission integral: in CLSM, it is large but decreasing over time
of image recording, and in LM, it is much smaller but independent of recording time.
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Figure S1. This collection sketches the particular image recording characteristics of confocal laser
scanning microscopy (CLSM) and localization microscopy (LM), and shows idealized result situations
as generalized examples for data interpretation. (a,a′) The initial fluorescence dye distribution in
the specimen before image recording for CLSM and LM. (b,b′) Specimen fluorescence emission used
(b) for CLSM image acquisition and removed (b′) by bleaching to prepare for LM image acquisition.
(c,c′) The bleached specimen after (c) CLSM image acquisition and during (c′) LM image acquisition.
The specimen region depleted of conventional fluorescence dye population emits spontaneous short
bursts of fluorescence emission. The bursts are isolated in both space and time domains. (d,d′) CLSM
image (d) and LM graphical two-dimensional display of the localization matrix (c′). (e–g) Abstract
representation of an idealized MCF-7 cell monolayer (e) with a region of interest (ROI, red box) and
graphical clarification of the cell contact region (blue) and the neighboring cytosol regions (yellow) in
adjacent cells. The concentric ring series indicate the mode of LM data-based matrix subset selection
for local distance distributions. The line plot intensity profiles (f) and the protein molecule density
diagrams (g) are derived from different cells in comparable condition and appearance. (h1–h3) A set of
typical ErbB or connexin-43 protein accumulations and the respective distance / density distribution
after Ripleys K / L-based analysis. For in-depth explanation, see text below.

In CLSM, the intermediate image outer region is cut off by a small circular aperture called the
pinhole [14,15]. This procedure is the reason for some special properties characteristic of confocal
microscopy. In CLSM imaging, it is possible to reduce the image noise and to increase the image
contrast by minimizing the pinhole diameter [16,17]. Opening the pinhole approximates confocal
and wide field optical microscope imaging power [18]. Further, the light components from the
non-focused specimen areas are excluded by a detector pinhole. This explains the CLSM optical
sectioning capacity [19]. A sufficiently small pinhole is capable of suppressing all components of the
intermediate image except for the one in the center. This corresponds to the situation where a light spot
illuminates the specimen and the image of the light spot is free of the optical smear described above.
In conclusion, the pinhole optical filtering makes it possible to minimize a specimen illuminating light
spot diameter by suppressing the OTF-induced smear. This increases the optical resolution capacity
of CLSM as compared to conventional fluorescence microscopy [18,20]. It must be stated that after
pinhole filtering, the specimen image is replaced by the light spot image, and reconstitution of the
specimen appearance requires the line-wise and frame-wise scanning of the light spot across the
specimen with subsequent image reconstruction in a computer [21].
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Figure S1e provides an abstract interpretation of a typical specimen situation, as similarly shown
in the CLSM image in Figure S1d. A confluent monolayer of MCF-7 epithelial cells is shown (grey
polygons). The cells are reduced to the inter-cellular contacts (black border lines) and schematic
nuclei (blue ellipses). The image is subject to a line type (better: slim rectangular box type)-based
intensity recording and display. The intensity distribution along the long side of the red box is
collected, while each value of the long side is averaged by all corresponding values along the short
box edge.The resulting annotation of the intensity values over the local position reflects the local
distribution/accumulation of either ErbB receptors or connexin-43 molecules in the region of interest
(ROI) selected. The coordinate origin is always centered to the inter-cellular contact line, and the –x to
+x extension reflects the distance to the contact line spreading into the cytosol. The round-corner boxes
given in blue and yellow in Figure S1e discriminate the close cell contact region from the cytosol near
but apart from the immediate cell contacts. Therefore, in the following, LM protein density diagrams
and intensity line plots will differ between the membrane immediate region and the cytosolic region of
the cells examined.

In Figure S1e, two series of concentric rings with an asterisk in the center give an impression
of the LM localities as evaluated by Ripleys K/L type statistics (for detail see below). The diagram
in Figure S1g shows that the information given in the LM-derived density distributions correlates
with the CLSM-derived intensity information (for detail, see above). The image ROIs of evaluation
are not identical due to practical restrictions of the author’s local microscopy environment, but in the
following, typical regions and situations are identified and compared with each other.

In case of cell specimen imaging, an ensemble of ErbB receptors and gap junction connexons
will appear as a continuous accumulation, even if being a group of discrete proteins. Further, spatial
alterations in receptor or connexon density restricted to regions smaller than the light spot diameter
will not be visible in CLSM recording. In contrast, the thus-averaged specimen structure is a source
of information about protein density by the absolute signal level [22]. A high accumulation of
ErbB receptors or connexons will result in an increased signal level as compared to a distributed
receptor arrangement. Packing density in retrograde trafficking is accessible by CLSM as a cell
location-dependent signal height, as given in the principal sketches in Figure S1e–g.

