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Abstract: Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis
of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of
microglia has matured over the last 20 years, through the development of radiopharmaceuticals
targeting several molecular biomarkers of microglial activation and, among these, mainly the
translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial
biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by
other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier
breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’
binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or
anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative
molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors
(purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors,
adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix
metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus
on their respective contribution for the understanding of microglial involvement in neurodegenerative
diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding
their selectivity for microglia expression and polarization, in relation to the mechanisms by which
microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then
take into account current clinicians’ expectations.
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1. Microglia: From Resting to Activated Phenotypes

Microglia cells were first identified by Nissl in 1899, who already suggested that they can exert
phagocytosis and migration [1]. Pio del Rio-Hortega, in 1921, defined them as cells with ramifications,
able to transform after a pathologic event and to acquire ameboid morphology, as well as to migrate,
proliferate, and exert phagocytosis [2]. Microglial cells are resident immune cells of the brain and the
most important effector of brain innate immunity. Their capacities (motility, proliferation, phagocytosis,
secretion of soluble molecules, etc.) are very close to those of macrophages, and microglial cells are often
called “brain macrophages”. Nevertheless, after 50 years of debate, it is now commonly recognized
that microglia and macrophages have different genesis. Macrophages are produced in the bone marrow
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from the post-natal stage, whereas microglia are derived from yolk sac progenitors migrating in the
neuroepithelium at the early stage of embryonic life [3,4]. Despite this difference, these two types of
cells require the same proliferation and differentiation factors and share identical receptors (CD11b,
CD14, etc.).

Microglial cells represent between 5% and 10% of adult brain cells. They are present in all
brain areas, but with variable density, even in physiological conditions, up to 10-fold in the human
brain [5]. Anatomically, microglia cells are more expressed in the telencephalon or diencephalon than
mesencephalon [6]. Their repartition varies also between gray and white matter and according
to axons’ myelination, since myelinated parts of the brain have a higher density of microglial
cells than non-myelinated areas in the same brain region [7]. A recent study in rhesus macaques
points out that microglial cell density, especially in gray matter, is modified during the life-span and
increases with aging [8]. Furthermore, as reported by Pintado and colleagues [9], in rats, following
brain lipopolysaccharide (LPS) injection, differences in microglia brain distribution, density, and
functionality were associated with different sites of injection. More recently, a genome-wide study on
mice showed that microglia from several brain regions and at different ages presented differences of
gene expression [10].

Kreutzberg [11] was the first to characterize microglia morphological changes occurring during
microglia activation. In mature and healthy central nervous systems (CNS), microglia present a
ramified morphology, with a small soma and thin cellular processes. This state corresponds to
“quiescent” or “resting” microglia. Resting microglia express few surface markers and have been
considered for years as functionally inactive. Nonetheless, in vivo study on microglia-GFP (green
fluorescent protein) transgenic mice showed that these ramifications have a high motility allowing
microglial cells to survey their environment in an active way [12]. Microglial cells are sensors of brain
integrity, since any change of brain homeostasis will induce their activation through a modification of
gene expression, morphology, and function [13,14]. Activated microglia show several morphological
changes. First, the cell ramification number is increased and these ramifications are thicker, so that
cells acquire an amoeboid phenotype, very close to peripheral macrophages [15].

For years, microglia activation was supposed to be a “yes or no” phenomenon, with cells only
known to be resting or activated. In the last ten years, it has become clear that microglia activation
processes are much more complex. As well as peripheral macrophages, microglial cell activation is
a sequential process, leading to distinct phenotypes and functions of these cells depending on the
stimulus leading to their activation [16,17]. The classification and characterization of the different
subpopulation of microglial cells is based on these definitions for peripheral macrophages [18].
Classically or pro-inflammatory (M1) activated microglia are activated by LPS and interferon γ (IFNγ).
M1 microglial cells secrete reactive oxygen species (ROS), as well as pro-inflammatory cytokines,
such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Their activation may lead to tissue
inflammation [19,20]. Alternative or anti-inflammatory microglial cells (M2) are divided into three
subpopulations. M2a cells are activated by IL-4 or IL-13 and produce growth factors (insulin growth
factor (IGF)-1) and anti-inflammatory cytokines (IL-10). They participate in tissue reparation, and
also have an important phagocytosis capacity, involving them in the cleaning of cellular debris [21,22].
M2b cells are induced by immune complexes, secrete IL-10, and regulate the immune response [23].
Finally, IL-10, or glucocorticoids, will lead to the M2c phenotype, also called “acquired deactivation”,
producing tumor growth factor-(TGF)β [24]. As brain immune cells, the principal function of microglia
is to protect the brain against injury. They are the first actors in brain inflammation, even if other cells,
mostly astrocytes, are also involved.

