The CpG Dinucleotide Adjacent to A κB Site Affects NF-κB Function through Its Methylation

Tao Wang, Jinge Li, Ke Ding, Li Zhang, Qiuru Che, Xiuming Sun, Yumeng Dai, Wei Sun, Meiying Bao, Xiaochun Wang, Liquan Yang, Zhiwei Li*

The Center for Combinatorial Chemistry and Drug Discovery, School of Pharmaceutical Science, Jilin University, Changchun, China

* Correspondence: zhiweili@jlu.edu.cn; Tel.: +86-431-8561-9260

кb site sequence			J	Human g	ene name			
GGGAATTTCC	CCL2	NFKBIA	CD40	NOD2	TNFRSF9	PLAU	CXCL5	MUC2
GGGACTTTCC	FABP6	CD54	TNFA IP3	LMP2	TICAMI	TP53		
GGGATTTCCC	VCAM1	APOC3	IL15RA	TNIP3	BCL3	NR4A2		
GGGGTTTTCC	CCL20	TRPC1	CD80	RELB	LIPG	TP53		
GGGGATTTCC	SELE	TNFAIP3	ELF3	IRF2				
GGGGCTTTCC	CD48	VIM	PI3	NFKB2				
GGGATTTTCC	BLR1	CD69	IL6					
GGGGAATTCC	RELB	TFP12						
GGGAGTTTCC	CCL5	IRF7						
GGGGCTTCCC	LTA	NFKB1						
GGGAGATTCC	FLRG	CCL11						
GGGAATCTCC	IL2RA	GZMB						
GGGGTTTCCC	EBI3	BLR1						
GGGGAGCCCC	CD74	IL1A						
GGGAAACTCC	CD40	BLR1						
GGGAACTTCC	CD40	CCL2						
GGGACCCTCC	GSTP1							
GGGGAATCCC	IRFI							
GGGGATTCCC	PTGS2							
GGGACGTTCC	CREB3							
GGGATCCTCC	CD44							
GGGGAACTCC	PTX3							
GGGAATTCCC	NFKB2							
GGGGCATCCC	CCL5							
GGGGAGTCCC	EDN1							
GGGAAATTCC	IFNB1							
GGGACATTCC	LCN2							
GGGAGGCTCC	ADAM19							
GGGAACCTCC	KCNK5							
GGGATTCTCC	BTK							
GGGACATCCC	ALOX12							

Table S1: KB sequences and their bearing genes used in this study.

Red, -1C kb site; blue, -1C or D kb site; green background, kb site in CGI.

Table S2. Oligonucleotides used for DAPA

Oligonucleotide	Sequence $(5' \rightarrow 3')$
FABP6 kb site -1A	Biotin-CCTCTTCAAAGGGACTTTCCTACAAGGGACTTTCCTTCCCGTCTA
	TAGACGGGAAGGAAAGTCCCTTGTAGGAAAGTCCCTTTGAAGAGG
EARP6 whiste $-1C$	Biotin-CCTCTTCAACGGGACTTTCCTACACGGGACTTTCCTTCCCGTCTA
TADI 0 KU SILE -IC	TAGACGGGAAGGAAAGTCCCGTGTAGGAAAGTCCCGTTGAAGAGG
FARP6 vb site $-1.5mC$	Biotin-CCTCTTCAA/5mC/GGGACTTTCCTACA/5mC/GGGACTTTCCTTCCCGTCTA
TABLO RUSHE -1 SHIC	TAGACGGGAAGGAAAGTCC/5mC/GTGTAGGAAAGTCC/5mC/GTTGAAGAGG
CCL^2 replaced as 1^{-1}	Biotin-CCTCTTCAAAGGGAACTTCCTACAAGGGAATTTCCTTCCCGTCTA
CCL2 KU SHE -IA	TAGACGGGAAGGAAATTCCCTTGTAGGAAGTTCCCTTTGAAGAGG
CCL^2 vb site $-1C$	Biotin-CCTCTTCAACGGGAACTTCCTACACGGGAATTTCCTTCCCGTCTA
CCL2 KU SHC -IC	TAGACGGGAAGGAAATTCCCGTGTAGGAAGTTCCCGTTGAAGAGG
CCL2 rch site -1.5mC	Biotin-CCTCTTCAA/5mC/GGGAACTTCCTACA/5mC/GGGAATTTCCTTCCCGTCTA
COL2 KO SKO I DINO	TAGACGGGAAGGAAATTCC/5mC/GTGTAGGAAGTTCC/5mC/GTTGAAGAGG
PTX3 kb site $-1C$	Biotin-CCTCTTCAAAGGGGAACTCCCGTACAAGGGGAACTCCCGTTCCCGTCTA
TIAS KUSHE -IC	TAGACGGGAACGGGAGTTCCCCTTGTACGGGAGTTCCCCTTTGAAGAGG
PTX3 rch site $-1.5mC$	Biotin-CCTCTTCAAAGGGGAACTCC/5mC/GTACAAGGGGAACTCC/5mC/GTTCCCGTCT/
TIX5 KU SHE -1 SHIC	TAGACGGGAA/5mC/GGGAGTTCCCCTTGTA/5mC/GGGAGTTCCCCTTTGAAGAGG
FLRG κ h site -1C	Biotin-CCTCTTCAAAGGGAGATTCCCGTACAAGGGAGATTCCCGTTCCCGTCTA
PERO Rosne-TC	TAGACGGGAACGGGAATCTCCCTTGTACGGGAATCTCCCTTTGAAGAGG
FLRG kb site -1 5mC	Biotin-CCTCTTCAAAGGGAGATTCC/5mC/GTACAAGGGAGATTCC/5mC/GTTCCCGTCT/
	TAGACGGGAA/5mC/GGGAATCTCCCTTGTA/5mC/GGGAATCTCCCTTTGAAGAGG
NC	Biotin-CCTCTTCAAATTGAACTTACTACAATTGAACTTACTTCCCGTCTA
	TAGACGGGAAGTAAGTTCAATTGTAGTAAGTTCAATTTGAAGAGG

