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Abstract: The effective development of new drugs relies on the identification of genes that are related
to the symptoms of toxicity. Although many researchers have inferred toxicity markers, most have
focused on discovering toxicity occurrence markers rather than toxicity severity markers. In this
study, we aimed to identify gene markers that are relevant to both the occurrence and severity of
toxicity symptoms. To identify gene markers for each of four targeted liver toxicity symptoms, we
used microarray expression profiles and pathology data from 14,143 in vivo rat samples. The gene
markers were found using sparse linear discriminant analysis (sLDA) in which symptom severity
is used as a class label. To evaluate the inferred gene markers, we constructed regression models
that predicted the severity of toxicity symptoms from gene expression profiles. Our cross-validated
results revealed that our approach was more successful at finding gene markers sensitive to the
aggravation of toxicity symptoms than conventional methods. Moreover, these markers were closely
involved in some of the biological functions significantly related to toxicity severity in the four
targeted symptoms.
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1. Introduction

Most drugs have unintended adverse effects. These effects can be manifested as organ toxicity
symptoms, such as liver necrosis and kidney degeneration. Understanding the causes of these toxicity
symptoms helps to reduce the cost and time spent on developing new drugs. The causes of some
organ toxicity symptoms can be attributed to the abnormal activity of certain genes or their products.
Therefore, it is very important to identify gene markers that are closely associated with toxicity
symptoms. Moreover, because most artificial molecular drugs have both beneficial and adverse
effects, it is necessary to minimize the adverse effects and maximize the beneficial effects during
drug development. Thus, it is important to understand the causes of both the aggravation and the
occurrence of toxicity symptoms.

Many earlier studies have shown some progress in identifying toxicity markers related to
symptom occurrence. For example, Zhang et al. [1] found several genes that show early response
to cytotoxicity. Suvitaival et al. [2] identified genes that are responsible for the presence/absence of
14 liver toxicity symptoms. However, some other researchers have focused on discovering toxicity
markers that are related to symptom severity [3,4]. For example, Huang et al. [3] identified 21 genes
for predicting the level of necrosis in rats using one-way analysis of variance (ANOVA). They used
the necrosis severity shown in each sample as a group factor for ANOVA. However, ANOVA has the
limitation that it cannot utilize relationships between genes. Bowles et al. [4] constructed models for
predicting the severity of five liver symptoms using the least absolute shrinkage and selection operator
(LASSO) regression method. They used approximately 50–400 gene markers to predict the severity of
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each toxicity symptom. However, they did not sufficiently verify how strongly these gene markers
were associated with symptom severity.

In this study, our aim was to develop a method to identify those toxicity markers that were
closely related to the aggravation of toxicity symptoms, not just those related to their occurrence.
In other words, we required that the gene markers identified by the proposed method were sensitive to
increases and decreases in severity. We assumed that it would be necessary to use mutual relationships
between genes to identify the markers effectively. Therefore, for the selection of gene markers, we
used sparse linear discriminant analysis (sLDA) [5,6], which can utilize such relationships. Here,
the severity value was used as a multi-valued class (in other words, multi-group) label for sLDA.
Once toxicity gene markers that were relevant to symptom severity had been identified, we used them
to train regression models to predict toxicity symptom severity; we then used these models to evaluate
the prediction performance of inferred gene markers. For comparison, we also used conventional
statistical methods (e.g., one-way ANOVA and Student’s t-test) to select gene markers related to
toxicity symptom severity. In this paper, the t-test represents a method that identifies gene markers
related to toxicity occurrence. sLDA and ANOVA represent methods that identify gene markers related
to changes in toxicity severity. The difference is that sLDA utilizes mutual relationships between the
expression of genes, whereas ANOVA does not consider any relationships between genes (see Table 1).
We made two suppositions: that gene markers inferred by utilizing toxicity occurrence information
only are not sufficient to capture changes in toxicity severity; and that investigating the relationships
between genes can help to identify gene markers that are more closely related to toxicity severity.
We attempted to justify these suppositions by comparing the regression model performances based on
each gene selection method. Furthermore, for a better understanding of the identified gene markers,
we carried out functional enrichment analysis to infer the biological functions enriched in the markers.
Thus, we compared the functional terms inferred from each gene selection method and verified the
superiority of the proposed method. Finally, by doing so, we gained a deeper insight into the causes of
toxicity symptom occurrence or aggravation. Figure 1 shows the overall workflow of our proposed
method to identify gene markers related to toxicity symptom severity.

