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Abstract: Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus.
There is no human vaccine available and it is considered by many studies as apotential effective tool
for disease control. To discover novel antigens, computational programs have been used in reverse
vaccinology strategies. In this work, we developed a validation antigen approach that integrates
prediction of B and T cell epitopes, analysis of Protein-Protein Interaction (PPI) networks and
metabolic pathways. We selected twenty candidate proteins from Leishmania tested in murine model,
with experimental outcome published in the literature. The predictions for CD4+ and CD8+ T cell
epitopes were correlated with protection in experimental outcomes. We also mapped immunogenic
proteins on PPI networks in order to find Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways associated with them. Our results suggest that non-protective antigens have lowest
frequency of predicted T CD4+ and T CD8+ epitopes, compared with protective ones. T CD4+ and T
CD8+ cells are more related to leishmaniasis protection in experimental outcomes than B cell predicted
epitopes. Considering KEGG analysis, the proteins considered protective are connected to nodes
with few pathways, including those associated with ribosome biosynthesis and purine metabolism.

Keywords: immunoinformatics; epitope prediction; pathways; protein–protein interaction networks;
reverse vaccinology; leishmaniasis

1. Introduction

Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. It is
prevalent in Americas, Europe, Africa and Asia. Overall, human infection is caused by at least 20
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species whose vectors are phlebotomine sandflies [1]. Although being considered by many studies one
of the best possible alternatives for this disease control, there is no human vaccine available [2].

In the advent of reverse vaccinology, in the latest years, a great effort has been made by
bioinformaticians in order to provide epitopes predictors programs. Currently, it is possible to
scan entire genomes searching for immunogenic epitopes and then select promising proteins for
vaccine development. The bottleneck in this workflow analysis is the validation of predictions for
protozoan parasites. Many predictors are available for B cells, T CD4+ cells and T CD8+ cells epitopes
and subcellular localization. They are valuable in a pre-screening evaluation for vaccine targets and
searching for diagnostic markers.

The building of protein-protein interaction (PPI) networks may give some insights to understand
the biological role of these targets, and so might be a valuable asset in vaccine development. These
networks are constituted by nodes that correspond to proteins, connected by edges, representing the
interactions between two connected proteins. With PPI networks, we can have an overview of protein
relationships and notice those with high connections (also referred as “hubs”). Hub proteins tend to
have essential role in the parasite metabolism and might be good candidates to vaccinal and drug
target [3,4].

To support Leishmania vaccine research, we developed an approach that integrates prediction of
B and T cell epitopes, analysis of PPI networks and metabolic pathways. With the aim of validating
this methodology, we selected Leishmania proteins tested as vaccine candidates in murine model,
with experimental outcome (EO) published in the literature. After predicting epitopes in the selected
proteins using specific computational programs, we correlated the predictions for T CD4+ and T CD8+

cells with protection in EO. Finally, we mapped the immunogenic proteins on PPI networks in order to
find Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with them.

2. Results

2.1. Leishmania Proteins Dataset Selection

Through the use of text mining technics from Pubmed website that included, but was not restricted
to, categorization and entity extraction, we were able to identify and select 20 proteins from six different
Leishmania species that were used in studies aiming the vaccine development against these parasites.

It is important to highlight that, for each one of those proteins, a specific MySQL ID was assigned
to link GI accession number and TriTrypDB specific ID. Based on the results published, the EO was
categorized into: (a) “no protection” (nine proteins); (b) “partial protection” (five proteins); and
(c) “protection” (six proteins). The accession numbers of these proteins are depicted in Table 1.

2.2. Epitope and Subcellular Localization Predictions

With the purpose of selecting potential immunogenic epitopes in the selected experimental dataset,
Structured Query Language (SQL) statements were used. The results obtained in terms of number of
predicted binding Major Histocompatibility Complex (MHC) class I and II epitopes, B cell epitopes
and subcellular locations are detailed in Table 2. Interestingly, the majority of the proteins within the
“protection” group were predicted as extracellular and the proteins belonging to “no protection” group
were predicted as located in nuclear and cytoplasmic compartments.
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Table 1. Selected candidate antigens from dermatotropic and visceratropic Leishmania species to leishmaniasis vaccine development. Proteins in literature tested in
mice model were selected randomly.

