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Abstract: Although ketoconazole (KCZ) has been used worldwide for 30 years, its metabolic
characteristics are poorly described. Moreover, the hepatotoxicity of KCZ limits its therapeutic
use. In this study, we used liquid chromatography–mass spectrometry-based metabolomics to
evaluate the metabolic profile of KCZ in mouse and human and identify the mechanisms underlying
its hepatotoxicity. A total of 28 metabolites of KCZ, 11 of which were novel, were identified in this
study. Newly identified metabolites were classified into three categories according to the metabolic
positions of a piperazine ring, imidazole ring, and N-acetyl moiety. The metabolic characteristics of
KCZ in human were comparable to those in mouse. Moreover, three cyanide adducts of KCZ were
identified in mouse and human liver microsomal incubates as “flags” to trigger additional toxicity
study. The oxidation of piperazine into iminium ion is suggested as a biotransformation responsible
for bioactivation. In summary, the metabolic characteristics of KCZ, including reactive metabolites,
were comprehensively understood using a metabolomics approach.
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1. Introduction

Ketoconazole (KCZ; Figure 1A), an imidazole-containing antifungal drug, was approved by the
US Food and Drug Administration (FDA) in 1981 as the first orally available azole antifungal agent [1].
Like other azole antifungal agents, KCZ exerts its pharmacological effects by blocking the biosynthesis
of ergosterol, a vital component of fungal cytoplasmic membranes, through the inhibition of lanosterol
14α-demethylase [2,3]. Owing to its broad-spectrum antifungal activity towards coccidioidomycosis,
oral candidiasis, and histoplasmosis [3], KCZ is widely used in the clinic and in research.

Surprisingly, despite the use of KCZ worldwide for 30 years, its metabolic characteristics are
poorly described. At the time of its approval, KCZ was suggested to be extensively metabolized
into a large number of metabolites in human and mouse [4,5]. However, little evidence supports
previously proposed biotransformations of KCZ, such as oxidation; scission of the imidazole, dioxolane,
and piperazine rings; O-dealkylation; and aromatic hydroxylation. In the 1980s, trace quantities of
glucuronic acid and sulfate conjugates were reported in rat excreta [6]. Remarkable progress in the
understanding of KCZ metabolism was made beginning in the 1990s [7–12]. Whitehouse et al. [7,8]
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identified nine metabolites of KCZ in mouse liver and reported that N-deacetylation was the primary
metabolic pathway. Rodriguez et al. [9,10] demonstrated further metabolism of N-deacetyl-KCZ into
dialdehyde, and identified the responsible enzyme as a flavin-containing monooxygenase (FMO).
The majority of suggested biotransformations were examined in 2009 by liquid chromatography-high
resolution mass spectrometry (LC-HRMS) [11]. Using human and rat liver microsomes, Fitch et al. [11]
proposed 16 metabolites, 10 of which were novel. Many of the previously suggested metabolic
reactions—including imidazole cleavage, piperazine oxidations, with or without amide cleavage,
aromatic oxidation, oxidation, and reduction—were observed; however, other biotransformations,
such as O-dealkylation, were not identified. Also, uridine 5′-diphospho-glucuronosyltransferase (UGT)
1A4 was identified as the enzyme responsible for the glucuronidation of KCZ [13].Int. J. Mol. Sci. 2017, 18, 621 2 of 17 
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addition of trapping agents to microsomes. For KCZ, cyanide adducts of KCZ and hydroxy-KCZ 
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Drug-induced liver injury (DILI) is one of the most underlying mechanisms giving rise to
drug withdrawal [14]. DILI can be categorized into three types, such as hepatocellular, cholestatic,
and mixed type based on serum biochemistry [15] and several causality assessment methods
have been proposed including the Roussel Uclaf Causality Assessment Method (RUCAM) [16,17].
Hepatotoxicity induced by KCZ remains the primary drawback of its therapeutic use [1]. KCZ-induced
hepatotoxicity is classified as hepatocellular type [14,18] and the incidence of KCZ-induced acute
liver injury ranges from 0.05% to 4.2% [19–21]. Although hepatic injury is usually asymptomatic
and reversible, careful monitoring of patients taking KCZ is required because its toxicity is
dose-independent and can be idiosyncratic. Idiosyncratic toxicity refers to rarely (generally <0.1%)
and unpredictably developed toxicity and has become a major concern in drug development and
clinical use. Finally, the FDA and European Medicines Agency announced new regulations for
oral KCZ usage on 26 July 2013 (available on: http://www.fda.gov/Drugs/DrugSafety/ucm362415.
htm and http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/07/
news_detail_001855.jsp&mid=WC0b01ac058004d5c1). Unfortunately, KCZ-induced hepatic injury is
not mechanistically understood (available on: https://livertox.nih.gov///Ketoconazole.htm). Limited
information is available on mechanisms such as covalent binding, glutathione (GSH) depletion,
and bioactivation [22,23]. Bioactivation refers to metabolic activation of xenobiotics into reactive
or toxic metabolites, and can result in drug-induced toxicity [14]. Therefore, effort has focused on
the assessment of bioactivation of drug candidates to avoid or manage potential risk during drug
development [24–27]. The most widely used method for detection of reactive metabolites is the
addition of trapping agents to microsomes. For KCZ, cyanide adducts of KCZ and hydroxy-KCZ
have been identified [11,28,29]. However, the formation of GSH adducts is controversial [11,26,28,29],
and other types of adducts, such as semicarbazides, were not formed [29].