Table 1. Comparison of methods used to identify gene markers.

Gene
Selection
Method

Does It Consider Each
Symptom Severity as

Each Group?

Can It Be Used to Investigate
Mutual Relationships between the

Expression of Genes?
The Use of This Paper

Sparse
LDA Yes Yes Used for gene markers related to increases or

decreases in toxicity symptom severity. Groups of
samples were divided by the severity values.ANOVA Yes No

t-Test No No
Used to find gene markers related to toxicity symptom

occurrence. Groups of samples were divided by the
occurrences of samples.

2. Results

2.1. Toxicity Severity Prediction Ability of Inferred Gene Markers

We discovered that the gene markers inferred by sLDA could predict toxicity severity in the
four targeted symptoms reasonably well. For the development of the random forest (RF) regression
model [7], we used data from 14,143 in vivo liver samples and 32 inferred gene markers. The ability
of the models to predict toxicity symptom severity was evaluated with 10-fold cross-validation, as
shown in Figure 2. We measured the Spearman’s correlation coefficient (SCC) between actual and
predicted severities. Here the higher SCC implies that the predicted severity is more proportional to
actual severity, indicating the likeliness that the expression changes of inferred markers are strongly
associated with toxicity symptom severity. The SCCs were 0.80, 0.75, 0.75, and 0.64 for the four
symptoms (necrosis, hypertrophy, cell infiltration, and leukocytic changes, respectively). Since the
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SCCs were relatively high in all cases, we presume that our inferred gene markers were quite sensitive
to the severity of the targeted symptoms.
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Figure 2. Boxplots of the Spearman’s correlation coefficients (SCCs) between actual and predicted
severities of our random forest (RF) models with 32 inferred gene markers found using sLDA.
Actual and predicted severities are represented on the x and y axis, respectively. In a boxplot for
an actual severity of a symptom, the red line indicates median value of predicted severities, and four
horizontal blue lines indicates minimum, first quartile, third quartile, and maximum value of predicted
severity. The figure shows that the 32 gene markers identified by sLDA showed high correlation
between actual and predicted severity for the four different symptoms, indicating that the expression
of these gene markers was strongly associated with toxicity symptom severity.

Moreover, the sLDA-inferred markers were shown to be superior to the markers found by ANOVA
or the Student’s t-test in predicting toxicity symptom severity. Figure 3 shows the evaluation results of
RF regression models developed with various numbers of inferred markers from 21 to 28 for the four
targeted symptoms. In most cases, the sLDA-inferred markers produced higher SCC values than the
markers chosen by ANOVA or Student’s t-test, even if, in some cases (e.g., necrosis and leukocytic
change), ANOVA or Student’s t-test showed better results with a very small number (2–4) of markers.
That is, when the number of gene markers identified by sLDA was relatively small, we observed
that the prediction performance of the model often decreased. This may have occurred because the
number of inferred gene markers was not large enough to capture the aggravation of toxicity symptom
severity with the RF regression model. Therefore, it seems important to specify an appropriate number
of markers. From our experiments, we speculate that approximately 8–64 gene markers would be



Int. J. Mol. Sci. 2017, 18, 755 4 of 13

reasonable for sLDA-based gene selection. Even with only 16 or fewer gene markers identified by
sLDA, we were able to achieve relatively high SCCs (0.79, 0.75, 0.75, and 0.65) between actual and
predicted severities with the RF models for the four targeted symptoms. We interpret the results as
showing that consideration of the relationship between genes is an effective means of identifying genes
that capture changing severity in many toxicity symptoms. The ANOVA-inferred markers provided
higher SCCs than the t-test-inferred markers in three symptoms (hypertrophy, cell infiltration, and
leukocytic change). We interpret the results as showing that markers inferred without utilizing severity
of toxicity can be limited to capturing changing severity in many toxicity symptoms.
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Figure 3. Graphs of the Spearman’s correlation coefficients (SCCs) between actual and predicted
severities of RF regression models developed with various numbers of gene markers inferred by the
three selection methods (sLDA, ANOVA, and Student’s t-test) for four targeted symptoms. The number
of inferred gene markers was 2–256, represented on the x axis. Each selection method corresponds to
a differently colored line (blue for sLDA, green for ANOVA, and red for Student’s t-test). The figure
reveals that sLDA was generally better than ANOVA and the t-test at identifying gene markers that
could predict the severity of toxicity symptoms.