Leishmania
Tropism

Geographic
Area Specie Candidate Antigen Function MySQL ID

NCBI
Sequence
Acession

Animal
Experimental

Outcome
Indicative

Reference

Dermatotropic
Leishmania species

New world

L. brazilinensis
Thiol-specific-antioxidant (TSA) Tryparedoxin peroxidase LbrM.15.1080 gi 154334618 mice No protection [5]

LeiF Leishmania putative eukaryotic initiation factor LbrM.25.0580 gi 154338682 mice No protection [5]
LACK Leishmania homolog of receptors for activated C-kinase LbrM.28.2950 gi 154340729 mice Partial protection [5]

L. amazonensis

P4 nuclease partial Endonuclease activity A16600 gi 29165287 mice No protection [6]
Cysteine proteinase Cysteine-type peptidase activity A22180 gi 30142572 mice Partial protection [7]

HSP20 Heat shock protein A38570 gi 513044555 mice No protection [8]
GP46 Membrane glycoprotein A64110 gi 159321 mice Protection [9]

L. mexicana GP63 Metalloendopeptidase activity LmxM.10.0465 gi 401416782 mice Protection [10]

Old world L. major

LmTSI Stress-induced protein sti1 LmjF.08.1110 gi 68124434 mice Protection [11]
GP63 Metalloendopeptidase activity LmjF.10.0470 gi 157865341 mice Protection [12]
PSA 2 Promastigote surface antigen protein 2 LmjF.12.1000 gi 68124979 mice No protection [13]
TSA Thiol-specific-antioxidant—Tryparedoxin peroxidase LmjF.15.1080 gi 68125473 mice No protection [14]

Histone H1 DNA binding LmjF.27.1190 gi 4008565 mice No protection [15]
LACK Leishmania homolog of receptors for activated C-kinase LmjF.28.2740 gi 157872022 mice Partial protection [16]

Viscerotropic
Leishmania species

New world L. infantum

H2A DNA binding LinJ.21.1160 gi 339898105 mice No protection [17]
LiCY1 Peptidylprolyl isomerase LinJ.25.0940 gi 146088699 mice Partial protection [18]

Histone H1 DNA binding LinJ.27.1070 gi 78146500 mice No protection [19]
CPC Cysteine-type peptidase activity LinJ.29.0860 gi 146092987 mice Protection [20]

Old world L. donovani
NH36 Hydrolase activity LdBPK_181570.1 gi 19697561 mice Partial protection [21]

A2 Amastigote-specific protein—stress response protein LdBPK_220560.1 gi 12382244 mice Protection [22]
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Table 2. Number of binding Major Histocompatibility Complex (MHC) epitopes, B cell epitopes and subcellular localization predicted by different
computational programs.

MySQL ID

Prediction of Binding MHC Epitopes Prediction of B Cells Epitopes

EO 1 Prediction of Subcelular
Localization

Binding MHC Class I Epitopes Binding MHC Class II Epitopes
AAP12 BCPred12 BepiPred

NetMHC NetCTL NetMHCII

LbrM.15.1080 7 74 132 97 32 1 No protection cyt
LbrM.25.0580 6 31 121 75 23 2 No protection cyt
LbrM.28.2950 14 67 298 130 15 2 Partial protection nuc

A16600 4 18 63 21 9 2 No protection cyt
A22180 15 105 403 214 65 14 Partial protection ext
A38570 10 46 146 52 0 5 No protection ext
A64110 28 149 739 193 20 10 Protection ext

LmxM.10.0465 31 196 747 302 91 36 Protection ext
LmjF.08.1110 29 177 369 291 79 16 Protection cyt
LmjF.10.0470 27 177 668 317 52 19 Protection pla
LmjF.12.1000 23 100 475 226 102 12 No protection ext
LmjF.15.1080 9 77 199 81 35 5 No protection cyt
LmjF.27.1190 1 27 89 20 20 2 No protection nuc
LmjF.28.2740 16 64 301 172 18 7 Partial protection nuc
LinJ.21.1160 5 52 130 33 30 2 No protection nuc
LinJ.25.0940 8 26 116 98 69 2 Partial protection cyt
LinJ.27.1070 1 36 53 80 58 2 No protection nuc
LinJ.29.0860 21 99 331 201 85 4 Protection ext