Metabolomics-based non-targeted approaches are now applied in drug metabolism studies [30];
this has been reviewed recently [31,32]. By monitoring as many metabolites as possible without
emphasis on particular metabolic pathways, metabolomics-guided drug metabolism studies enhance
our understanding of drug metabolites, including reactive metabolites.

In this study, we evaluated the metabolic characteristics and the potential for bioactivation of KCZ.
Using high resolution mass spectrometry (HRMS) and metabolomics, we enhanced our understanding
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of KCZ metabolic pathways and identified biologically reactive metabolites as candidates for the
mechanistic assessment of hepatotoxicity.

2. Results

2.1. Overall Strategy for KCZ Metabolite Profiling

A schematic workflow is presented in Figure 2. To identify an appropriate animal model for
studying the metabolism and toxicity of KCZ, mouse and human were compared. After in vitro or
in vivo sampling, samples were appropriately prepared and profiled using LC-HRMS. The acquired
MS spectra were processed for chemometric analysis as described in Section 4.7, and meaningful
variables were extracted by partial least squares discriminant analysis (PLS-DA) or orthogonal partial
least squares discriminant analysis (OPLS-DA). A loading S-plot generated by OPLS-DA revealed
the variables that contributed most to the separation of each group; these were considered possible
KCZ metabolites and their related ions. Moreover, KCZ and KCZ-d8 were incubated separately in
microsomes to enhance structural elucidation of KCZ metabolites. The ions that contributed most to
separation were distributed symmetrically in the loading scatter plot and metabolite profiling focused
on these top-ranking ions.
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Figure 2. Schematic workflow for the metabolite profiling of ketoconazole using liquid
chromatography–high resolution mass spectrometry (LC-HRMS)-based metabolomics.
KCZ: ketoconazole, NADPH: reduced form of nicotinamide adenine dinucleotide phosphate,
KCN: potassium cyanide, MS/MS: tandem mass spectrometry, MDA: multivariate data analysis,
PLS-DA: partial least squares discriminant analysis, OPLS-DA: orthogonal partial least squares
discriminant analysis.

In the MS spectra, KCZ exhibited three characteristic molecular ions—[M + H]+ at m/z 531.1563,
[M + Na]+ at m/z 553.1378, and [M + 2H]2+ at m/z 266.0818—and displayed a unique isotope
distribution pattern with a relative abundance ratio of 10:7:1 and a 2 amu difference, caused by
two atoms of chlorine. These properties provided additional information for identification of KCZ
metabolites from the complex mass spectral background. KCZ produced several characteristic
fragment ions at m/z 489.1448, m/z 446.1028, m/z 267.0082, m/z 255.0082, m/z 219.1125, m/z 177.1021,
and m/z 112.0757 (Figure 3A). These ions served as diagnostic product ions for the structural
elucidation of KCZ metabolites. Indeed, m/z 255.0082 was proposed as 1-(2,4-dichlorophenyl)-
1-hydroxy-2-(1H-imidazol-1-yl)ethan-1-ylium ion and played a key role in the identification and
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structural elucidation of metabolites by providing information on whether biotransformation involved
the dichlorophenyl imidazole moiety of KCZ. Finally, the chemical structures of metabolites were
investigated using their product ions and determined by using Mass Frontier software.
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Figure 3. MS/MS spectra and ion chemistries of ketoconazole and newly identified metabolites.
(A) Ketoconazole; (B) M17; (C) M20; (D) M22; (E) M27; and (F) M28.

2.2. Identification of KCZ Metabolites

Metabolomics-guided metabolite profiling from mouse and human resulted in 28 metabolites
including 11 newly identified ones. The chemical formulae, molecular ions, mass accuracies, retention
time, and identified samples are summarized in Table 1.



Int. J. Mol. Sci. 2017, 18, 621 6 of 18

Table 1. Chemical formulae, molecular ions, mass accuracies, retention times, and positive biological
samples for ketoconazole and its metabolites.

ID Formula
[M + H]+ (m/z) Error

(ppm)
tR

(min) Identified in References and
CommentsTheoretical Observed

KCZ C26H28Cl2N4O4 531.1560 531.1552 −1.56 7.9 - Parent
M1 C26H30Cl2N4O6 565.1615 565.1599 −2.85 10.5 MLM, HLM, MHP, HHP, MF [11]
M2 C24H28Cl2N4O4 507.1560 507.1554 −1.2 7.9 MLM, HLM, HHP, MF [11]
M3 C24H22Cl2N4O5 517.1040 517.1032 −1.64 6.0 MLM, MHP, MF [11]
M4 C26H28Cl2N4O5 547.1510 547.1508 −0.24 6.2 MLM, HLM, MHP, HHP, MF [11]
M5 C26H28Cl2N4O5 547.1510 547.1502 −1.46 7.3 MLM, HLM, MHP, HHP, MF [11]
M6 C26H28Cl2N4O5 547.1510 547.1504 −1.02 7.8 MLM, HLM, MHP, HHP, MF [11]
M7 C26H28Cl2N4O5 547.1510 547.1508 −0.24 9.2 MLM, HLM, HHP [11]
M8 C24H26Cl2N4O4 505.1404 505.1401 −0.5 5.1 MLM, HLM, MHP, HHP, MF [11]
M9 C11H10Cl2N2O 257.0243 257.0243 +0.08 1.7 MLM, HLM, MHP, HHP, MF [11]

