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Abstract: The large-scale simultaneous extraction and concentration of aqueous solutions of
triazine analogs, and aflatoxins, through a hydrocarbon-based membrane (e.g., polyethylene,
polyethylene/polypropylene copolymer) under ambient temperature and atmospheric pressure
is reported. The subsequent adsorption of analyte in the extraction chamber over the lignin-modified
silica gel facilitates the process by reducing the operating time. The maximum adsorption capacity
values for triazine analogs and aflatoxins are mainly adsorption mechanism-dependent and were
calculated to be 0.432 and 0.297 mg/10 mg, respectively. The permeation, and therefore the percentage
of analyte extracted, ranges from 1% to almost 100%, and varies among the solvents examined. It is
considered to be vapor pressure- and chemical polarity-dependent, and is thus highly affected by
the nature and thickness of the membrane, the discrepancy in the solubility values of the analyte
between the two liquid phases, and the amount of adsorbent used in the process. A dependence on
the size of the analyte was observed in the adsorption capacity measurement, but not in the extraction
process. The theoretical interaction simulation and FTIR data show that the planar aflatoxin molecule
releases much more energy when facing toward the membrane molecule when approaching it, and
the mechanism leading to the adsorption.

Keywords: extraction; preconcentration; lignin-modified adsorbent; adsorption; triazine analog;
membrane; aflatoxin

1. Introduction

Heterocyclic triazine analogs are a crucial precursor for various herbicides [1–3]. Among them,
chlorine-containing atrazine, propazine, and trietazine are, for the first time, being used on a large scale
as derivatizing reagents in acetonitrile for enriching the purity of sulfur-containing acids under alkaline
conditions [4]. Melamine is another example of a chemically similar symmetric triazine with numerous
common nonherbicide applications [5–11]. These compounds have either been linked to kidney
failure or are considered potential carcinogens and immunotoxins [6–8,12–18]. Previous studies have
described numerous gas or liquid chromatography-mass spectrometric approaches for the accurate
analysis of triazine isomers and analogs, with or without an enriching medium, to ascertain the level at
which they are present in the food chain and the extent of human exposure [18–24]. The direct removal
of only a few triazine analogs in the aqueous environment on an analytical scale, with the assistance of
an adsorbent, has been studied [25–28]. The reported percentage of adsorption was only in the range
of 21.9% to 82.9% for the selected triazine analog herbicides.

Agricultural commodities, especially those with high carbohydrate or fat contents, are easily
contaminated with aflatoxins under high moisture and high temperature conditions, which favor the
growth of the fungal species Aspergillus flavus and Aspergillus parasiticus. Typical food matrices include
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maize, cereals, nuts, and soybeans, which are used worldwide, mainly for human consumption [29–31].
Many HPLC-oriented methods have been developed for monitoring the food chain for aflatoxin
contamination. These methods are usually combined with an extraction process to enrich or recover
the analyte before analysis [32–36]. However, reports on the recovery of aflatoxins through adsorption
are rare.

Lignin, whose molecular weight can exceed 10,000 daltons, is a biopolymer mixture of three
monolignol monomers which have a phenylpropane structure in common. Consequently, it is relatively
hydrophobic and aromatic in nature and has a large number of ether linkages and phenyl moieties,
yet is unusual because of its heterogeneity and lack of a defined primary structure [37]. Lignin is the
most abundant organic material of dead vegetation, is nontoxic and resistant to degradation, and
thus, is an extremely versatile material for use in industrial and food processing industries [38–40].
However, the application of any lignin-related material for the recovery of molecular pollutants has
rarely been seen, except for the metallic Au(III) ion removal from aqueous solution using structurally
modified lignin [41,42]. In this study, silica gel modified with a native lignin molecule was used as
an adsorbent for facilitating the subsequent process of concentrating an aqueous solution of various
triazine analogs and aflatoxins on a large scale, after hydrocarbon-based membrane extraction under
ambient temperature and atmospheric pressure. In this study, factors that affect the solvent permeation
and the percentage of analyte extracted are discussed, namely the physical properties of the solvent,
the nature and the thickness of the membrane, the structure of the analyte, the discrepancy in solubility
values of the analyte between the two liquid phases, and the amount of adsorbent used in the process.
Finally, the adsorption capacity is measured for several selected analytes, and its dependence on the
adsorption mechanism or on the steric hindrance of the analyte is explored through the FTIR approach.