LdBPK_181570.1 14 89 356 161 63 2 Partial protection ext
LdBPK_220560.1 35 159 669 200 165 12 Protection pla

1 EO = Experimental outcome.
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Specifically regarding the epitopes capacity to bind MHC class I, MHC class II and epitopes for B
cell activation, considering a path from “no protection” to “protection” groups, a gradual increase of
the number of predicted epitopes for T cells and B cells was observed.

2.3. Predicted Epitopes and Experimental Outcome Correlation

To evaluate the possible association between the number of predicted epitopes (NPE) for B
and T cells, and the EO of selected proteins, the following consensus predictions were produced:
(a) prediction for T CD8+ epitopes obtained from NetMHC and NetCTL; and (b) prediction for B cell
epitopes obtained from AAP12, BCPred12 and BepiPred. The consensus predictions were obtained
overlapping identical predictions made by different methodologies.

To graphically depict the results, Box Plots and Correspondence Maps (CM) approaches were
applied to visualize the potential associations determined through Spearman r and Chi-square distance,
respectively. Firstly, the disease (leishmaniasis) was stratified into cutaneous leishmaniasis (CL) and
visceral leishmaniasis (VL) and the EO of antigens from Leishmania that cause CL and VL were
correlated with NPE (Figure 1a). Regarding VL analyses, significant correlation was observed only
with EO and predicted epitopes for CD8+ T cells (p < 0.05) (data not shown). On the other hand, for
CL analyses, it was observed significant correlation between EO and NPE for T CD4+, T CD8+ and
B cells, as shown in Figure 1a. After that, analyses were performed concerning the disease without
any stratification. As can be observed from Figure 1b (NPE and EO correlation for T CD4+, T CD8+

and B cells), a significant correlation exists between NPE specific to CD4+ and CD8+ T cells with
r = 0.752/p < 0.05 and r = 0.793/p < 0.05. In addition, a weak association with B cell predicted epitopes
(r = 0.515/p < 0.05) was observed. In other words, non-protective antigens have lowest frequency of
predicted T CD4+ and T CD8+ epitopes, compared with protective ones.In regards to CM analysis
(Figure 1c), considering the adopted variables (antigens EO versus NPE for T and B cells), the grouping
outcome, which is related with data correlation, shows the same strong association above mentioned
for leishmaniasis with no stratification.

As the last analysis layer used to validate data correlation, the Chi-square results confirmed
the significant association between EO and the predicted epitopes for T CD4+ and T CD8+, p < 0.05
(Tables S1 and S2) and the weak one between EO and predicted epitopes for B cells (p < 0.05, see
Table S3).

2.4. Number of Alleles (NA) and Experimental Outcome (EO) Correlation

To hypothesize possible reasons linked with vaccine success or failure, an evaluation of
allele-specific affinity (MHC I and II) was investigated. As illustrated in Figure 2a, the amounts
of epitopes binding MHC haplotype d (BALB/c MHC alleles) and haplotype b binders (C57BL/6
MHC alleles) identified in the “protection” group were superior to those ones identified in the “no
protection” group. In summary, our results indicate that epitopes for MHC class I and II haplotype b
and d are more frequent in the success antigens tested for vaccine development. In addition, a detailed
analysis in which MHC class I and II haplotypes were individually investigated revealed a strong
association between NPE from MHC class I haplotype d and EO (p < 0.05 and r = 0.855) that is not
observed for MHC class II haplotype d and b.
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Figure 1. Correlation analysis: (a) Box plots of the relationships between T CD4+, T CD8+ and B cell epitopes and experimental outcome of candidate antigens taking 
into account cutaneous leishmaniasis (CL); (b) box plots of the relationships between T CD4+, T CD8+ and B cell epitopes and experimental outcome of candidate 
antigens concerning leishmaniasis diseases with no stratification; and (c) correspondence map showing the association between experimental outcome and T CD4+, 
T CD8+ and B cell predicted epitopes for leishmaniasis with no stratification. 