M10 C26H26Cl2N4O5 545.1353 545.1349 −0.75 7.0 MLM, HLM, HHP, MF [11]
M11 C24H26Cl2N4O3 489.1455 489.1447 −1.68 3.6 MLM, HLM, MHP, HHP, MF [11]
M12 C20H19Cl2N3O3 420.0876 420.0878 +0.71 1.8 MLM, MHP, HHP [11]
M13 C20H19Cl2N3O3 420.0876 420.0872 −1.1 2.9 MLM, MHP, HHP, MF [11]
M14 C14H12Cl2N2O4 343.0247 343.0243 −1.08 4.4 MLM, MF [11]
M15 C25H26Cl2N4O4 517.1404 517.1394 −1.91 7.7 MLM [8]
M16 C22H24Cl2N4O3 463.1298 463.1293 −1.06 2.9 MLM, HLM, MHP, HHP, MF [8]
M17 C24H24Cl2N4O4 503.1247 503.1252 +0.93 5.9 MLM Novel
M18 C24H24Cl2N4O4 503.1247 503.1241 −1.31 7.4 MLM, HLM, MHP, HHP, MF Novel
M19 C24H24Cl2N4O5 519.1197 519.1204 +1.48 5.8 MLM Novel
M20 C26H26Cl2N4O4 529.1404 529.1397 −1.4 7.8 MLM, HLM, MHP, HHP, MF Novel
M21 C32H36Cl2N4O10 707.1881 707.1865 −2.28 8.1 MHP, HHP, MF [13]
M22 C24H28Cl2N4O5 523.1510 523.1503 −1.3 6.9 MHP, MF Novel
M23 C26H28Cl2N4O6 563.1459 563.1450 −1.62 10.2 HHP, MF [11]
M24 C26H28Cl2N4O6 563.1459 563.1453 −0.98 10.4 HHP, MF [11]
M25 C24H28Cl2N4O4 507.1560 507.1558 −0.49 8.0 HHP, MF Novel
M26 C26H30Cl2N4O5 549.1666 549.1663 −0.62 5.5 MF Novel
M27 C24H26Cl2N4O5 521.1353 521.1346 −1.38 6.6 MF Novel
M28 C24H26Cl2N4O6 537.1302 537.1295 −1.41 7.0 MF Novel

MLM: mouse liver microsomes; HLM: human liver microsomes; MHP: mouse hepatocytes; HHP: human
hepatocytes; MF: mouse feces.

2.2.1. Mouse and Human Liver Microsomes

The OPLS-DA score plot clearly indicated a difference between the 0 and 1 h incubation groups,
and the loading S-plot generated by OPLS-DA revealed several possible KCZ metabolites and their
related ions that contributed the most to the separation (Figure S1A). The PLS-DA loading scatter
plot from the microsomal incubation of KCZ and KCZ-d8 showed several possible metabolite ions
(Figure S1B).

Overall, 20 metabolites of KCZ were identified in mouse liver microsomes, including six novel
metabolites (Figure S2). M1 was observed at m/z 565.1625 ([M+H]+ ion, 34 amu higher than
KCZ) and produced fragment ions at m/z 463.1186, m/z 421.1080, m/z 277.1547, m/z 259.1441,
m/z 203.9978, m/z 177.1022, and m/z 112.0757 (Figure S3A). Based on the presence of ions at m/z
421.1080, m/z 117.1022, and m/z 112.0757, and the absence of m/z 255.0086, M1 was suggested to be
a metabolite from biotransformation at the dichlorophenyl imidazole moiety. M1 has been reported to
be an oxidative metabolite at the imidazole moiety [11].

M2 was observed at m/z 507.1565 (24 amu less than KCZ), indicating loss of C2 from KCZ. M2
yielded fragment ions at m/z 479.1247, m/z 235.1441, m/z 231.0086, m/z 212.9981, and m/z 112.0757
(Figure S3B). Based on the presence of an ion at m/z 112.0757 and the absence of m/z 255.0086, M2
was also suggested as a metabolite from biotransformation at the dichlorophenyl imidazole moiety.
This was supported by the presence of fragment ions at m/z 231.0086, which was 24 amu less (loss of
C2) than m/z 255.0086. In line with a previous report [11], M2 was suggested to be a metabolite
generated by loss of two carbons from the imidazole moiety.
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M3 was observed at m/z 517.1045 (14 amu less than KCZ) and produced fragment ions
at m/z 255.0086 and m/z 245.0921 (Figure S3C). M3 was suggested to be a deacetylated and
piperazine-oxidized metabolite.