Finally, our sLDA-inferred gene markers efficiently predicted the occurrence of toxicity symptoms.
For evaluation, we drew receiver operating characteristic (ROC) curves and measured the area under
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the curve (AUC) of the RF models developed with gene markers chosen using the three gene selection
methods (sLDA, ANOVA and Student’s t-test) for the four symptoms. Figure 4 shows the ROC curves
of the RF models with 32 gene markers. The AUC results using sLDA were 0.96, 0.92, 0.94, and 0.87 for
necrosis, hypertrophy, cell infiltration, and leukocytic changes, respectively, which were better overall
than ANOVA or the Student’s t-test. These results indicate that inferred gene markers related to toxicity
severity are also useful for predicting toxicity occurrence. Table S1 shows the results of 32 gene markers
inferred by three gene selection methods (i.e., sLDA, ANOVA, t-test) for four targeted symptoms.
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Figure 4. ROC graphs of the RF models with 32 gene markers identified by the three gene
selection methods (sLDA, ANOVA, and Student’s t-test) for predicting toxicity occurrence in the
four targeted symptoms.

2.2. Biological Investigation of Inferred Gene Markers with Respect to Toxicity Symptom Severity

We found that the sLDA-inferred gene markers were more closely engaged in several biological
functions that are likely to be related to toxicity severity than the markers identified by ANOVA or the
t-test. For the identification of biological functions significantly involving inferred gene markers, we
performed the functional enrichment analysis with version 6.7 of the DAVID tool [8], and identified
significant gene ontology (GO) [9] terms enriched in 32 inferred markers for each of the four targeted
symptoms with a p-value < 0.01. Figure 5 shows the results of enriched GO terms in 32 inferred
markers for hypertrophy when each of the three gene selection methods was used. Only two terms
(response to organic substances and response to drugs) were common to the three methods, indicating
large variability of the results. In particular, many significant biological functions enriched in the
sLDA-inferred markers were not detected from the gene markers identified by conventional statistical
methods for hypertrophy and other symptoms. The complete enrichment analysis results are presented
in Table S2.

Our sLDA-based method was also better at identifying the genes related to “response to xenobiotic
stimulus”. In fact, most toxic substances are xenobiotics and their xenobiotic-related function involves
detoxification [10]. Thus, functions that involve a xenobiotic stimulus can be strongly associated with
the aggravation of toxicity symptoms. To assess the relatedness of our chosen markers to the functions
related to xenobiotic stimuli, we measured the p-values of the GO term “response to xenobiotic
stimulus” by functional enrichment analysis, and the results are shown in Figure 6. According to
the definition, this GO term indicates any process that results in a change in the state or activity of
a cell or an organism because of a xenobiotic compound stimulus. Figure 6 illustrates that only the
sLDA-inferred markers were significantly related to “response to xenobiotic stimulus”, whereas other
markers were not. Moreover, the chosen markers related to this GO term were compared with known
detoxification genes (see Table 2). The results showed that all of the genes included in the sLDA-based
chosen markers for this GO term are known detoxification genes. In other enriched GO terms than
“response to xenobiotic stimulus” and its child terms, we could not find any detoxification genes
identified by existing papers regardless of the gene selection method.

Furthermore, we evaluated the relatedness of our inferred markers to functions affected by cell
infiltration in terms of symptom severity. Cell infiltration is a mechanical stimulus symptom [11].



Int. J. Mol. Sci. 2017, 18, 755 6 of 13

We supposed that cell infiltration is associated with the GO term “response to mechanical stimulus”
more than the other symptoms. Thus, we measured the p-values for this GO term by enrichment
analysis, as shown in Figure 7. As we expected, this GO term was enriched significantly in
sLDA-inferred markers for cell infiltration while it was not enriched significantly in sLDA-inferred
markers for the other symptoms. From this result, we can infer that sLDA can be a proper method for
identifying gene markers for a symptom, such as cell infiltration.

Int. J. Mol. Sci. 2017, 18, 755 6 of 13 

 

other symptoms. From this result, we can infer that sLDA can be a proper method for identifying 
gene markers for a symptom, such as cell infiltration. 

 

Figure 5. Enriched gene ontology (GO) terms in 32 inferred markers obtained by each of the three 
gene selection methods for hypertrophy. (a) sLDA-inferred markers; (b) ANOVA-inferred markers, 
and (c) t-test-inferred markers. For each case, the enriched GO terms were chosen based on a p-value 
< 0.01. 