Figure 1. Correlation analysis: (a) Box plots of the relationships between T CD4+, T CD8+ and B cell epitopes and experimental outcome of candidate antigens taking
into account cutaneous leishmaniasis (CL); (b) box plots of the relationships between T CD4+, T CD8+ and B cell epitopes and experimental outcome of candidate
antigens concerning leishmaniasis diseases with no stratification; and (c) correspondence map showing the association between experimental outcome and T CD4+,
T CD8+ and B cell predicted epitopes for leishmaniasis with no stratification.
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Figure 2. Evaluation of epitopes amount and relationship with experimental outcome: (a) bar graph 
showing number of epitopes for MHC class I and II (haplotype d and b) in the selected antigens 
classified in “protection” and “no protection” groups; and (b) box plot of the relationships between 
CD4+ and CD8+ T cell epitopes and experimental outcome of candidate antigens. 
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We chose Cytoscape to model PPI networks using data from STRING v.10. Figure 3a presents 
these networks, annotated according to their related KEGG pathways. Analyses of enriched 
pathways are shown in Figure 3b, according to their False Discovery Rate. Considering the “no 
protection” group, the most common pathways found were: ribosome (58 genes involved), 
glutathione metabolism (17 genes), RNA degradation (15 genes), protein processing in endoplasmic 
reticulum (15 genes), peroxisome (sixgenes) and homologous recombination (sevengenes). On the 
other hand, for “protection” group, we identified pathways as ribosome (195 genes involved), 
metabolic pathways (12 genes), purine metabolism (sixgenes) and protein processing in 
endoplasmic reticulum (seven genes). Interestingly, target proteins from “no protection” group are 
connected with nodes from many different pathways. In contrast, we observed that proteins of the 
“protection” group are connected to nodes of few pathways. Thus, there is a strong negative 
correlation (r = −8.55) between the number of connected pathways and EO of the selected proteins 
(Figure 3c). 

Figure 2. Evaluation of epitopes amount and relationship with experimental outcome: (a) bar graph
showing number of epitopes for MHC class I and II (haplotype d and b) in the selected antigens
classified in “protection” and “no protection” groups; and (b) box plot of the relationships between
CD4+ and CD8+ T cell epitopes and experimental outcome of candidate antigens.

2.5. Mapping Immunogenic Proteins on Protein-Protein Interaction Networks (PPI Networks)

We chose Cytoscape to model PPI networks using data from STRING v.10. Figure 3a presents these
networks, annotated according to their related KEGG pathways. Analyses of enriched pathways are
shown in Figure 3b, according to their False Discovery Rate. Considering the “no protection” group, the
most common pathways found were: ribosome (58 genes involved), glutathione metabolism (17 genes),
RNA degradation (15 genes), protein processing in endoplasmic reticulum (15 genes), peroxisome
(sixgenes) and homologous recombination (sevengenes). On the other hand, for “protection” group,
we identified pathways as ribosome (195 genes involved), metabolic pathways (12 genes), purine
metabolism (sixgenes) and protein processing in endoplasmic reticulum (seven genes). Interestingly,
target proteins from “no protection” group are connected with nodes from many different pathways.
In contrast, we observed that proteins of the “protection” group are connected to nodes of few
pathways. Thus, there is a strong negative correlation (r = −8.55) between the number of connected
pathways and EO of the selected proteins (Figure 3c).
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Figure 3. Immunogenic proteins mapped in Protein-Protein Interaction (PPI) networks: (a) PPI networks 
constructed starting with the target proteins (“no protection” and “partial protection/protection”) 
represented by triangles and specific pathways associated with each node (circles) using KEGG 
database. (b) Analysis of KEGG enriched pathways was performed by False Discovery Rate. For both 
“no protection” and “partial protection/protection”, the bar shows the fold-enrichment of the 
pathways. (c) Significant correlation between number of pathways connected with the target 
proteins of “no protection” and “partial protection/protection” groups (p = 0.007). 