2. Results and Discussion

2.1. Effect of the Characteristics and Thickness of the Membrane on Permeation

Microscale membrane extraction has recently become the preferred option for sample preparation
in numerous cases because of its simplicity, low operational costs, and high enrichment factors.
Polytetrafluoroethylene- and PP-based fiber membranes are two of the most frequently used materials
in these studies [43–54]. However, the use of flat-sheet membranes constructed of these and other
materials in large-scale liquid extraction and concentration under ambient temperature and pressure
has not yet been documented. To understand how solvent molecules pass through hydrocarbon-based
membranes, and how factors such as vapor pressure, polarity, and the viscosity of the solvent affect
the process, the permeation of various solvents under ambient temperature and atmospheric pressure
was investigated using the device shown in Figure 1A. The membrane sealed chamber in the container
in Figure 1B was designed for the percentage of extraction evaluation.

As shown in Figure 2, more volatile, less polar, and less viscous solvents, such as hexane
and cyclohexane (see Table 1 for physical properties), permeated through the hydrophobic PE/PP
membrane (0.01 mm) more easily. In other words, the hydrophobic membrane was only “wettable” for
methylene chloride, hexane, and cyclohexane. Figure 3 shows that the thickness of the membrane (PE)
appears to be another factor that affects the permeation of a solvent such as hexane; thicker membranes
exhibit lower solvent permeation because of the longer distance to migrate across the membrane.
During the process, more time and difficulty would be expected. However, given the thickness of the
membrane, the permeation of hexane molecules was further investigated and found to be affected
by the nature of the membrane. Among the evaluated membranes, the PE membrane was the most
branched, and thus the least dense. The PE/PP membrane was the least branched and the densest,
because PP is higher in density, but lower in branching. Consequently, a PE/PP blended membrane
should have different porosity properties compared with a PE membrane, as is fully supported by the
data in Figure 4. The permeation of hexane molecules was greater for a PE membrane, and lowest for
a PP membrane, indicating that a small porous size as a result of high density was an obstacle to the
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permeation. Despite the magnitude of the permeation, these blended hydrophobic membranes were
all wettable to hexane molecules. The coefficient of determination R2 for the curves in Figures 2–4 was
higher than 0.999 in most cases, indicating a satisfactory polynomial fit.

Table 1. Some of the physical properties for six selected solvents at 25 ◦C.

Solvent Vapor Pressure a

(mmHg)
Dielectric
Constant

Water
Solubility

Boiling
Point (◦C)

Viscosity
(mPa·s)

Water 23.7 80.10 - 100 0.89
Hexane 151.2 1.88 9.5 mg/L 68.7 0.29

Cyclohexane 97.6 2.02 55 mg/L 80.7 0.90
Ethanol 58.8 24.30 1 kg/L 78.2 1.07

Diethyl ether 532.7 4.33 60.4 g/L 34.6 0.22
Acetonitrile 91.2 37.5 1 kg/L 81.6 0.34

Dichloromethane 352.5 9.1 13 g/L 39 0.43
a Vapor pressure is calculated based on the Antoine equation.
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Figure 1. Devices for measuring the permeation of the solvent molecule (A) and the percentage of
extraction of analytes in hexane and methylene chloride/hexane (B).
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Figure 2. Influence of the nature of the solvent molecule on the permeation through the PE/PP
membrane. The thickness of the membrane was 0.010 mm.

Int. J. Mol. Sci. 2017, 18, 801 4 of 16 

 

 
Figure 2. Influence of the nature of the solvent molecule on the permeation through the PE/PP 
membrane. The thickness of the membrane was 0.010 mm. 

 
Figure 3. Influence of the thickness (in unit of mm) of the PE membrane on the permeation of the 
hexane molecule. 

 
Figure 4. Influence of the nature of the membrane on the permeation of the hexane molecule. The 
thickness of the membrane was approximately 0.010 mm. 