M4, M5, M6, and M7 were observed at m/z 547.1510 (16 amu higher than KCZ) with retention
times of 6.2, 7.3, 7.8, and 9.2 min, respectively, and indicating hydroxy-KCZ. M4 and M7 were too low to
acquire their MS/MS spectra. M4, M5, and M7 were observed at m/z 555.2012 (8 amu higher than 547),
whereas M6 was observed at m/z 554.1949 (7 amu higher than 547) after incubation of KCZ-d8 in
mouse liver microsomes. These results indicated that hydroxylation of M4, M5, and M7 took place
outside of the piperazine ring, whereas that of M6 occurred at the piperazine ring. As a representative
of hydroxy-KCZ, the fragment ions of M5 was shown in Figure S4A.

M8 was observed at m/z 505.1404 (26 amu less than KCZ), indicating loss of C2H2 from KCZ. M8
produced fragment ions at m/z 487.1298, m/z 463.1298, m/z 446.1033, m/z 255.0086, and m/z 122.0600
(Figure S4B). The presence of m/z 463.1298 (26 amu less than 489.1455) and m/z 255.0086 indicated
that C2H2 was lost from N-deacetyl-KCZ, without a metabolic change in the dichlorophenyl imidazole
moiety. Therefore, M8 was suggested as a metabolite with opened piperazine ring.

M9 was observed at m/z 257.0244, indicating the dichlorophenyl imidazole moiety via
the scissoring of dioxolane ring. M9 produced fragment ions at m/z 188.9869, 153.0102, and
125.0153 which are corresponding to 2-(2,4-dichlorophenyl)-2-hydroxyethan-1-ylium, 2-chloro-5-(1-
hydroxyvinyl)benzene-1-ylium, and 5-chloro-2-methylbenzene-1-ylium ion, respectively (Figure S4C).

M10 was observed at m/z 545.1364 (14 amu higher than KCZ). Fragment ions of M10 were
observed at m/z 503.1247, m/z 473.1142, m/z 432.0876, m/z 267.0086, m/z 255.0086, and m/z 191.0815
(Figure S5A). Together with the alteration of m/z 255.0086, the presence of m/z 503.1247 and
m/z 191.0815 (which were 14 amu higher than m/z 489.1455 and m/z 177.1022, respectively), oxidative
biotransformation in the piperazine ring was suggested.

M11 was observed at m/z 489.1459 (42 amu less than KCZ) with a retention time of 3.6 min,
and identified as N-deacetyl-KCZ using an authentic standard (Figure 1C). M11 produced fragment
ions at m/z 446.1033, m/z 267.0086, m/z 255.0086, m/z 178.1101, and m/z 136.0757 (Figure S5B).
These ions were used in the structural elucidation of KCZ metabolites.

M12 and M13 were observed at m/z 420.0876 with retention times of 1.8 and 2.2 min, respectively.
These two metabolites were calculated as C20H19Cl2N3O3. Based on previous reports [8,11], M12 and
M13 were suggested to be isomers of completely oxidized piperazine metabolites.

M14 was observed at m/z 343.0247. Although the fragment ions of M14 were insufficient to
elucidate its chemical structure, M14 could be suggested as a dichlorophenyl imidazole moiety
generated by O-dealkylation based on the exact mass of molecular ion and a previous report [11].

M15 was observed at m/z 517.1409 (14 amu less than KCZ). The fragment ions were observed at
m/z 489.1455, m/z 421.1080, m/z 267.0086, m/z 255.0086, m/z 238.0059, m/z 205.0972, and m/z 174.0913
(Figure S5C). Most of the fragment ions were identical to those of N-deacetyl-KCZ (M11), indicating
a metabolic alteration at the terminal acetyl group. Based on a previous report [8], M15 was suggested
to be N-formylpiperazine-KCZ.

M16 was observed at m/z 463.1308 (26 amu less than M11). The fragment ions were observed at
m/z 446.1033, m/z 420.0876, m/z 267.0086, m/z 255.0086, and m/z 122.0600 (Figure S6A). Based on the
presence of m/z 446.1033, M16 was suggested to be an ethylenediamine form of N-acetyl-KCZ [8].

M17 and M18 were observed at m/z 503.1247 with retention times of 5.9 and 6.7 min, respectively.
M17 and M18 yielded identical fragment ions at m/z 475.1288, m/z 432.0865, m/z 299.0613,
m/z 267.0085, m/z 255.0083, m/z 191.0814, and m/z 160.0754 (Figure 3B). Based on a previous
report [11], M17 and M18 were suggested to be structural isomers of oxidized piperazine metabolites
of M11.

M19 was observed at m/z 519.1204 (2 amu less than KCZ), indicating hydroxylated M17 or M18.
M19 yielded fragment ions at m/z 491.1247 (16 amu higher than 475), m/z 473.1142, and m/z 255.0086
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(Figure S6B). The presence of m/z 491.1247 indicated that M19 was formed via hydroxylation of the
piperazine moiety; however, the hydroxylated position could not be identified.