Table S3. Primers used for Plasmids construction and site-directed mutagenesis

Primer	Sequence $(5' \rightarrow 3')$
FABP6- f	CGCGTCCTCTTCAAAGGGACTTTCCTACAAGGGACTTTCCTTCC
FABP6- r	TCGAGTAGACGGGAAGGAAAGTCCCTTGTAGGAAAGTCCCTTTGAAGAGGA
FABP6-M-f	CGCGTCCTCTTCAACGGGACTTTCCTACACGGGACTTTCCTTCC
FABP6-M-r	TCGAGTAGACGGGAAGGAAAGTCCCGTGTAGGAAAGTCCCGTTGAAGAGGA
CCL2-E-f	ACGTGGTACCGTGTGTCCCCAAGCGAG
CCL2-E-r	GATCGCTAGCTGCATCCTTTACCATGAACT
CCL2-P-f	GATCGCTAGCAATTCAGTTCAATGTTTACA
CCL2-P-r	AGTCCTCGAGGCTGGAGGCGAGAGTGCGAG
CCL2-Mut1-f	GCATTCTCTTCTACGGGATCCGGGAACTTCCAAAGCTGC
CCL2-Mut1-r	GCAGCTTTGGAAGTTCCCGGATCCCGTAGAAGAGAATGC
CCL2-Mut2-f	CAAAGCTGCCTCCTCAGAGCGGGAATTTCCACTCACTTC
CCL2-Mut2-r	GAAGTGAGTGGAAATTCCCGCTCTGAGGAGGCAGCTTTG

Table S4. Primers used for BSP

Primers used for BSP		
Primer	Sequence (5'→3')	
GSTP1-M-f	TTTGTTGTTTGTTTATTTTTAGGTTT	
GSTP1-M-r	ATACTAAAAACTCTAAACCCCATCC	
RelB-M-f	GTTTAAGTTTTATTGGGAGATTAAAG	
RelB-M-r	ACCCAAAAACTAACCCAAACC	
IRF7-M-f	GGGTTTTTAGTATTTGGGTGTTAGAG	
IRF7-M-r	AAACTATAATAAAATAACTCCATCTC	
TNFIP3-M-f	GYGGGGTAGGGAAAGG	
TNFIP3-M-r	AACTCCAAACTCRCTTAACC	
TFPI2-M-f	TTTTATGTTTTTAAGAGGTGGATTT	
TFPI2-M-r	AAACCTAAAAAATAACTAATTCATACAC	
PTX3-M-f	GATTTTTTTTTTTAATTAATTTGATTGTAG	
PTX3-M-r	AAATCCTTAATAAATACTAAAAAAAAACC	
FLRG-M-f	TTTTGTGTTTGTTTTATTTTTTAAGT	
FLRG-M-r	CCTAACCTTAACCTCTAACATTTCC	
CCL2-M-f	TTTTTATAGTTTTTTTGGGGGGTTTT	
CCL2-M-r	ATCTACCTCCCACTTCTACTCTATCAA	

Table S5. Primers used for RT-PCR

Primer	Sequence $(5' \rightarrow 3')$
RelB-T-f	GCCTCGTGGGGAAAGACT
RelB-T-r	TGTCGCAGAGCAAGTAGAGC
TNFAIP3-T-f	ACCCCATTGTTCTCGGCTAT
TNFAIP3-T-r	CCCTGCTCGCTGTTTTCC
CCL2-T-f	TAGCAGCCACCTTCATTCC
CCL2-T-r	GCTTGGGGTCAGCACAGAT
ΙκΒα-Τ-f	AGTACGAGCAGATGGTCAAG
ΙκΒα-Τ-r	TCATGGATGATGGCCAAGTG
TFPI2-T-f	CCCTACTTCTCCGTTACTACT
TFPI2-T-r	TCTGGAAACCTGTTCTCAAT
IRF7-T-f	CAGATCCAGTCCCAACCAA
IRF7-T-r	GCAGCAGTTCCTCCGTGT
GAPDH-T-f	AGCCACATCGCTCAGACACC
GAPDH-T-r	ACGTACTCAGCGCCAGCATC

U937 CCL2 кb site (-2822/-2513)

Figure S1. Methylation status around the κB sites of *CCL2* was not changed upon NF- κB activation by TNF α or LPS in U937 cells. Genomic DNAs were isolated from U937 cells treated with TNF α (10 ng/ml) or LPS (1µg/ml) for the indicated time and methylation status was determined by BSP. The κB site was shown as a vertical line.

Figure S2. The ratio between -1C κ B sites and total κ B sites outside CGIs is substantially lower than that inside CGIs in *VCAM*, *CCL2* and *RelB* of multiple vertebrate.