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8  acetonitrile; water
 hexane
 cyclohexane
 dichloromethane

V
ol

um
e 

lo
ss

 (
m

l)

Time (hr)

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 0.009
 0.021
 0.047
 0.074

V
ol

um
e 

lo
ss

 (
m

l)

Time (hr)

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 0.010(PE)
 0.011(PE+LPE)
 0.011(PE+PP)
 0.010(PP)

V
ol

um
e 

lo
ss

 (
m

l)

Time (hr)

Figure 3. Influence of the thickness (in unit of mm) of the PE membrane on the permeation of the
hexane molecule.
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Figure 4. Influence of the nature of the membrane on the permeation of the hexane molecule.
The thickness of the membrane was approximately 0.010 mm.
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2.2. Viscosity and Polarity Effects

Of the examined solvents, water is the most viscous and polar, but the least volatile. Consequently,
no permeation for a time period of more than 13 h was observed. Acetonitrile is not as viscous.
However, no permeation was measured during the same time period, owing to its high polarity.
Conversely, hexane appeared to be the most effective solvent for the permeation process, considering
all of the aforementioned properties. Under an aqueous environment, hexane molecules tended to
permeate through the hydrophobic membrane and extract the analyte at the interface. Owing to the
presence of water molecules, hexane molecules do not permeate further to leave the surface of the
membrane because of the incompatibility between the two solvents. In addition, viscous and dense
water molecules form a barrier layer to the permeation of hexane molecules at the interface. Thus,
water and hexane appear to be an ideal combination in membrane-assisted extraction applications.
Acetonitrile is less favorable in that respect. The other practical consideration for a successful extraction
process is that the adsorption of triazine analogs on the lignin-modified absorbent was only observed
in hexane [55]. The solvent mixture of hexane and methylene chloride (1:1, v/v) was also used in the
evaluation of adsorbing aflatoxins in this study.

2.3. Factors Affecting the Extraction Process and Adsorption Capacity Measurement

The purpose-made device designed for evaluating the percentage of extraction of triazine analogs
and aflatoxins is shown in Figure 1B. The membrane, which is sealed with an O-shaped ring, and then
a piece of paraffin film, is attached to a support to form the extraction chamber, and is replaceable.
A lignin-modified adsorbent can be optionally present in the chamber to facilitate the extraction
process. The entire device was sealed, even at the time of sampling for HPLC analysis, to minimize
the loss of liquid phase in the chamber. Figure 5 shows the chromatograms for the enrichment of
ametryne in the extraction chamber (A) without the presence of an adsorbent, the residual ametryne
outside the chamber (C) after a three-day time period, and the standard ametryne solution before the
extraction process (B), for comparison under ambient temperature and atmospheric pressure. As can
be seen, ametryne was markedly enriched in the extraction chamber. The corresponding percentage of
extraction with a PE membrane in this case was calculated to be 87.70%, according to the difference in
peak areas. By adding an adsorbent of 20 mg to the extraction chamber, this percentage was reached
considerably faster and finally improved to 100% over a 12-h time period. Numerous other triazine
analogs examined in this study are listed in Table 2, with data such as the percentage of extraction with
or without the presence of the lignin-modified adsorbent in the chamber, and the characteristics of the
membrane used in the process. The solubility data for the analyte in both water and hexane at different
temperatures are also included for reference and discussion purposes. Upon a close examination of the
extraction data in Table 2, a dependence on the characteristics of the membrane was noticed. A more
favorable percentage of extraction for a given analyte was always obtained when using the PE/PP
membrane. A typical example for the comparison between using the PE and the PE/PP membranes for
ametryne extraction without an adsorbent in the chamber is demonstrated in Figure 6. The difference
in the percentage of extraction was estimated to be approximately 10% for a three-day extraction in
this case. The hydrophobicity, but not the porosity of the membrane, is believed to be one of the
factors leading to these results, because a membrane that is relatively hydrophobic should drive the
analyte to the surface more easily and efficiently. The analyte near the surface should be further
attracted to the liquid phase inside the extraction chamber, as a result of the discrepancy in solubility
(see Table 2). However, this driving force was not as effective in the extraction of aflatoxins according
to the solubility data shown in Table 3. Note that the percentage of adsorption for aflatoxins was
near 100% in a hexane/methylene chloride mixture (1:1, v/v). Two adsorption mechanisms reported
previously were thought to be responsible for the extraction results, and also led to the variation
in the adsorption capacity values for these analytes, as shown in Table 3 [55,56]. The availability of
binding sites on the lignin-modified adsorbent (i.e., ether linkage in hexane) and the size of the analyte
molecule are factors believed to be particularly responsible for the extraction results, according to
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the proposed structure of lignin [37,42,56–58]. However, little evidence was produced that smaller
molecules such as triazine analogs were under such a negative influence. Consequently, higher
adsorption capacity values were measured because small molecules generated an insignificant steric
hindrance during adsorption.
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According to the information from the providers, PP and linear PE are the minor components in the 
copolymer products. The linear PE is a four-carbon-based polymer. c The adsorption evaluation is 
completed in 1 h in hexane. d Only available for several selected triazine analogs. e The solubility data 
at 20 (above) and 25 °C (below) in unit of mg/L are included for comparison. The acronym HEX stands 
for hexane. 
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time period. The percentage of extraction is calculated based on the difference in peak areas. The 
volume ratio (H2O/hexane) is 6/1. The percent extraction with an adsorbent (20 mg) present in the 
chamber is marked with asterisk and evaluated over a 12-h time period; however, using the PE/PP 
membrane only. The mobile phase for HPLC elution is acetonitrile. The type (thickness) of membrane, 
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According to the information from the providers, PP and linear PE are the minor components in the 
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at 20 (above) and 25 °C (below) in unit of mg/L are included for comparison. The acronym HEX stands 
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a Compound with asterisk (*) is not the atrazine analog; however, it is included for discussion by comparison. b The
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extraction is calculated based on the difference in peak areas. The volume ratio (H2O/hexane) is 6/1. The percent
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(below) in unit of mg/L are included for comparison. The acronym HEX stands for hexane.
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Table 3. Cont.