2. Involvement of Activated Microglia in Brain Disorders

Microglia activation is basically a beneficial phenomenon in response to neuron injury. Microglial
cells phagocytose apoptotic neurons and secrete inflammatory factors to attract other immune cells
to the site of injury. Inflammation resolution is well regulated and occurs when injury has been
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treated [25]. Nevertheless, it is now clearly established that neuroinflammation takes part in the
process of most brain diseases, either in acute (traumatic brain injury (TBI), stroke) or in chronic,
neurodegenerative diseases. Glutamate, adenosine triphosphate (ATP), chemokines, or superoxide
are released by apoptotic brain cells (neurons, astrocytes) and lead to microglia activation through
specific receptors.

In stroke or TBI, microglia activation appears in the hours following injury, release
pro-inflammatory factors and chemoattractant molecules recruiting peripheral immune cells
(macrophages and lymphocytes), and participate to neuronal death. Moreover, chronic neuronal
death takes place in the weeks or months after these injuries and is strongly associated with
microglia activation [26,27]. Molecules with anti-inflammatory effects have shown neuroprotection
in preclinical models of stroke [28] and TBI [29]. These preclinical results lead to clinical study
using anti-inflammatory molecules on stroke patients. Results of these clinical trials are variable and
reviewed in Veltkamp and Gill [30].

In neurodegenerative diseases, the first involvement of neuroinflammation was described in
Alzheimer’s disease (AD) patients for whom activated microglial cells were detected in post-mortem
nearby senile plaques [26]. Later, epidemiological studies suggest that long-term daily consumption of
non-steroidal anti-inflammatory drugs (NSAIDs) reduce the risks of AD and Parkinson’s (PD) diseases’
development [27,31–33]. Since then, neuroinflammation and microglia are a rich topic of research for
neurodegenerative disease treatment and diagnosis. In these diseases, protein aggregates, such as
Aβ-amyloid deposits in AD or α-synuclein in PD, will also activate microglia [34,35]. The persistence
of these signals leads, in the long term, to an uncontrolled and unregulated microglia activation with
high secretion of inflammatory factors which, in turn, will actively participate to neuronal death,
because these cells are particularly sensitive to oxidative stress [36].

For years, targeting microglia in neurodegenerative diseases consisted in attempts to decrease cell
activation and interesting results were obtained in preclinical models of AD, PD, and amyotrophic
lateral sclerosis (ALS) [37–41]. However, no clinical effects of anti-inflammatory treatment were
observed in clinical trials [42–44]. According to the recent knowledge on microglia polarization,
promoting M2-microglia phenotype may be a promising target, as shown by studies on preclinical
models of stroke [45], TBI [46], AD [47], PD [48], ALS [49], and multiple sclerosis (MS) [50].
Nonetheless, targeting neuroinflammation in these diseases is even more complex and a regimen of
anti-inflammatory treatments is also crucial. In fact, at the early stage of neurodegenerative diseases,
microglia activation might exert a neuroprotective effect [51,52].