3. Discussion 

Nowadays, many computational methodologies have been described for epitope predictions of 
bacterial, fungal and others microorganisms. For protozoan (specifically Leishmania species), there 
are not strong and validated platforms to identify promising antigens for Leishmania vaccines [23]. 
Herein, we developed a sturdy and complete platform with potential of identifying candidates for 

Figure 3. Immunogenic proteins mapped in Protein-Protein Interaction (PPI) networks:
(a) PPI networks constructed starting with the target proteins (“no protection” and “partial
protection/protection”) represented by triangles and specific pathways associated with each node
(circles) using KEGG database. (b) Analysis of KEGG enriched pathways was performed by False
Discovery Rate. For both “no protection” and “partial protection/protection”, the bar shows the
fold-enrichment of the pathways. (c) Significant correlation between number of pathways connected
with the target proteins of “no protection” and “partial protection/protection” groups (p = 0.007).
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3. Discussion

Nowadays, many computational methodologies have been described for epitope predictions of
bacterial, fungal and others microorganisms. For protozoan (specifically Leishmania species), there are
not strong and validated platforms to identify promising antigens for Leishmania vaccines [23]. Herein,
we developed a sturdy and complete platform with potential of identifying candidates for vaccines
against leishmaniasis. This platform integrates prediction of B and T cell epitopes, analysis of PPI
networks and signaling pathways.

The first step was to select the input antigens to validate the platform. In this concern, we did
an extensive search in the literature regarding antigens tested in murine model. It was difficult to
categorize the 20 selected antigens for this work because there is a lack of consensus concerning
the model, challenge inoculum, mechanisms of protective immunity (response induction, parasite
burden reduction), so there is no standardization to appoint if a vaccine indicates protection or not [24].
We tried to choose proteins with no interference of adjuvant since it can entirely modify the antigen
response [25].

Regarding the platform validation, we performed the epitope mapping using ad-hoc algorithms.
Our results suggest that antigens with more predicted epitopes for T CD4+ and T CD8+ cells could be
associated with protection in EO. In this regard, our results revealed that there are strong correlation and
association between predicted epitopes and the EO. The inertia values show the powerful association
between the variables. The CM dimension 1 represents the highest inertia allowing the interpretation
of the results in the first dimension. T CD4+ and T CD8+ predicted epitopes versus EO show higher
inertia values when compared to B cells predicted epitopes emphasizing that epitopes for CD4+ and
CD8+ T cells are crucial for Leishmania vaccines success. We used all available human and mouse
alleles to restrict the epitopes allowing enhance the assertive prediction. This analysis is useful to
identify conserved epitopes that can bind various alleles of MHC appointing for rare and promising
epitopes. The in silico analyses and in vivo validation of epitopes demonstrates that some algorithms
may be important tools for the identification of epitopes, and consequently of immunogenic proteins.
The algorithm NetCTL version 1.2 makes prediction of peptide–MHC class I binding, proteasomal C
terminal cleavage, both using artificial neural networks, and TAP transport efficiency using weight
matrix. The tree predictions are then integrated [26]. Another predictor also used for MHC class I
binding peptides was NetMHC version 3.0. It predicts binding of peptides to different HLA alleles
using artificial neural networks and weight matrices. For peptide–MHC class II binding prediction
NetMHCII, version 1.0, was used. It predicts binding of peptides to 14 different HLA-DR alleles,
including human and mouse, using position specific weight matrices [27]. To perform B-cell epitopes
predictions, we used only methods that predict continuous epitopes. We used first BepiPred, version
1.0, that predicts linear B-cell epitopes using a combination of Hidden Markov model and a propensity
scale method [28]. Then we used BCPREDS server comprising the AAP12 and BCPred12 predictors.
The first one is based on the finding that B-cell epitopes favor particular amino acid pair, and it was
trained using support vector machine classifier. The second uses subsequence kernel trained using
support vector machine classifiers with 701 linear B-cell epitopes, extracted from Bcipep database,
and 701 non-epitopes, randomly extracted from SwissProt sequences [29–31]. Finally, we used WoLF
PSORT predictor, which is an amino acid sequence predictor of subcellular localization sites of proteins.
It uses known sorting signal motifs and some correlative sequence features [32]. The integration of
these predictors could reveal proteins that are secreted or presented in parasite membrane, capable of
eliciting B and T cells responses.