No. Compound Analyte Structure Percent a

Extraction (%)
Percent b

Adsorption (%)
Adsorption c

Capacity (mg)
Solubility d

H2O/Solvent
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a The analyte is extracted to the liquid phase from the aqueous phase for a three-day time period. The 
percentage of extraction is calculated based on the difference in peak areas. The volume ratio 
(H2O/solvent) is 6/1. The percent extraction after the slash is obtained with an adsorbent (30 mg) in 
the chamber over a 12-h evaluation. Membranes indicated are the followings: 1: PE (0.009 mm), 2: 
PE/PP (0.010 mm). According to the information provided by the suppliers, PP is the minor 
component in PE/PP copolymer product. The mobile phase used for HPLC elution is a mixture of 
acetonitrile, methanol, acetic acid, and triethylamine (475/25/1/2, v/v). b The liquid phase used in the 
evaluation is hexane/methylene chloride (1:1, v/v). c The amount of adsorbent used in the 
measurement is 10 mg. The liquid phase is hexane/methylene chloride (1:1, v/v). d The solubility data, 
in unit of mg/mL, are from chemical suppliers. Aflatoxins are freely soluble in moderately polar 
solvents, such as chloroform, methanol, and dimethyl sulfoxide, and dissolve in water to the extent 
of 10–20 mg/L. 

 

Figure 6. Influence of the nature of the membrane on the percentage of extraction of ametryne in 
hexane with/without the presence of a lignin-modified adsorbent in the chamber. The thickness of the 
membrane was about 0.009 (PE), 0.010 (PE/PP) mm respectively. The amount of adsorbent used was 
20 mg. Note that the adsorption is irreversible, and the permeation of the analyte molecules in the 
chamber is counteracted and thus minimized. 
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a The analyte is extracted to the liquid phase from the aqueous phase for a three-day time period. The percentage of
extraction is calculated based on the difference in peak areas. The volume ratio (H2O/solvent) is 6/1. The percent
extraction after the slash is obtained with an adsorbent (30 mg) in the chamber over a 12-h evaluation. Membranes
indicated are the followings: 1: PE (0.009 mm), 2: PE/PP (0.010 mm). According to the information provided by the
suppliers, PP is the minor component in PE/PP copolymer product. The mobile phase used for HPLC elution is
a mixture of acetonitrile, methanol, acetic acid, and triethylamine (475/25/1/2, v/v). b The liquid phase used in
the evaluation is hexane/methylene chloride (1:1, v/v). c The amount of adsorbent used in the measurement is
10 mg. The liquid phase is hexane/methylene chloride (1:1, v/v). d The solubility data, in unit of mg/mL, are from
chemical suppliers. Aflatoxins are freely soluble in moderately polar solvents, such as chloroform, methanol, and
dimethyl sulfoxide, and dissolve in water to the extent of 10–20 mg/L.
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Figure 6. Influence of the nature of the membrane on the percentage of extraction of ametryne in
hexane with/without the presence of a lignin-modified adsorbent in the chamber. The thickness of
the membrane was about 0.009 (PE), 0.010 (PE/PP) mm respectively. The amount of adsorbent used
was 20 mg. Note that the adsorption is irreversible, and the permeation of the analyte molecules in the
chamber is counteracted and thus minimized.
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2.4. Adsorbent Amount and the Extraction Efficiency