M20 was observed at m/z 529.1404 (2 amu less than KCZ), indicating dehydro-KCZ. The fragment
ions were observed at m/z 487.1297, m/z 471.0981, m/z 267.0088, m/z 255.0082, m/z 218.1048,
and m/z 175.0865 (Figure 3C). The presence of m/z 175.0865 (2 amu less than 177) and m/z 255.0082
indicated that M20 was formed via dehydrogenation of the piperazine moiety.

Similar to the results from mouse liver microsomes, human liver microsomal incubates were
clearly separated in the OPLS-DA score plots of the 0 and 1 h incubations. The loading S-plot revealed
several possible KCZ metabolites and their related ions that contributed most to the separation
(Figure S7A). The PLS-DA from human liver microsomal incubations of KCZ and KCZ-d8 were also
clearly distinguishable (Figure S7B). The majority of metabolites identified in mouse liver microsomes
were also detected in human liver microsomes, with the exception of M3, M12, M13, M14, M17, and
M19 (Figure S8). None of the metabolites identified in liver microsomes were unique to human.

2.2.2. Mouse or Human Hepatocytes

Metabolites of KCZ including phase II reaction were investigated in mouse and human
hepatocytes at 0 and 2 h. The OPLS-DA score plot clearly indicated a difference between the 0 and 2 h
groups, and the loading S-plot generated by OPLS-DA revealed several possible KCZ metabolites and
their related ions that contributed most to the separation (Figures S1C and S7C). Two metabolites were
additionally detected in mouse hepatocytes compared to liver microsomes (Figure S9).

M21 was observed at m/z 707.1876 (176 amu higher than KCZ), indicating a KCZ glucuronide.
M21 yielded fragment ions at m/z 531.1560 and m/z 489.1444, which were representative product ions
of KCZ (Figure S6C).

M22 was observed at m/z 523.1510 (16 amu higher than M2). The fragment ions of M22 were
observed at m/z 289.0141, m/z 261.0189, m/z 235.1438, m/z 203.9976, m/z 177.1021, and m/z 120.0809
(Figure 3D). Based on the presence of fragment ions at m/z 177.1021 and m/z 235.1438, and the absence
of m/z 255.0086, M22 was proposed as hydroxy-M2 via hydroxylation at dioxolane ring.

An S-plot by OPLS-DA identified possible metabolites in human hepatocytes (Figures S7C
and S10), three of which (m/z 563.1459 (M23 and M24) and m/z 507.1560 (M25)) were not detected in
human liver microsomes. M23 and M24 were observed at m/z 563.1459 with retention times of 10.2 and
10.4 min, respectively. These metabolites were previously reported as M5 and M6 [11]. M25 was
observed at m/z 507.1560 with a retention time of 8.0 min, and was suggested to be an isobar of M2.

2.2.3. Mouse Feces

In vivo metabolite profiling was conducted with mouse feces. As shown in Figure 4A,
the OPLS-DA score plot clearly indicated differences between the vehicle- and KCZ-treated groups.
The loading S-plot generated by OPLS-DA revealed several possible KCZ metabolites and their
related ions that contributed most to the separation (Figure 4B). Metabolite profiling focused on these
top-ranking ions.

Representative extracted ion chromatograms of KCZ metabolites identified in mouse feces are
shown in Figure 5. In addition to the metabolites identified in mouse liver microsomes and/or
hepatocytes, three metabolites, M26–M28, were detected in mouse feces.

M26 was observed at m/z 549.1663 (18 amu higher than KCZ). M26 produced fragment ions
of m/z 489.1091, m/z 446.1033, m/z 255.0086, and m/z 192.1019, indicating biotransformation at the
terminal acetyl moiety (Figure S6D).
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Figure 4. Multivariate data analysis of ketoconazole metabolites in mouse feces. (A) Score plot;
and (B) loading S-plot generated by orthogonal partial least squares discriminant analysis (OPLS-DA).
Top-ranking ions were highlighted with dotted ellipse.
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Figure 5. Extracted ion chromatograms of ketoconazole and its metabolites in mouse feces after oral
administration of 300 mg/kg ketoconazole.

M27 was observed at m/z 521.1346 (2 amu less than M22). Product ions of M27 at m/z 120.0808,
m/z 177.1022, m/z 205.1335, m/z 235.1441, and m/z 286.9985, together with the absence of m/z 255.0086,
indicated biotransformation at the imidazole and dioxolane moieties (Figure 3E). Therefore, M27 was
suggested to be dehydro-M22, however, the accurate dehydrogenated position could not be identified.