Herrera-Najera et al. [33] performed a large-scale prediction of T cell epitopes in the whole genome
of L. major, obtaining 26 potential epitopes through prediction consensus. Fourteen of them revealed
to be immunogenic epitopes that were capable to stimulate T cells to produce IFN-γ. Other studies
employing computational predictions in specific Leishmania proteins have shown that it is quite possible
to use combined algorithms in epitopes searching that could be validated by in vivo experiments [34].
Duarte et al. [35] developed a combined epitope prediction platform in order to investigate T CD8+
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epitopes in 63 L. braziliensis proteins, demonstrating a cytotoxic activity of some predicted epitopes in
Leishmania infected mice. Recently, in silico methods for linear epitope predictions (NetMHC, NetCTL,
and NetMHCII) were combined with molecular modeling to identify potential epitopes in the whole
L. braziliensis proteome. Therefore, the pipeline was validated based on stimulation of human
peripheral blood mononuclear cells (PBMCs) proliferation. The results obtained after the in vitro
assays showed that six of ten selected epitopes could be classified as potentially immunogenic [36].

The role of B cell epitopes still hasroom for discussion since there is no consensus if
immunoglobulins could be associated with resistance or susceptibility in leishmaniasis [37,38]. On the
other hand, our results demonstrate a correlation between protection and specific B cell epitopes.
In this context, we suggest that an effective vaccine should have epitopes capable of eliciting a strong
T cell response and B cells too. In addition to the epitopes for B cells and MHC class I and II, another
important feature is the subcellular localization of the antigen. It is known that extracellular Leishmania
proteins are more immunogenic and considered better targets for vaccine development [39,40]. This fact
is indeed corroborated by our findings that show the majority of the antigens from “protection group”
are linked with extracellular compartmentalization. In silico approaches have limitations regarding the
proteome annotation (e.g., the data of L. amazonensis used in this work) and the large number of linear
epitopes. Nevertheless, our results of epitope prediction indicate a higher assertive and successful
prediction, so it can be a useful approach for vaccine development against leishmaniasis.

To better understand the biological importance of vaccine candidates, we proposed the use of PPI
networks enriched with KEGG pathways information. It is well known that some proteins are essential
for specific biological processes of Leishmania spp. [41,42]. In this context, we proposed to analyze
antigen pathways through modeled PPI and its relation with protection and no protection of vaccine
candidates after challenging with infective Leishmania parasites. Our analyses showed that many of
the selected antigens do not have any KEGG pathway associated to them, but, instead, are connected
to proteins that are part of some pathway. Pathways associated with ribosome biosynthesis, purine
metabolism and metabolic processes are present in “protection” group networks. Ribosome related
proteins were considered relevant molecules during infection, since in some circumstances they can
modulate cell activities and cytokine release. Many works associated these pathways to immune
response [43]. Cordeiro-Da-Silva and collaborators in 2001 characterized a Leishmania major gene
considered to be homologous to the mammalian ribosomal protein S3a. This ribosomal protein
can be found in many other Leishmania species such as L. infantum, L. amazonensis, and L. mexicana.
The article authors suggested that this protein could participate in the Th1/Th2 immune response
balance during leishmaniasis [44]. Soto and collaborators in 1993 using sera from dogs affected
by visceral leishmaniasis identified high antigenic Leishmania acidic ribosomal proteins, also called
P-type proteins [45]. Another work by Soto and collaborators in 2000 showed that intraperitoneal
administration in BALB/c mice of the acidic ribosomal protein LiP2a, without adjuvants, elicited a
strong humoral response and was capable of stimulating production of IFN-γ in cultured splenocytes
from LiP2a-immunized mice [46]. Our findings also match with results obtained in the secretome of
L. donovani, where the majority of virulent proteins (secreted proteins) belong mainly to metabolic and
biosynthesis processes [47]. To check the importance of some proteins related to metabolic process,
Leishmania knocked-out for protein kinases and phosphatases possible involved in parasite metabolism
regulation were generated. After this process, in many cases highly attenuated or completely
avirulent parasites could be observed [48]. Naderer and collaborators generated a Leishmania major
mutant lacking the regulatory subunit of the Ca2+/calmodulin-dependent serine/threonine-specific
phosphatase. This modified Leishmania grew normally at 27 ◦C. However, this parasite lost viability
when exposed to 34 ◦C [49]. Target of rapamycin (TOR) kinases are involved in some regulatory
pathways related to cell growth and structure in eukaryotes. Silva and collaborators generated
TOR3 knocked-out Leishmania major parasites. These knocked-out parasites exhibited slower growth
than wild-type parasites and were unable to survive or replicate in macrophages in vitro. These
parasites were not capable of inducing disease or establish infection in mice in vivo [50]. In addition,
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McConville and Naderer [48] have shown that metabolic pathways are important to Leishmania
virulence, since down regulation of metabolic genes causes latency of many Leishmania species.
One possible application of these attenuated or avirulent parasites could be in whole parasites vaccines.
Carter et al. [51] have noticed that purine metabolism is vital for Leishmania survival. Surprisingly,
our findings show that proteins associated to protection are connected to few pathways when compared
to proteins that are not protective.