3. Imaging of Activated Microglia

Regarding this activated microglia involvement in neurodegenerative disorders, and its potential
therapeutic impact [31–33], interest in the development of suitable imaging tools to investigate
microglia as a relevant marker of neuronal damage and CNS activity [53] has risen in recent years.
Thus, in vivo imaging of activated microglia can provide a non-invasive and reliable detection of
early and localized neuroinflammation processes, thanks to the availability of several neuroimaging
modalities. On one hand, MRI-based (magnetic resonance imaging) techniques for the detection
of neuroinflammation have been developed, based on the macrophages’ labelling by ultrasmall
superparamagnetic iron oxide (USPIO) nanoparticles [54]. Targeting neuroinflammatory changes with
USPIO has been used in the clinical setting, where no correlation was found between iron oxide-based
enhancement and infarct size in human studies [55]. This approach reflects vascular integrity rather
than microglial activation, and the specificity and accuracy of labelling strategies in molecular MRI
remain to be validated. On the other hand, in vivo functional cerebral imaging of activated microglia
has been widely explored by positron emission tomography (PET) molecular imaging, using sensitive
radioactive probes targeting specific molecular mediators of the inflammation cascade (cell surface
and mitochondrial receptors or transporters expressed in activated microglia). We will outline an
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overview of these molecular targets, focusing on their respective contribution for the understanding of
microglial involvement in neurodegenerative diseases.

4. 18-kDa Translocator Protein (TSPO): The “Gold Standard” Molecular Target for Activated
Microglia PET Imaging

4.1. TSPO

The 18-kDa translocator protein (TSPO) is a hetero-oligomeric complex located on the outer
mitochondrial membrane known to be involved in modulating immune response, in cholesterol
transport, and in heme/steroid synthesis [56]. TSPO was first described as a peripheral benzodiazepine
receptor (PBR), a secondary binding site for diazepam, but has been renamed to TSPO to reflect some
of these cellular functions [57]. This protein was initially found in peripheral organs (i.e., kidneys, nasal
epithelium, adrenal glands, lungs, and heart), but is also minimally expressed on microglia in healthy
brains [58]. However, TSPO expression is dramatically upregulated during the microglia activation
process. Its basal expression rises in several acute and degenerative disorders, including AD, PD,
MS, Huntington’s disease (HD) [59], and amyotrophic lateral sclerosis (ALS) [60]. As a result, TSPO
has been considered a hallmark of neuroinflammation. Therefore, TSPO PET imaging has been used
for both improving the knowledge regarding the role of neuroinflammation in CNS diseases and to
assess the efficacy of novel anti-inflammatory therapeutic strategies. The most widely used TSPO PET
radiopharmaceutical, namely 11C-(R)-PK11195, is an isoquinoline carboxamide developed in the early
1980s [61]. However, 11C-(R)-PK11195’s clinical usefulness is narrowed by several major limitations,
including the short half-life of carbon-11, a low brain bioavailability and a poor signal-to-noise ratio
due to high nonspecific binding [62]. To counteract these drawbacks, there has been a great amount
of effort toward the development of second-generation TSPO PET radiotracers [63–65], including
18F-FEDAA1106, 11C-PBR28, 11C-DPA-713, and 18F-DPA-714.

TSPO PET radioligands made it possible to characterize in vivo, in numerous preclinical
and clinical studies, the neuroinflammatory component of neurodegenerative disorders its spatial
distribution, its intensity, and its longitudinal evolution. Thus, TSPO PET imaging is, nowadays,
widely recognized as a useful biomarker of activated microglia involvement in CNS disorders that
assisted in the early detection of neuroinflammation, monitor the severity and progression of the
neurodegenerative diseases, and help to consider the effectiveness of emerging CNS therapies aimed
at decreasing neuroinflammation.

4.2. TSPO Limitations as a Molecular Target for Activated Microglia PET Imaging

Several drawbacks limit the ability of TSPO as PET imaging molecular target.
First, a genetic polymorphism in exon 4 of the TSPO gene (rs6971) has been identified, resulting

in an alanine-to-threonine substitution (A147T) [66,67]. This polymorphism affects the binding
affinity properties of most of PET TSPO radiopharmaceuticals for their target. Sensitivity to TSPO
polymorphism is variable depending on the tracer considered , resulting in a very large heterogeneity
in PET images and their associated quantitative data [66]. Three distinct binder statuses have been
identified: HAB, high- (A/A; ~70%), MAB, mixed- (A/T; ~21%), and LAB, low-affinity binders (T/T;
~9%). Then, this polymorphism, and its consequent binder status, can be identified by genetic analysis
allowing stratification of subjects, and can subsequently account for binder status in the quantification
of TSPO PET studies using second-generation radiotracers [68]. However, in LAB patients, TSPO
PET images are of significantly lower quality, and the clinical usefulness of this approach is, therefore,
limited in these patients. Even if the conclusions of clinical studies performed only on HAB or MAB
patients might be extended to a whole-patient population, at least in AD [69], this polymorphism
makes more difficult the design of clinical trials based on TSPO PET imaging. A third-generation TSPO
radioligand, namely 11C-ER176, sensitive to polymorphism in vivo but allowing quantification in LAB
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patients, has recently been proposed; nonetheless, the clinical relevance of this compound remains to
be confirmed [70].