M28 was observed at m/z 537.1295 (16 amu higher than M27), indicating it to be hydroxy-M27.
M27 produced fragment ions at m/z 478.0931, m/z 421.1080, m/z 286.9985, m/z 235.1441, m/z 203.9978,
m/z 177.1022, and m/z 148.0757. By comparison with the fragment ions of M27, hydroxylation at
N-[(4-hydroxy-1,3-dioxolan-2-yl)methyl]formimidamide was suggested (Figure 3F).
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2.3. Identification of Reactive Metabolites

Potassium cyanide (KCN) was used to trap reactive intermediates of KCZ in three treatment
groups. Supervised OPLS-DA analysis clearly separated the three groups (Figure 6A,C). The S-plot
generated by OPLS-DA analysis showed the contributions of the various ions to the separation
(Figure 6B,D). No species-specific cyanide adducts of KCZ were detected.
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The ion that made the greatest contribution to the separation, m/z 556.1513, was identified as
a KCN adduct of KCZ [11,28,29]. Additionally, KCN adducts of hydroxy-KCZ and N-deacetyl-KCZ
were identified at m/z 572.1462 and m/z 514.1407, respectively. Cyanide adducts of hydroxy-KCZ
have been reported previously [11,28,29], whereas this is the first report of an N-deacetyl-KCZ adduct.
The N-deacetyl-KCZ cyanide adduct was detected only in the presence of both NADPH and KCN
(Figure 7A), and produced fragment ions of m/z 487.1298, m/z 432.0876, m/z 255.0086, m/z 215.1179,
and 175.0866 (Figure 7B). Based on the product ions and the transformation of cyanide adducts to
iminium ions, chemical structures for the N-deacetyl-KCZ cyanide adducts were proposed (Figure 7C).
Neither GSH nor semicarbazide adducts of KCZ were detected.
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3. Discussion

Establishing a comprehensive understanding of the metabolic characteristics of drugs is essential
in drug development and clinical use. By studying drug metabolism in detail, dosing regimen can be
determined and drug-drug interaction potentials can be mechanistically understood. The importance
of metabolism is more critical when the drug can be biotransformed into biologically active or reactive
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metabolites. Especially, the formation of reactive metabolites is believed to be the most important
underlying mechanism of idiosyncratic adverse drug reactions and is intensively studied to avoid or
manage the reactive metabolite formations [24–27,33–35].

In this study, we applied metabolomics approaches to assess the metabolic pathways of KCZ,
including its reactive metabolites. Eleven novel metabolites of KCZ were identified in mouse and
human, together with 17 known metabolites (Figure 8). With the exception of isobars previously
reported by Fitch et al. [11] (M6, M13, and M25), newly identified metabolites were classified into
three categories: those with alterations at the piperazine ring (M17–M20), imidazole ring (M22, M27,
and M28), or N-acetyl moiety (M26). M17 and M18 were suggested as isomeric metabolites of
N-deacetyl-KCZ (M11) via oxidation of piperazine to ketone, and M19 was proposed as a hydroxylated
metabolite of M17 or M18. M20 was suggested to be a metabolite of KCZ with a reduced piperazine
moiety. Moreover, a series of metabolites from M2, from which two carbons were lost from the
imidazole moiety, were identified: hydroxy-M2 (M22), dehydro-M22 (M27), and hydroxy-M27
(M28). M26 was identified as a metabolite of KCZ generated by reduction and hydroxylation at
the N-acetyl moiety.
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Figure 8. Proposed metabolic pathways of ketoconazole.

Conventionally, metabolite profiling was conducted based on previously known
biotransformations. Therefore, the results were strongly empirical and dependent on the investigator’s
level of knowledge. However, metabolomics-guided drug metabolism studies have not focused
on specific metabolic pathways; therefore, this non-targeted approach facilitates the identification
of novel metabolites, the characterization of metabolic enzymes, and the profiling of reactive
metabolites [32,36–42]. This approach is complementary to conventional drug metabolism studies.

To investigate the metabolic characteristics of KCZ under hepatotoxic conditions, 300 mg/kg
KCZ was orally administered to mice. Serum alanine transaminase and aspartate transaminase were
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significantly increased by 5- and 4-fold, respectively, compared to the vehicle treated group. The feces
were selected as biological samples for metabolite profiling in order to fully understand metabolic
pathways of KCZ regardless of sampling time. Overall, the metabolic characteristics of KCZ in human
were comparable to those in mouse. As shown in Table 1, all human metabolites of KCZ were identified
in mouse in in vitro or in vivo samples. Animal models are commonly used in drug development to
characterize the biological behaviors of drugs and predict those in humans. From the drug metabolism
and toxicology perspectives, the most concerning issue is the presence of human metabolites that
were not detected in animals or were present in excess in humans compared with animals. Our work
suggested that the metabolism of KCZ is similar in human and mouse; therefore, metabolic information
from mouse models is relevant to humans.

The alicyclic amine in KCZ undergoes oxidation, which generates the corresponding iminium
ion; this reaction is mediated by cytochrome P450 or monoamine oxidase. In addition, evidence
linking the bioactivation of alicyclic amine into reactive iminium ion has been reported for several
piperazine-containing drugs and xenobiotics, such as nefazodone, mianserin, and MB243 [43–45].

In this study, we discovered three cyanide adducts of KCZ (KCZ, hydroxy-KCZ, and N-deacetyl-
KCZ) in human and mouse liver microsomal incubation systems (Table 2).

Table 2. Chemical formulae, molecular ions, mass accuracies, retention times, and positive biological
samples for cyanide adducts of ketoconazole and its metabolites.