In summary, in this work, we proposed and validated a computational approach regarding
epitope prediction, topological structure and pathway analyses to drive a rational vaccine design
against leishmaniasis.

4. Materials and Methods

4.1. Selection of the Leishmania Antigens

Leishmania proteins tested in murine model, with EO published in the literature, were selected.
Studies describing vaccine effectiveness after challenge with Leishmania spp. were preferentially chosen.
Bearing in mind that there is no standardization of the protection concept and that there is variation of
results in the literature, it was necessary to create three categories as already described. According to
our categorization, “no protection” group includes antigens that promote no or slight reduction of
parasite burden or lesions after Leishmania challenge. The “protection” group includes antigens that
promoted significantly strong reduction of the parasite burden or lesions showing strong immune
response to Leishmania antigens. Thus, the term partial protection was used to classify antigens that
are between a potential protection and no protection at all. The “partial protection” group comprises
proteins that could slightly reduce the parasite burden and/or lesions more than “no protection” group.
In addition, these proteins can elicit some immune response which results in ineffective protection. It is
important to highlight that the influence of adjuvants was not taken into account for the categorization,
thus only the response of antigens tested alone was chosen to categorize the groups. Twenty candidates
from Old and New World Leishmania species were categorized according with their experimental
results in the following groups: (a) “no protection”; (b) “partial protection”; and (c) “protection”.
The selected experimentally validated data included information from proteins of L. amazonensis,
L. braziliensis, L. major, L. mexicana, L. donovani and L. infantum that were subsequently used in this
study to corroborate the in silico bioinformatics predictions. The selected antigens are described
in Table 1.

4.2. Leishmania Proteome Data

The predicted proteome sequences of dermatotropic and viscerotropic Leishmania species were
obtained from TriTrypDB (Kinetoplastid Genomics Resource) and the sequence of L. amazonensis was
downloaded from http://bioinfo08.ibi.unicamp.br/leishmania/ [52]. Detailed information about the
predicted proteomes versions used in this work can be found in Table 3.

Table 3. Leishmania predicted proteomes used in the study. The version and number of predicted
proteins of each species are shown.