The mass transfer of the analyte in the extraction process was found to be facilitated by placing
an adsorbent in the chamber, to irreversibly adsorb the analyte. As shown in Tables 2 and 3,
an improvement in the extraction for several selected analytes was observed. The improvement
was enhanced by increasing the amount of adsorbent from 20 to 30 mg. Figure 6 also demonstrates
that the extraction percentage for ametryne was accomplished more effectively in a considerably
shorter time period by placing an adsorbent in the extraction chamber. The percentage of extraction
was improved to nearly 96.2% for a 12-h extraction with 20 mg of adsorbent. A simplified diagram
in Figure 6 describes a plausible cause for the extraction improvement resulting from the presence
of an adsorbent in the chamber. The irreversible adsorption of the analyte minimized the existing
equilibrium between the two liquid phases, thus facilitating the process. This equilibrium could be
minimized one step further, or even interrupted, by shifting towards the hexane phase because of
almost 100% adsorption, if the major driving force resulting from the discrepancy in the solubility
values of the analyte between water and hexane was sufficient. The examples, in Table 2, which include
ametryne, prometryne, terbumeton, and dipropetryn, show that the percentage of extraction for a
three-day time period reached nearly 100%, which could be accomplished in a shorter time period by
adding the lignin-modified adsorbent to the chamber. However, procyazine exhibited the opposite
extreme in this particular case, producing nearly no extraction, mostly because of an insufficient
discrepancy in the solubility values. The extraction percentage for the analytes in Table 3 was not as
marked for the same reason. Interestingly, the extraction process was not noticeably dependent on
the size of the analyte. A representative example of this is anilazine, which has three chlorine atoms
and one aromatic ring, the percentage of extraction for which reached nearly 85% with the PE/PP
membrane, which is higher than that for most of the smaller analytes under the same conditions
(see Table 2).