Localization microscopy (LM) does not use an intermediate image filtering, and in this way the
method is image information conserving but affected by OTF characteristics. The images are not
high image frequency (i.e., noise) filtered, and thus background noise is the main factor limiting the
accessible spatial bandwidth [23]. The underlying principle is easy and elegant: the minimum distance
limit required for spatial image resolution is circumvented by looking at isolated image points instead
of point pairs or ensembles. Even if the image of an isolated specimen point (a fluorescence signal) is
smeared out by OTF effects, the center of mass can be localized in space with high precision. A series
of individual specimen points each being precisely localized at a time may be used to reconstruct the
final image with a spatial resolution being not OTF limited but noise restricted.

Several microscopy methods exploit the principle [6,24–32]. See [33] for a non-fluorescence
and [34] for a fluctuation approach, while [35,36] address the need for an increased axial
resolution. While microscope hardware, illumination sources, point appearance detection, and image
reconstruction are similar, the approaches mainly differ in the generation of spatially-isolated specimen
points by the use of different fluorescent dyes [37–39]. The development of burst activity due to
exotic photo-cycling behavior is the target of numerous dye chemistry initiatives, leading to a set of
fine-tuned organic dyes. The candidates cover a broad range of the light spectrum used in fluorescence
microscopy, and recruit from common dye molecule classes as being ATTO, ALEXA, Cy, DIL/DIOC,
fluorescent protein, and TAMRA related [40]. In all cases, the Jablonski diagrams for the photo cycles
are branched and offer the possibilities for alternative excitation cycles with individual transition
probabilities [41]. The ALEXA dyes used in the present approach are capable of following alternative
photocycling pathways, and such ways develop fluorescence emission bursts beside their capacity for
conventional cw-emission [42,43]. In contrast to fluorescein and rhodamin derivatives where burst
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probability is related to dye molecule dissociation induced by pH and ionic strength, cyanine dyes
and fluorescent proteins follow an intersystem crossing after cis–trans isomerization (cyanines) or
keto–enol tautomerization (FPs) [44–47]. The chemical environment (i.e., the local presence of reactive
oxygen species (ROS) and scavengers, nonreactive ions, H+ and buffers, dye binding Mn2+ ions or
amino acids side chains) has a tremendous influence on the fluorescence dye burst tendency [48–51].
Vice versa, dye tailoring exploits the structure-dependent burst tendency to design fluorescence dyes
with user-controlled burst behavior [52,53]. Again, the requirement for specimen staining is simple:
the combination of dye type, dye concentration, and local chemical environment must result in a
specimen dye loading where in one image frame the appearing fluorescence signals are isolated by
non-fluorescent surroundings. In addition, the focus is on fluorescence photo-cycling modes with
low probability, and to discriminate such seldom modes high illumination intensity depopulates
photo-cycling modes with high probability. The remaining fluorescence has a burst characteristic of
short emission cycle series isolated by long periods of in-excitability (Figure S1a′–d′). In the time
domain, the fluorescence bursts are short time signal superpositions on an exponentially decreasing
fluorescence background and are mixed with emission noise. Consequently, the image collection
can be greatly improved by the application of cameras with high signal dynamics compensating for
signal decay during bleach. Furthermore, a camera with a high sensitivity facilitates short acquisition
cycles [54,55]. Table S1 illustrates the differences between the confocal (CLSM) and the spatial (LM)
microscopy approach.

Data analysis must account for the particular properties of the recorded data sets. The strong
dependence of the acquired image stack on dye behavior and the categorical discrete nature of signal
appearance independent of the continuous nature of the specimen are determining factors for data
processing and interpretation [56,57]. These specimen-related prerequisites are faced by different
approaches to derive and formulate the spatial information of discrete specimen points in the acquired
data [58]. Over pure localization procedures, the question arises in how far higher orders of signal
aggregates are artificial or can contribute to specimen characterization [59,60]. The statistical toolboxes
apply Ripleys, Bayesian, and Voronoi-type statistical procedures [61–63] and account for the problem
of precision limitations and the extraction of discrete Boolean type information from a continuous
grey-scale image set [64,65]. Besides such theoretically orientated considerations, software packages
have been designed to collect and analyze microscopy data optimized for beginners [66,67], and also
for more advanced applications [68–70]. Additionally, software to estimate the localization power of a
certain imaging to evaluation workflow has been developed [71].