 

Figure 6. Enrichment analysis results for the gene ontology (GO) term “response to xenobiotic 
stimulus”. This GO term is related to detoxification function. The enrichment analysis was applied to 
32 gene markers obtained by each of the three gene selection methods. 

Leukocytic changes are related to immune functions [12]. We supposed that leukocytic change 
is associated with the GO term “immune response” more than the other symptoms. Thus, we 
measured the p-values from the enrichment analysis for this GO term and the results are shown in 
Figure 8. The results indicate that this term was significantly enriched only in the sLDA-inferred 
markers and ANOVA-inferred markers for leukocytic changes, whereas it was not enriched 
significantly in other markers for leukocytic change and other symptoms. 
  

Figure 5. Enriched gene ontology (GO) terms in 32 inferred markers obtained by each of the three gene
selection methods for hypertrophy. (a) sLDA-inferred markers; (b) ANOVA-inferred markers, and (c)
t-test-inferred markers. For each case, the enriched GO terms were chosen based on a p-value < 0.01.

Int. J. Mol. Sci. 2017, 18, 755 6 of 13 

 

other symptoms. From this result, we can infer that sLDA can be a proper method for identifying 
gene markers for a symptom, such as cell infiltration. 

 

Figure 5. Enriched gene ontology (GO) terms in 32 inferred markers obtained by each of the three 
gene selection methods for hypertrophy. (a) sLDA-inferred markers; (b) ANOVA-inferred markers, 
and (c) t-test-inferred markers. For each case, the enriched GO terms were chosen based on a p-value 
< 0.01. 

 

Figure 6. Enrichment analysis results for the gene ontology (GO) term “response to xenobiotic 
stimulus”. This GO term is related to detoxification function. The enrichment analysis was applied to 
32 gene markers obtained by each of the three gene selection methods. 

Leukocytic changes are related to immune functions [12]. We supposed that leukocytic change 
is associated with the GO term “immune response” more than the other symptoms. Thus, we 
measured the p-values from the enrichment analysis for this GO term and the results are shown in 
Figure 8. The results indicate that this term was significantly enriched only in the sLDA-inferred 
markers and ANOVA-inferred markers for leukocytic changes, whereas it was not enriched 
significantly in other markers for leukocytic change and other symptoms. 
  

Figure 6. Enrichment analysis results for the gene ontology (GO) term “response to xenobiotic
stimulus”. This GO term is related to detoxification function. The enrichment analysis was applied to
32 gene markers obtained by each of the three gene selection methods.

Leukocytic changes are related to immune functions [12]. We supposed that leukocytic change is
associated with the GO term “immune response” more than the other symptoms. Thus, we measured
the p-values from the enrichment analysis for this GO term and the results are shown in Figure 8.
The results indicate that this term was significantly enriched only in the sLDA-inferred markers and
ANOVA-inferred markers for leukocytic changes, whereas it was not enriched significantly in other
markers for leukocytic change and other symptoms.



Int. J. Mol. Sci. 2017, 18, 755 7 of 13

Table 2. Comparison of inferred gene markers related to the gene ontology (GO) term “response to
xenobiotic stimulus”. The mark “ ” means that the gene markers inferred by the method for the
symptom includes the gene symbol. For example, the gene markers inferred by sLDA for necrosis
includes the Cyp1a1 gene.

Gene
Selection
Method

Inferred Markers Involved in
“Response to Xenobiotic

Stimulus”
Symptoms Detoxification

Genes?

ProbesetIDs Gene
Symbols Necrosis Hypertrophy Cell Infiltration Leukocytic

Changes

sLDA

1370269_at Cyp1a1 Yes [13]

1387759_s_at Ugt1a1,
Ugt1a2,

. . . ,
Ugt1a9

Yes [13]
1370613_s_at

1369921_at Gstm3 Yes [13]

1371089_at Gsta5 Yes [14]

ANOVA
1388153_at,
1370939_at ACSL1 Unknown

1398282_at Kynu Unknown

t-Test No markers
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With regard to leukocytic changes, we also evaluated the relatedness of our markers to functions
related to heat or temperature stimulus. In fact, the authors of several earlier studies [15–21] have
reported that there are relationships between leukocytic changes and heat stimulus. In particular,
Resnik et al. [21] concluded that heat stress is related to degranulation of the basophil leukocytes. Thus,
we measured the p-values from the enrichment analysis for the GO terms “response to heat”, as shown
in Figure 9. The results indicate that these terms were significantly enriched only in the sLDA-inferred
markers for leukocytic changes, whereas they were not enriched significantly in other markers.
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change is a symptom that is related to heat stimulus.