2.5. Theoretical Interaction Simulation and FTIR Data

These conclusive results and the foregoing discussion are further supported by the theoretical
simulation of the single-molecule interaction between PE and PP membranes, and the analyte
molecules in Figure 7A,B. More energy (−2379.57 vs. −2253.90 kJ/mol) was released as a terbumeton
molecule approached the PP membrane. The oxygen atom (shown in red) in an ether bond was
repelled away from the polymer molecule owing to the inconsistency in polarity, and the terbumeton
molecule therefore pointed toward the polymer segment from the opposite end. However, in the
interaction simulation of planar aflatoxin and antibiotic drug molecules with the PP membrane shown
in Figure 7C, the molecules were facing toward the membrane segments, resulting in the release
of much higher energies according to the theoretical calculations (−2625.00 and −2840.99 kJ/mol,
respectively). Consequently, analytes that are near the surface of the membrane and pointing toward it,
but not facing toward it with a maximum contact area like the aflatoxins in Table 3, should more easily,
and with a greater likelihood, permeate through the membrane. Subsequently, they should be driven
to, and extracted into, the chamber in hexane, because of the discrepancy in the solubility values of the
analyte between the two liquid phases. Thus, protonating the analyte to change its characteristics by
lowering the pH value of the matrix would be expected to deteriorate the permeability, and thus lower
the percentage of extraction (not shown).
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Figure 7. The energy minimization through theoretical computational simulation of the mutual
interaction between the membrane (PE: (A); PP: (B)) and terbumeton molecules (compound 9 in
Table 2). A designated area was magnified for a better view. In simulating the interaction between
planar aflatoxin G1 ((C), left) and PP membrane molecules, only the designated areas were shown
after magnification. Note that the aflatoxin G1 molecule is facing toward the membrane segment
with a maximum contact area as it approaches it. Antibiotic ofloxacin ((C), right), similar in shape to
aflatoxin G1, is included for comparison. The red arrows indicate the distance between two designated
atoms. Except for the carbon atom in dark grey, oxygen, nitrogen atoms are colored in red, light yellow,
respectively. Hydrogen atom is omitted for clarity
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However, the FTIR data in Figure 8 for lignin-modified adsorbent (A), ametryne (B),
ametryne/lignin-modified adsorbent (C), and aflatoxin G1/lignin-modified adsorbent (D) revealed a
significant dipole-dipole oriented interaction that occurred between the analyte and lignin molecules.
Upon closely examining these spectra, red-shift measurements were observed for C–O (1103 cm−1) and
C=O (~1650 cm−1) stretching or N–H bending vibrations. In the case of ametryne, data indicated that
the sulfur atom, along with the secondary amines in the substituent, were involved in the interaction
with the lignin molecule [59]. These secondary amines were the only available sites responsible for the
high adsorption with the lignin molecule for triazine analogs containing no sulfur atom. Note that
lignin is a supramolecule containing a number of ether linkages for the dipole-dipole interaction with
the analyte. Based on the interaction simulation results (not shown), it seemed reasonable enough to
consider that one lignin molecule was capable of adsorbing more than one analyte molecule. It also
related the lignin-modified adsorbent to the high adsorption capacity and percentage of adsorption in
a shorter time period, and to the complexity in the FTIR data after adsorption.
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adsorbent (C), aflatoxin G1/lignin-modified adsorbent after adsorption (D). 
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Figure 8. FTIR spectra for lignin-modified adsorbent (A), ametryne (B), and ametryne/lignin-modified
adsorbent (C), aflatoxin G1/lignin-modified adsorbent after adsorption (D).

3. Experimental Procedures

3.1. Apparatus

The HPLC system used in this study was a Hitachi Model L-7100 (Hitachi, Tokyo, Japan), coupled
to a D-2500 Chromatopac data station (Shimadzu, Kyoto, Japan), and a UV detector with the detection
wavelength set at 260 and 330 nm, for the measurement of triazine analogs and aflatoxins, respectively.
A C18 column (150 mm × 4.6 mm internal diameter; 5-µm particle diameter) was used for HPLC
analysis at a flow rate of 1.0 mL/min in all measurements. The mobile phases for HPLC elution were
acetonitrile and a mixture of acetonitrile, methanol, glacial acetic acid, and triethylamine. The FTIR
spectra were obtained with a Shimadzu Model FTIR-8400 system. The lignin-modified adsorbent, after
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the adsorption evaluation, was washed with fresh hexane before being dried and then pelleted with
KBr for FTIR measurements. The volume of analyte solution was 100 µL.

Two devices were designed to measure the solvent permeation and the percentage of analyte
extracted, as shown in Figure 1. The opening area of the seal perforation for the permeation analysis
(top) and the contact area of the membrane for measuring the percentage of extraction (below) were
0.26 and 28.27 cm2, respectively.

3.2. Chemicals

All chemicals employed in this study, including the lignin (Mn = 1750, Mw = 14,200), organosilane
reagent used as a linker in the chemical immobilization reactions, and the triazine analogs and
aflatoxins for the extraction evaluation were purchased from Sigma (St. Louis, MO, USA). The reagents
used in the chemical derivatization reactions were purchased from Aldrich Chemical Co. (Milwaukee,
WI, USA). The purchased lignin (Mn = 1750, Mw = 14,200), without further purification, was
first immobilized on irregular silica gel (5 µm particle diameter, 100 Å porosity, with a specific
surface area of 400 m2/g) from Silicycle (Quebec City, QC, Canada), and was then used as the solid
phase in the permeation, extraction evaluations, and adsorption capacity measurements at ambient
temperatures under atmospheric pressure, according to previously reported chemical derivatization
procedures [60,61]. The HPLC grade solvents used to wash the lignin-modified silica gel after
preparation and to act as the mobile phase in the HPLC analysis (e.g., toluene, acetonitrile, methanol,
triethylamine, methylene chloride, hexane, and ethyl ether), were purchased from Fisher Scientific
(Pittsburgh, PA, USA) and Merck Taiwan (Taipei, Taiwan, ROC). In all cases, filtered (0.2 µm) and
distilled water was used. Polyethylene (PE), polypropylene (PP), PE/PP, and PE/linear PE membranes
with thicknesses of 0.009, 0.010, 0.010, and 0.022 mm, respectively, were obtained from a local
supermarket and used without further preparation in this study. Other thicknesses of PE were
purchased from Kao-Chia Plastics Co. (Kaohsiung, Taiwan, ROC).