Adducts Formula
[M+H]+ (m/z) Error

(ppm)
tR

(min) Identified in References and
CommentsTheoretical Observed

KCZ-CN C27H27Cl2N5O4 556.1513 556.1513 −0.07 7.2 MLM, HLM [11,28,29]
OH-KCZ-CN C27H27Cl2N5O5 572.1462 572.1457 −0.89 7.0 MLM, HLM [11,28,29]

N-deacetyl-KCZ-CN C25H25Cl2N5O3 514.1407 514.1416 +1.71 6.5 MLM, HLM Novel

MLM: mouse liver microsomes; HLM: human liver microsomes.

Among them, KCZ and hydroxy-KCZ adduct have been reported previously [11,28,29]; this is the
first report of N-deacetyl-KCZ adduct. In particular, N-deacetyl-KCZ (M11), a major metabolite of KCZ,
is generated by CYP3A4 and is further metabolized to the reactive dialdehyde form by FMO [7,9,10].
N-deacetyl-KCZ and its metabolite have been demonstrated to be more cytotoxic than KCZ [22,23].
Therefore, the formation of cyanide adducts with N-deacetyl-KCZ is a good “flag” for the bioactivation
and related hepatotoxicity of KCZ. In contrast, GSH and semicarbazide conjugates of KCZ were not
detected in vitro or in vivo. Our work is consistent with previous in vitro findings using human liver
microsomes [11,26,29]. This suggested that KCZ-induced hepatotoxicity is not mainly caused by
GSH depletion.

4. Materials and Methods

4.1. Chemicals and Reagents

KCZ (≥98%), Krebs–Henseleit buffer, β-nicotinamide adenine dinucleotide phosphate (NADP),
the reduced form of NADP (NADPH), glucose-6-phosphate, glucose-6-phophate dehydrogenase,
magnesium chloride, potassium phosphate, GSH, potassium cyanide (KCN), semicarbazide, dimethyl
sulfoxide (DMSO), and methyl cellulose were purchased from Sigma-Aldrich (St. Louis, MO,
USA). LiverPool™ 50-donor pooled cryopreserved human hepatocytes, InVitroGRO™ HT Medium,
and InVitroGRO™ KHB were obtained from Bioreclamation IVT (Brussels, Belgium). Ketoconazole-d8
(KCZ-d8) and N-deacetyl-ketoconazole (N-deacetyl-KCZ; Figure 1B,C) were purchased from Toronto
Research Chemicals (Toronto, ON, Canada). Corning®Gentest™ mouse cryopreserved hepatocytes,
Corning®Gentest™ high-viability cryohepatocyte recovery medium, 50-mL conical tubes, and 96-well
plates were obtained from Corning Life Sciences (Tewksbury, MA, USA). Acetonitrile, methanol, and
water (LC-MS grade) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). Other chemicals
used were of the highest quality available.
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4.2. In Vitro Incubation of KCZ in Liver Microsomes

KCZ (20 µM) was incubated with 1 mg/mL human or mouse microsomal protein in 50 mM
potassium phosphate buffer (pH 7.4) at 37 ◦C for 60 min. The reaction was started by adding 2 mM
NADPH in sextuplicate. KCZ-d8 (20 µM) was incubated separately to facilitate structural elucidation
of KCZ metabolites. The reaction was stopped by adding 200 µL of ice-cold acetonitrile. Time 0
samples were prepared by quenching immediately after adding NADPH as a control. The reaction
mixtures were then centrifuged at 15,000× g for 10 min at 4 ◦C and 180 µL of the supernatants were
dried in a vacuum concentrator. The residue was reconstituted in 100 µL of 10% methanol; 5 µL
aliquots were injected into the LC-HRMS system to perform metabolite profiling.

4.3. In Vitro Incubation of KCZ in Hepatocytes

Pooled cryopreserved human hepatocytes from 50 donors (LiverPool™) were carefully thawed
according to the manufacturer’s instructions. Cryopreserved mouse hepatocytes (Corning®Gentest™)
were purified and recovered using a High Viability CryoHepatocyte Recovery Kit in accordance
with the manufacturer’s protocols. Thawed human or mouse hepatocytes were resuspended in
Krebs-Henseleit buffer to a final density of 1.0 × 106 cells/mL. Subsequently, 60 µL of human and
mouse hepatocyte suspension and 60 µL of 40 µM KCZ solution in Krebs-Henseleit buffer were added
to a 96-well plate and incubated in quadruplicate for 0 and 2 h in a humidified CO2 static incubator.
Incubations were stopped at predetermined time points by adding 120 µL of ice-cold methanol:water
(3:1, v/v) to each well, followed by 5-min sonication and centrifugation at 15,000× g for 10 min at 4 ◦C.
After transferring 80 µL of supernatant into an autosampler vial, 5 µL of samples were injected into
the LC-HRMS system.