Secondly, the mathematical model usually applied to quantify a brain PET radioligand binding
requires either serial blood samples or a reference region free of specific ligand binding. However,
TSPO is distributed throughout the entire brain, even at very low density, and no clear reference region
may exist in neurodegenerative diseases. However, the cerebellum was validated as a reference region
for 11C-PBR28-TSPO binding in AD patients [71], but regarding differences between radiotracers’
pharmacokinetics and the variety of TSPO distribution depending on the considered disease, it is
necessary to independently validate a reference region for each radiotracer and for each disease.

A third concern for the meaning of this PET imaging approach is the multicellular expression
of TSPO in the human brain. In addition to activated microglia, astroglial expression of TSPO, and,
in the case of a disrupted blood brain barrier (BBB), on infiltrating cells of mononuclear-phagocyte
lineage have been reported [72]. TSPO in vivo PET imaging does not strictly reflect the activation
of microglial cells, but a broader inflammatory process [73]. The PET signal can also be disrupted
by TSPO peripheral vascular endothelial cells’ expression, which, together with TSPO radioligands’
plasma protein binding, impacts a partial volume effect, especially for cortical areas close to large
blood vessels. Thus, Rizzo et al. have studied the positive impact of considering a model that includes
an additional irreversible compartment from the blood to the endothelium (vascular component) on
the quantification of 11C-PBR28 data, compared to the standard two-tissue compartmental model
(2TCM) [74]. Authors demonstrated that the inclusion of the vascular component in the kinetic model
(2TCM-1K) provided a more precise and accurate quantification of 11C-PBR28 brain PET data. The
estimates are more than three-fold smaller, have a higher time stability and are better correlated to
brain mRNA TSPO expression with 2TCM-1K model compared to 2TCM [74].

Lastly, since the characterization of the different subpopulations of microglial cells toward different
phenotypes (M1, neurotoxic vs. M2, neuroprotective, see Section 1), it has been challenging to
identify and differentiate these subtypes and their related pro/anti-inflammatory roles for both
physiopathological understanding and new therapeutic approach designs. While the advent of TSPO
PET agents has enabled the distribution of activated microglia in the brain to be imaged in vivo, TSPO
ligands bind to both M1 and M2 phenotypes. TSPO PET, therefore, provides a measure of activated
microglia load without information related with its specific functional role in different diseases and
brain areas [75,76].

5. Potential Alternative Molecular Targets for Activated Microglia Imaging

Limitations of the TSPO, as described above, have led to the identification of other molecular
targets to develop new tracers of activated microglia. Moreover, in order to fulfill the current clinician’s
expectancies regarding the microglial role in neurodegenerative diseases and associated potential
novel therapeutic approaches, radiopharmaceuticals able to discriminate activated microglia according
to their polarization from M1 to M2 phenotypes are, to date, highly expected. In this part, we
summarize potential microglial imaging targets as follows: (1) Targets evaluated by PET in pre-clinical
or clinical settings for imaging microglial cells within the CNS; (2) Targets that have been used for
imaging inflammatory conditions by PET in peripheral disorders; and (3) Potential targets for which
radioligands have not been tested/synthetized yet. We will also pay particular attention to the potential
interest of these targets to discriminate microglia subtypes (see Table 1). However, no in vivo study
using any PET radioligands allowed the study of only one subpopulation of microglia. Targeting these
molecules for PET imaging of M1 or M2 microglia requires further exploration.

5.1. Molecular Targets Evaluated in CNS Diseases

Table 1 summarizes candidate microglial imaging targets, for which dedicated PET
radiopharmaceuticals have been developed and evaluated in pre-clinical and/or clinical CNS settings.
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Table 1. Activated microglia molecular targets with current applications for central nervous systems (CNS) disorders’ positron emission tomography (PET) exploration.