A reliable investigation of cell physiologic processes such as membrane receptor and gap junction
dynamics requires a measure of cell vitality. Two simple parameters may permit a crude basis for
cell state evaluation. A first parameter is the cell size. In epithelial monolayers, an individual cell
is mechanically connected to the immediate neighbors, giving the global monolayer a cobblestone
appearance with the constituting cells being polygonal. The cell size is not a constant value under this
circumstance, because with increasing cell number, epithelial cells tend to increase in thickness and to
reduce the area size covered by an individual cell. This is a reason why inside a growing monolayer,
cells of different sizes coexist side by side.

As a second parameter, shape and integrity of the cell nucleus can be qualitatively assessed after a
conventional nucleic acid stain. The absolute nucleus size is not a reliable value because the monolayer
cells are not synchronized with respect to cell division, and thus a distribution of nuclei in different
states of chromosome duplication reveal a set of several nucleus sizes. A ratio of nuclear size and
cell size is also not a reliable measure, because the cell size is dependent on the cell life time after last
division and the local density of the monolayer. In contrast, the cell nucleus appearance can be used
as crude measure for cell physiology condition. In a healthy cell being apart from metaphase, there
should be only one nucleus without lobes. Fragmentation is an indicator of either apoptosis due to
increased cell cycle number or due to mechanical damage by inappropriate preparation. The inner
substructure of of the caryoplasm is an effect of the nucleic acid stain used. In our case, the stain (DAPI)
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has a slight preference for chromosomal regions with an increased content of adenosine and thymidine
bases. The resulting inhomogeneous staining affinity results in a patterned appearance of the nucleus.

Table S1. Comparison of CLSM and LM characteristics with respect to specimen behavior, image
recording, and data processing.

Objective CLSM LM

Image generation optics far-field far-field
Contrast mode fluorescence, reflectance, etc. fluorescence
Intermediate image spatially filtered unfiltered
Optics resolution power Abbe/Airy conform not addressed
Optics ⇒ image 3-D scanner 2-D area detector
Image time series optional required
Acquisition time (typical) 4–5 min 4–5 min
Specimen ⇒ image 1-D to 3-D over time 2-D over time
Axial discrimination 1/2–1/4 wide-field wide-field
Data ⇒ image scanner coordinates ./ intensity matrix coordinates ./ Boolean
Image character continuous discrete
Specimen fluorescence permanent emission isolated burst
Fluorescence time course exponential decay burst level constant
Local signal occurrence determined random
Illumination intensity moderate high
Image appearance before bleach after bleach
Photo-cycles accumulate signal vanishes signal intensifies
Absolute noise level increases over time decreases over time
Acquisition time extended signal–noise (SN) ratio decreases SN ratio increases
SN ratio over time increases remains unchanged
Dye bleach ⇒ image formation destructive constructive
Fluorescent dyes photo-stability high photo-stability low
Jablonski behavior simple, 1st order exponential complex, higher orders
Triplet state lifetime very short long for burst
Triplet state transition IN probability high probability low for burst
Triplet state transition OUT one way alternative routes
Chemical environment importance high importance low
Embedding media standardized object of experimental test
Dye excitation probability constant, resistant variable, vulnerable
Dye switching ignored required/favored
Dye photo-cyling dynamics averaged over time temporally resolved
Image intensity increased integral bleach curve increased burst frequency increased
Image continuity constant over time increasing over time
Image post-processing recommended required
Image converted into values alternative required
Post-processing tools intuitive intellectual
Image interpretation effort low high
Acquisition target amount concentration number
Target concentration intensity/volume number/area
Further target information none distance distribution (Ripleys K/L)

area size occupied (Voronoi)
ErbB/con-43 appearance bulk individual

continuous population discrete ensemble
receptor local concentration local number/clustering
unstructured population several organization levels
concentration reflects activity concentration reflects organization
packing alters density packing alters organization

The supplemental Figure S2 shows the cell nucleus integrity in MCF-7 breast epithelial cells
for the four experimental conditions irradiation application, trastuzumab application, neuregulin-1
application, and the unstimulated situation.
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Figure S2. The collection of cell nuclei images clarifies the physiological and mechanical cell integrity
of MCF-7 epithelial cells for the four experimental conditions as described above. (a) The unstimulated
cell. (b) Irradiated cells. (c) Cells after neuregulin-1 application. (d) Cells after trastuzumab application.
In each case, the nuclei are of round or slight oval shape. The border between nucleoplasm and
cytoplasm is sharp, and there is no nuclei acid stain visible outside the nuclei. Fragmentation or
deformations do not appear, indicating that the cells are in healthy conditions and not subjected to
an apoptotic process. In (b) near the right border, a cell metaphase can be seen. Such cells are not
considered for assessment.
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