Leishmania Specie Version of Proteome Predicted Proteins

L. braziliensis 3.1 8357
L. amazonensis - 1 8168

L. mexicana 9.0 8250
L. major 9.0 8400

L. donovani 8.0 8083
L. infantum 3.2 8241

1 This is a draft version. This proteome still has many annotation errors.
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4.3. Epitope and Subcellular Localization Predictions

All proteomic data used in this work were screened in order to predict T CD4+ and T CD8+

epitopes, B cell epitopes and subcellular localization of proteins.
For T CD8+ epitope prediction (MHC class I binding epitopes), algorithms NetCTL [26,53,54] and

NetMHC [55–57] were used. Regarding T CD4+ epitopes, NetMHCII [27,58] was used to predict MHC
class II binding epitopes. For B cell epitopes, BepiPred [28] and BCPREDS (AAP12 and BCPred12
models) [29–31] were used to predict epitopes. Finally, the protein subcellular localization was
predicted using WoLF PSORT [32,55–57]. The algorithms choice was made taking into account their
viability for local stand-alone server installation, the number of citations found in literature, and
the results previously published by Resende, Rezende, Oliveira, Batista, Correa-Oliveira, Reis and
Ruiz [23] describing algorithms specificity, sensitivity and accuracy with parasite data obtained from
UniProt (http://www.uniprot.org/) and IEDB (Immune Epitope Database and Analysis Resourse)
(http://www.iedb.org/). The analytical workflow used in this study is presented in Figure 4.
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To carry out the predictions, the algorithms were parameterized for eukaryotic genomes.
For MHC class I binding epitopes, predictions for 12 human supertypes and seven mice alleles
were performed. The following alleles were used: A1, A2, A3, A24, A26, B7, B8, B27, B39, B44,
B58, B62, H2-Db, Dk-H2, H2-Dd, H2-Kb, H2-Kd, Kk-H2, and H2-Ld. Concerning MHC class II
binding epitopes, we used 14 human alleles and three mice alleles bringing the total of different
alleles to 17, as follows: HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*04:04,
HLA-DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01,
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HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB4*01:01, HLA-DRB5*01:01, H2-IAs,
H2-IAd and H2-IAb.

4.4. Development of Relational Database

Taking into account the great amount of data generated by the algorithms, we constructed
a relational database using MySQL as Relational Database Management System (RDBMS)
(http://www.mysql.com). The use of a database system in this work represents a crucial step that
allows the integration of the results from all predictors and a way of getting a data receptacle or
conceptual repository from which is possible to extract data correlation, helping in the identification
of target proteins. The MySQL GUI Tools (http://dev.mysql.com/downloads/gui-tools/5.0.html)
were used as a graphical user interface for our MySQL database. The relational model was built in
MySQL Workbench (http://wb.mysql.com). To extract, parse and load data into database, specific Perl
scripts were developed using DBI (the Perl interface to databases) and BioPerl modules. The relational
schema is presented in Figure 5.
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We entered these proteins into STRING v.10 [59] looking for interaction networks associated with
them, using Leishmania as reference organism. The active interaction sources used were text mining,
experiments, database, co-expression, neighborhood, gene fusion and co-occurrence, with medium
confidence score (0.400). The networks were built using the target proteins as central nodes and
expanding them with the first neighbors, using 500 as maximum value of interactions. From STRING,
we obtained the PPI network data and KEGG [60] pathway functional enrichments (p < 0.05) of proteins
involved in these networks. Then we built the protein networks using Cytoscape [61], adding KEGG
information over them.

4.6. Statistical Analysis

The analyses were performed using SPSS version 20 (SPSS Inc., Chicago, IL, USA). Association
coefficients were determined using Spearman two tailed test and correspondence analysis were
determined by Chi-squared, statistical significance was considered when p < 0.05.

5. Conclusions

In this work, we validated a computational approach regarding epitope prediction, topological
structure and pathway analyses to drive a rational vaccine design against leishmaniasis, using antigens
tested in murine model described in literature. Our results suggest that CD4+ and CD8+ T cells are
more related to leishmaniasis protection in EO than B cells. For a deeper analysis, we also used PPI
networks enriched with KEGG pathways information. According to our results, proteins associated to
protection are connected to few pathways when compared to proteins classified as “no protection”.
In addition, analysis of PPIs and KEGG pathways associated to proteins from “protection” group
corroborate the idea already published in the literature that reverse vaccinology approaches are able
to identify proteins related to pathogenicity of infectious agents, helping researchers to understand
virulence mechanisms and how immune responses from hosts are able to fight them. Obtained results
may be helpful in discovering new potential antigens using computational approaches.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/371/s1.
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