Target Cellular Localization Cellular Expression Functions M1/M2 Expression Applications References

COX Cytoplasmic enzyme Microglia, neurons Prostaglandins synthesis No data on microglia
subtypes expression

COX-1 PET tracer: pre-clinical study on
animal model of AD COX-2 PET in rat
models of neuroinflammation

[77,78]

CB2R G-protein-coupled
receptor

Microglia, astrocytes,
microvascular
endothelial cells

Inhibition of
pro-inflammatory cytokines’
(IL-1, TNF-α) release
Activation of
anti-inflammatory cytokines’
(IL-4, IL-10) release

No data on microglia
subtypes expression

11C-NE40: in human study in AD vs.
control patients (no increase of ligand
binding in AD patients) Other ligands:
preclinical studies such as brain uptake
in healthy rodent or post-mortem
binding in human ALS brain

[79,80]

P2X7R Cation-permeable ion
channel receptor

Microglia, macrophages,
astrocytes, Schwann cells

Activation of
pro-inflammatory cytokines’
(IL-1β) and ROS release

Potentially specific of
M1 subtypes

In vivo preclinical study on
LPS-induced neuroinflammation (rat) [81,82]

β-glucuronidase Lysosomal enzyme Microglia, astrocytes, neurons Anti-inflammatory effects No data on microglia
subtypes expression

In vivo preclinical study on an
encephalitis rat model [83]

A2AR G-protein-coupled
receptor Microglia, astrocytes, neurons Anti-inflammatory effects No data on microglia

subtypes expression In human study on PD and MS [84,85]

α4β2 nAChR Pentameric nicotinic
receptor Microglia, neurons

Anti-inflammatory effects
(cholinergic anti-inflammatory
pathway)

No data on microglia
subtypes expression

Preclinical study on neuroinflammation
induced by cerebral ischemia (rat) [86]

MMPs

Immature enzymes are
cytoplasmic and secreted
and activated
extracellularly

Microglia, neurons,
astrocytes, oligodendrocytes

CNS development including
neurogenesis, myelogenesis,
and axonal guidance.

No data on microglia
subtypes expression

In vivo preclinical studies on a rat
model of stroke [87–89]

A2AR: adenosine receptor 2A; CB2R: cannabinoid receptor type 2; COX: cyclooxygenase; nAChR: nicotinic acetylcholine receptor; P2X7R: purinergic receptor 2 ion channel receptor; MMP:
matrix metalloproteinases; IL: interleukin; TNF-α: tumor necrosis factor-α; ROS: reactive oxygen species; LPS: lipopolysaccharide; M1: Classically or pro-inflammatory activated microglia;
M2: alternative or anti-inflammatory microglial cells; AD: Alzheimer’s disease; PD: Parkinson’s disease; MS: multiple sclerosis; ALS: amyotrophic lateral sclerosis
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5.1.1. Cyclooxygenase (COX)

Cyclooxygenase is an enzyme producing important biological mediators, including
prostaglandins, which are involved in the regulation of neuroinflammatory process in connection with
neurodegenerative diseases [90–92].