3.3. Conditions for Solvent Permeation and Volume Loss Evaluations

To evaluate the solvent permeation, a screw-top vial was filled with 3 mL of solvent and the
opening was capped with the membrane, as shown in Figure 1A. The device was placed upside-down
during evaluation, to ensure full contact between the solvent and the membrane, and was weighed
every half hour to monitor the loss of solvent due to permeation. The weight loss data were then
divided by the solvent density to convert the value back to the volume loss.

3.4. Conditions for Measuring the Percentage of Extraction of Analyte

A weighed analyte (1 or 0.2 mg) was dissolved in 6 mL of filtered and distilled water, to prepare
the solution for measuring the percentage of extraction in hexane. The volume of liquid phase inside
the extraction chamber was 1 mL in all cases. In some cases, 10 to 30 mg of lignin-modified adsorbent
was added to the extraction chamber to facilitate the process. For a consistent analysis of the results,
the membranes examined in the solvent permeation evaluation were also used in the percent extraction
study, but with a different device, as shown in Figure 1B. Before the extraction process, the aqueous
solution was sampled, and then resampled after a specified period of extraction time under ambient
temperature and atmospheric pressure for HPLC analysis. The percentage of extraction was calculated
on the basis of the difference in peak areas.

3.5. Conditions for Measuring the Percentage of Adsorption and the Adsorption Capacity

A 100-µL quantity of a 2.57 × 10−3 M standard solution of selected analyte was added to 10 mg
of the lignin-modified adsorbent for a controlled time period. For each measurement, the solution was
sampled for HPLC analysis, both before and after the adsorption process, to calculate the percentage of
adsorption on the basis of the difference in peak areas. A standard solution was continually added to
the matrix in 100 µL increments, until a detectable UV signal was recorded. The HPLC measurement
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was repeated three times, to obtain an average in all cases. Liquid phases, including hexane and
methylene chloride/hexane (1:1, v/v), were evaluated. The data were then used in the discussion of
the extraction and adsorption process.

3.6. Theoretical Computational Calculation with Spartan’14 Software

A theoretical calculation for the single point energy was conducted according to a semi-empirical
molecular orbital calculation method (Parameterized Model 3), by using Spartan’14 software
(Wavefunction, Irvine, CA, USA). The molecular energy was first minimized by modifying the bond
lengths and angles until a minimum energy conformer was found prior to the calculation simulation.
Atoms on both the membrane and the analyte were simulated to interact with each other, to determine
the lowest formation energy at the ground state (i.e., the heats of formation). Segments of PE and PP
with molecular weights of 1545 and 1685 amu, respectively, were used in the interaction simulation.

4. Conclusions

Emulsion is commonly observed in two or more solvents that are normally immiscible and can
be prevented through the use of a membrane. A further application for such an arrangement is to
create a confined space in which an adsorbent can simultaneously extract and preconcentrate the
analyte. The existing equilibrium of an analyte between two liquid phases can be minimized through
irreversible adsorption. This equilibrium can be one step further minimized, or even interrupted, by
shifting toward the hexane phase if the discrepancy in the solubility values of the analyte between
the water and hexane are marked. Consequently, the extraction process can be facilitated, and thus
completed, with a higher percentage of extraction, in a considerably shorter time period. Other factors,
such as the nature and the thickness of the membrane, affect the permeation of the solvent molecules
and thus the percentage of extraction of the analyte. Notably, the data generated in this study indicate
that the influence of the size of the analyte on the percentage of extraction is unclear. However, a steric
hindrance effect was observed in the adsorption capacity measurement. Furthermore, the contact area
of the analyte permeating the membrane affects the percentage of extraction.
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