With regard to necrosis, we evaluated the relatedness of our markers to functions related to
nutrient. Sun et al., [22] have concluded that autophagy inhibition enhanced liver cell necrosis
under nutrient-deprivation condition. Thus, we measured the p-values from the enrichment analysis
for the GO terms “response to nutrient levels”, as shown in Figure 10. The results indicate that
these terms were significantly enriched in the sLDA-inferred markers for necrosis. In particular, the
32 sLDA-inferred markers for necrosis include DDIT3, whose gene is related to the inhibition of
autophagy [23], whereas other markers do not include the gene.
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Necrosis is a symptom that is related to nutrients.

Finally, with regard to the enrichment results for hypertrophy, four out of the top nine functions
related to the extracellular space were enriched in the sLDA-inferred markers. The authors of some
previous studies have reported the relatedness between hypertrophy and the extracellular region of
the heart, chondrocytes, and astrocytes [24–31]. In particular, Yang et al. [29] concluded that SCUBE3,
which is an extracellular protein, may account for the accelerated onset and progression of cardiac
hypertrophy. The 32 sLDA-inferred markers for hypertrophy include 12 genes with products that can
be secreted into the extracellular region (see Table S2, Figure 5). This indicates that the 32 sLDA-inferred
markers for hypertrophy may be related to the severity of hypertrophy.

To summarize, based on the above, we confirmed that our sLDA-inferred markers are very likely
to be related to symptom severity, and some functions actually related to the targeted symptoms are
closely involved with the gene markers chosen by our method.

3. Discussion

In this study, we presented a method for gene marker selection that identifies genes related to
the severity of targeted toxicity symptoms. To verify our selection method, we constructed a toxicity
severity prediction model using gene markers for four toxicity symptoms of the liver, and evaluated
them thoroughly. The results confirm that our method can produce interesting and useful results in
identifying gene markers related to toxicity symptom severity. Our results showed the sLDA-inferred
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markers were superior to the markers by ANOVA, and that the Student’s t-test was found to have
the lowest predictive power (Figure 3). In addition, the ANOVA-inferred markers provided higher
SCCs than the t-test-inferred markers in three symptoms (hypertrophy, cell infiltration, and leukocytic
change), which is in line with the facts that ANOVA is used for comparison among more than three
groups, whereas the t-test is used as a method that identifies gene markers related to toxicity occurrence
rather than changes in the severity with more than three grades in this study. This result indicates that
markers sensitive to changes of severity and markers for only occurrence can be different in many
toxicity symptoms. Furthermore, we identified significant biological functional terms enriched in our
sLDA-inferred gene markers. We confirmed that some of those terms are actually related to toxicity
symptom severity, and are not identified by other conventional gene selection methods. From the
results, we can conclude that utilizing the relationships between genes helps us identify markers that
are sensitive to changes in toxicity severity, and our understanding of these relationships could be
important for determining the causes of toxicity aggravation.

We believe our method could help to reveal the causes of toxicity symptoms and the factors that
aggravate them. However, because our method focuses on identifying genes that are sensitive to
symptom severity rather than symptom occurrence, it might be necessary to combine our method
with other statistical or knowledge-based methods for a comprehensive examination of the causes of
toxicity symptoms.

4. Materials and Methods

4.1. Data Description

We used 14,143 in vivo liver samples from the TG-GATEs [32] database, in which each sample
was dosed with one of 160 drugs, and the pathology and gene expression data were included.
The pathology data comprised the type of symptom, the severity of the symptom, the location
in the liver where the symptom occurred, and whether or not the symptom was spontaneous.
We excluded spontaneously-occurring symptoms and only considered those that were drug-induced.
Toxicity symptom severity was defined as 0, 1, 2, 3, or 4. The severity value of 0 corresponded to the
control sample in which the symptom did not occur, whereas severity values of 1 to 4 corresponded
to case samples, and indicated the occurrence of minimal, slight, moderate, and severe symptoms,
respectively. Severity values of 1 and 2 can be interpreted as weak occurrence, whereas values of 3 and
4 indicate strong occurrence. Each in vivo sample from the TG-GATEs database had a severity value
defined for each observed symptom (see Table S3).