4.4. In Vivo Metabolite Profiling of KCZ in Mouse Feces

Specific pathogen-free male ICR mice (7–8-weeks-old) were obtained from Samtaco Inc.
(Osan, Korea) and acclimated for at least 1 week. The animal quarters were maintained at a temperature
of 22 ± 2 ◦C on a 12 h/12 h light/dark cycle and a relative humidity of 55% ± 5%. The study protocol
was approved by the Institutional Animal Care and Use Committee (IACUC) of The Catholic University
of Korea (approval No. 2015-020, approval date 30 October 2015). KCZ was suspended in a 0.5%
methyl cellulose solution at 30 mg/mL, and orally administered to mice for 5-consecutive days at
10 mL/kg. Feces were collected 24 h after last dosing. Water (10 µL) was added to each 1 mg of feces,
followed by vortex mixing. Following 10 min sonication, 200 µL of fecal homogenates was extracted by
adding an equal volume of methanol:acetonitrile (1:1, v/v). After centrifugation at 15,000× g for 10 min
at 4 ◦C, 300 µL of the supernatant was dried in a vacuum concentrator. The residue was reconstituted
in 100 µL of 25% methanol and 5 µL aliquots were injected into the LC-HRMS system.

4.5. Screening of KCZ Reactive Metabolites in Liver Microsomes

The method used by Li et al. was adapted in this study [46]. KCZ (30 µM) was separately
incubated in potassium phosphate buffer (50 mM, pH 7.4) containing human or mouse liver
microsomes (1 mg/mL), NADPH (2 mM), and the trapping reagents GSH (2.5 mM), KCN (1.5 mM),
or semicarbazide (2.5 mM). Reactions lacking NADPH or trapping agent served as controls.
The reactions were initiated by the addition of NADPH and were stopped by the addition of 200 µL of
ice-cold acetonitrile at 0 and 60 min. The reaction mixture was centrifuged at 15,000× g for 10 min
at 4 ◦C and 180 µL of the supernatants were dried in a vacuum concentrator. The residue was
reconstituted in 100 µL of 10% methanol and 5 µL aliquots were injected into the LC-HRMS system to
screen reactive metabolites.
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4.6. High-Performance Liquid Chromatography (HPLC)–High Resolution Mass Spectrometry (HRMS) Analysis

An Accela HPLC system coupled with a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) was used. A Halo® C18 column (2.7 µm, 2.1 mm i.d. ×100 mm;
Advanced Materials Technology, Wilmington, DE, USA) was used as the stationary phase. The HPLC
mobile phases consisted of 5% methanol in 0.1% formic acid (mobile phase A; MPA) and 95% methanol
in 0.1% formic acid (mobile phase B; MPB). Gradient elution of mobile phases was conducted at a flow
rate of 0.4 mL/min. The gradient condition for the separation of KCZ and its metabolites was as
follows: 25% MPB for 1.5 min, 25% to 60% MPB for 7.5 min, 60% to 90% MPB for 0.2 min, 90% MPB
for 2.8 min, 90% to 25% MPB for 0.1 min, and 25% MPB for 2.9 min. The mass spectra were obtained
using a heated electrospray ionization (HESI) source in positive mode. HESI source conditions for
metabolite profiling were optimized as follows: sheath gas flow rate, 35 (arbitrary units); auxiliary gas
flow rate, 10 (arbitrary units); spray voltage, 4 kV; heater temperature, 350◦C. Data were acquired using
Xcalibur™ software (Thermo Fisher Scientific Inc.). Full MS scan data were obtained from m/z 100 to
1500, with a resolution of 70,000, while data-dependent MS/MS spectra were acquired at a resolution
of 35,000 using various collision energies. The proposed chemical structures were determined using
Mass Frontier software (version 6.0; HighChem Ltd., Bratislava, Slovakia).

4.7. Data Pre-Processing and Multivariate Data Analysis

Overall strategies were adapted from previous reports [39,40,46]. Orbitrap™ MS spectral data
were pre-processed with MZmine 2 (available on: http://mzmine.github.io/, version 2.20) [47],
which was used to detect mass spectra, build and deconvolute chromatograms, remove isotopes,
align chromatograms, and generate a data matrix of ion identity (m/z and retention time) with
abundance. To improve drug metabolite detection, the generated data matrix was manually examined
and refined by focusing on excluding isotopes and peak alignment. Principal component analysis
(PCA), PLS-DA, and OPLS-DA were conducted using SIMCA (version 14.0; MKS Data Analytics
Solutions, Umeå, Sweden). A PCA model was used to obtain an overview of the global data matrix
and the PLS-DA and OPLS-DA models were used to maximize the distinction of data set from each
experimental group. Data were normalized by Pareto scaling. Variables that significantly contributed
to the separation of each group in the PLS-DA or OPLS-DA model were focused on as potential
metabolites of KCZ and sorted in accordance with retention time to distinguish metabolite candidates
from co-eluent peaks, such as sodium adduct, multiple charged ions, or in-source fragmented
ions. The corresponding variables were structurally elucidated using the MS/MS spectra and
isotope patterns.

5. Conclusions

The identification of metabolites of KCZ in mouse and human was performed using
a metabolomics approach. Our understanding of the metabolic fate of KCZ was improved and
metabolites associated with hepatotoxicity were suggested. Moreover, mouse is appropriate for
assessment of the metabolism and toxicity of KCZ. This approach can be used to fill the gap in our
knowledge of the relationship between drug metabolism and drug-induced toxicity.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/3/621/s1.
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