Among the different COX isoforms characterized, COX-1 is classically described as a constitutively
expressed house-keeping enzyme, whereas COX-2 is an inflammatory inducible isoform, mainly
expressed in response to neuroinflammation [93]. COX-1 immunoreactivity is enriched in the midbrain,
pons, and medulla [94], whereas COX-2 immunoreactivity prevails in neurons and glial cells of the
hippocampus, hypothalamus, and amygdala [95,96]. COX-2 is, therefore, considered as a key player
in the pathophysiology of AD, PD [97,98], and has been identified as a molecular target of interest
for pharmacological design of selective ligands for both therapy and molecular imaging. Thus,
highly-selective COX-2 radioligands, such as 11C-Celecoxib [99] or 11C-Rofecoxib [77], have been
evaluated to explore microglial activation by PET, but to date this approach remains unsuccessful, due
to either non-specific bindings or low in vivo sensitivity of these radioligands [100,101]. In this context,
the development of a selective COX-1 imaging probe has regained interest. The 11C-ketoprofen methyl
ester (11C-KTP-Me) has been evaluated in rodent models of focal neuroinflammation (intrastriatal
injection of lipopolysaccharide or quinolinic acid), and exhibited striatal accumulation corresponding to
the early phase of microglia activation (from six hours and at day 1 after the lesion) [102]. In contrast, the
time course of striatal accumulation of 11C-PK11195, the gold-standard TSPO PET radioligand, started
later and lasted up to 14 days afterward, corresponding to changes in activation of both microglia and
astrocytes. This finding suggests the high specificity of cellular expression of COX-1 within microglia,
during an acute neuroinflammatory process, and its ability to be evidenced by PET in vivo. More
recently, the same group used 11C-KTP-Me to investigate COX-1 involvement in amyloid precursor
protein transgenic (APPSWE2576) mice, an animal model of AD [78]. PET images of (S)-11C-KTP-Me
specifically detected and clearly visualized the changes in COX-1 expression in activated microglia
concomitantly to the formation of amyloid plaques in amyloid peptide precursor-transgenic mice
(APP-Tg) mice. These preclinical data suggest that PET imaging of COX-1 with (S)-11C-KTP-Me could
be a promising approach for monitoring activated microglia in CNS diseases, including AD.

5.1.2. Cannabinoid Receptor

While the cannabinoid receptor type 1 (CB1R) is constitutively the most abundantly expressed
G-protein-coupled receptor in the human brain [103], the inducible isoform, namely cannabinoid
receptor type 2 (CB2R), is barely detectable in the healthy brain [104]. Low levels of CB2R expression
have been found in microglial cells [104,105], in human fetal astrocytes [106], and in human cerebral
microvascular endothelial cells [107]. Nonetheless, several studies reported an upregulation of CB2R
on activated microglial cells in pathological conditions, including MS, ALS, PD, or AD [105,108–110].
Moreover, selective CB2R activation results in a decrease of microglial activation in HD and ALS
transgenic mouse models and appears to be effective in reducing neurodegeneration [109,110].
Neuroprotective effects of CB2 agonists are associated with suppression of microglia activation via
inhibiting the release of neurotoxic factors and by decreasing neuronal cell damage in cell or tissue
culture models [111]. These observations suggest that therapeutic modulation of CB2R may be a new
promising treatment for neuropathogenic disorders characterized by a neuroinflammatory component.
Recent findings have indicated that nicotine attenuates Aβ-induced microglial activation by shifting
microglial M1 to M2 state, and cannabinoid CB2R mediates the process, thereby suggesting the CB2R
involved in microglia polarization shift [112]. Several CB2R selective ligands have been developed over
the past years [113] and the preliminary clinical evaluation with 11C-NE40 showed appropriate fast
brain kinetics in the healthy human brain [114]. However, 11C-NE40 has not succeeded in highlighting
microglial activation in AD subjects as compared to healthy controls. In 2015, Slavik et al. reported
a novel carbon-11 radiolabeled tracer 11C-RS-016 for CB2R imaging, which showed higher specific
binding in postmortem ALS patient spinal cord tissues [79,80]. Since then, several other recently
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synthetized radiotracers are under preclinical investigations and seem to offer promising prospects for
imaging CB2R expression [115–117].

5.1.3. Purinergic Ion Channel Receptor

Purinergic ion channel receptor (P2X) is a large family of receptors distributed in a wide variety
of tissue [118]. Among them, P2X7 receptor (P2X7R) are expressed both peripherally and in the CNS,
especially in microglia, astrocytes and Schwann cells [119]. P2X7R activation is associated with production
of pro-inflammatory cytokines (IL-1β) and ROS by peripheral macrophages, as well as microglia
or astrocytes [120,121]. Moreover, P2X7R expression is increased in microglia in animal models of
neurodegenerative diseases, such as AD [122], ALS [123], or HD [124]. Recently, P2X7R has been proposed
as a marker of M1 microglia. Indeed, in a mouse ALS model, P2X7R inhibition led to a diminution of
microgliosis associated with a decrease of M1 (IL-1β) and an increase of M2 (IL-10) markers, leading
authors to consider P2X7R as a potential maker of M1 microglia in ALS [125]. Involvement of P2X7R in
microglia M1 polarization has recently been confirmed in vitro as P2X7R inhibition avoid M1 microglia
polarization in ischaemic conditions [126]. Nevertheless, in vitro, P2X7R expression is also reported in
M2 polarized macrophages and might so play a role in inflammation resolution [127].