The TG-GATEs database defines 66 toxicity symptoms in the liver. Among these, we targeted
four symptoms (necrosis, hypertrophy, cell infiltration, and leukocytic changes) that could be induced
by 10 drugs or more, because we needed to collect enough data samples to train the regression
model. Each symptom encompasses all subtypes and occurrences in all locations. For example,
necrosis includes single cell necrosis and fibrinoid necrosis in all parts of the liver including the bile
duct, the subserosa, and the hepatocytes. Leukocytic changes include acidophilic, basophilic, and
eosinophilic changes.

The gene expression data for each sample were obtained based on the Affymetrix rat2302 platform,
which consists of 31,099 probe sets that correspond to 14,488 gene symbols. The raw gene expression
data were preprocessed using the robust multi-array averaging (RMA) algorithm implemented in the
RefPlus R package [33]. The reference quantile for RMA was constructed using randomly selected
samples (5% of the total). We then normalized the gene expression data so that the average and
standard deviation values for the expression of each gene became 0 and 1, respectively.

4.2. Identifying Gene Markers Sensitive to Symptom Severity

As a linear discriminant analysis (LDA) algorithm, sparse LDA enables us to select good features
for classification because it provides non-zero valued weights to a subset of features that maximizes



Int. J. Mol. Sci. 2017, 18, 755 10 of 13

the variance between classes and minimizes the variance within each class. Thus, in this study, we
applied the sLDA technique to identify toxicity markers related to symptom severity by taking such
genes that have non-zero-valued weights. For sLDA, we used the gene expression profiles of in vivo
rat samples and chose the degree of toxicity severity as a multi-valued class label, as in Figure 11.
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Figure 11. An example of how sLDA was used to identify toxicity gene markers in this study. In this
example, it was assumed that two markers, gene 2 and gene 3, were chosen.

For implementation, we adapted the recent version of the sLDA algorithm proposed by
Clemmensen [6] in which the number of weighted features (i.e., the number of markers) is adjustable
as an input parameter. To determine the optimum number of markers, we examined various numbers
including 21, 22, 23 . . . and 28. For comparison, we also used one-way ANOVA and the Student’s
t-test to select gene markers. For one-way ANOVA, toxicity severity was used to define groups in the
same manner as in sLDA. Since the Student’s t-test is only applicable to two-grouped data, toxicity
occurrence, rather than toxicity severity, was used to define the groups. As in sLDA, various numbers
of markers were examined in increasing order of p-values.

4.3. Construction of the Toxicity Severity Prediction Model

To validate the effectiveness of the inferred gene markers, we constructed RF regression models
that employed the gene expression data of the inferred markers for toxicity severity prediction in the
target symptoms. RF is an ensemble model of many decision trees that is applicable to regression
problems. To train our RF model, the depth of the tree was set to have no limit and each inferred gene
marker was used at least once for node splitting in each decision tree. We also generated 10 different
trees for each RF model.

For model development, we first produced n random samples of training data and used them
to train 100 different prediction models. We did this because among the 14,143 samples, the number
of samples in which no symptom occurred was much greater than the number of samples in which
certain symptom(s) occurred. For example, the number of samples in which necrosis occurred was
only 400 out of the 14,143 samples; no necrosis occurred in the remaining 13,743 samples. Thus, if all
non-necrosis samples had been used as control samples for model development, the prediction model
would have been too biased towards the control samples. To solve this data imbalance problem, we
randomly selected the same number of control samples as the case samples to balance the numbers
of case and control samples; we then used them to train the prediction model. This process was
iterated n times, leading to n different prediction models, and we utilized the averaged results of these
models for subsequent comparative analyses. Figure 12 summarizes the procedure of toxicity severity
prediction modeling.
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4.4. Performance Evaluation of the RF Models in Toxicity Severity Prediction

For model evaluation, we used 10-fold cross-validation in which all samples were folded by drug
unit and only the samples in the training folds were used to identify gene markers. The sensitivity of
the inferred gene markers to toxicity severity was evaluated by measuring the SCCs between actual
and predicted severities. We also determined how well each model predicted the occurrence of toxicity
symptoms. If the predicted severity of the targeted symptoms in a sample was equal to, or greater
than, a given threshold value, we concluded that toxicity occurred in the sample. We drew ROC curves
and measured the AUC of the ROC according to the change of threshold.

5. Conclusions

This study focused on developing a method for identifying gene markers sensitive to aggravation
of toxicity symptom. Our proposed method considers each severity as each group with utilizing
mutual relationships between genes. We confirmed that the method can be useful to identify gene
markers related to changing of severity in a toxicity symptoms.
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