The first candidate was the P2X7R antagonist A-740003, showing a high affinity and selectivity
for the receptor. Preclinical in vivo study of 11C-A-740003 showed little uptake in rat brains [81].
More recently, two other P2X7R antagonists has been radiolabeled and used in preclinical models.
11C-JNJ-54173717 was shown to cross the BBB in rats and to have a higher binding in rat striatum
injected with a viral vector expressing human P2X7R than in control rats. This compound was also
used in monkeys and showed a specific binding to P2X7R, as the concomitant use of the JNJ-42253432,
a P2X7R antagonist, completely block the brain fixation of the radiolabeled compound [128]. Anyway,
the use of 11C-JNJ-54173717 in a model of neuroinflammation has to be performed in order to validate
its utilization as a marker of activated microglia. The other molecule recently tested is the GSK1482160,
a strong P2X7R antagonist, evaluated in a phase 1 clinical study with a good BBB penetration [129].
The GSK1482160 has, thus, been labelled with carbon-11, and then evaluated in mice treated by LPS as
a model of neuroinflammation, showing a significate increase of 11C-GSK1482160 binding in treated
mouse brains vs. control [82]. Therefore, 11C-GSK1482160 appears as a promising radioligand of
P2X7R, as a marker of neuroinflammation.

5.1.4. β-Glucuronidase

β-Glucuronidase is a lysosomal enzyme involved both in the hydrolysis of glycosaminoglycans
on the cell surface and in the degradation of the extracellular matrix. Several studies have reported an
increase of β-glucuronidase expression by activated microglia into the extracellular space at the site of
neuroinflammation [130,131]. Elevated levels of β-glucuronidase have been reported in the temporal
cortex of AD patients and in the putamen of HD patients [132] and, thus, constituting a biomarker of
neuroinflammation in relation with neurodegenerative diseases. Antunes et al. [83] have designed a
PET tracer for β-glucuronidase imaging, namely 18F-FEAnGA, that, despite a moderate brain uptake,
succeeded in detecting an increased release of β-glucuronidase during neuroinflammation in an
encephalitis rat model.

5.1.5. Adenosine Receptor 2A

Adenosine receptors belong to the purinergic G-coupled family receptors and are involved in
inflammatory processes. Microglia express several types of adenosine receptors (A1, A2A, A2B,
A3). Among them, the 2A adenosine receptor (A2AR) seems to have an important implication in
neurodegeneration [133], is overexpressed in vitro in activated microglia, and is also involved in
the regulation of microglia activation [134,135]. A2AR has been considered an interesting target of
activated microglia.
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Several tracers of A2AR have been synthetized (11C-TMSX, 11C-preladenant, 18F-FESCH) and
clinical studies have been performed with the 11C-TMSX [84,136,137]. 11C-TMSX showed that A2AR
is increased in MS patients, in association with neuroinflammation, with a binding correlated with
the severity of symptoms and the loss of cerebral tissue[85]. However, in PD patients, the uptake of
this tracer is not related to neuroinflammation, but to neuronal regulation [84]. A2AR are expressed
both in neurons and astrocytes but, regarding their brain distribution, they are strongly expressed in
the striatum (post-synaptic neurons) [84,138,139]. This striatal neuronal expression probably explains
results obtained in PD patients [84]. However, A2AR’s increase in other brain areas may be relevant to
follow brain inflammation elsewhere than in the striatum and might be therefore an interesting tool in
neurodegenerative diseases such as MS.

5.1.6. Nicotinic Acetylcholine Receptors α4β2

Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels. In the
brain, several subtypes of nAChR have been identified and, among them, the heteromeric α4β2
is one of the most abundant. α4β2 receptor expression in microglia is not well characterized yet.
The 2-18F-fluoro-A85380 compound has been synthetized in order to follow α4β2’s expression in
neurodegenerative diseases [140]. Ex vivo studies with this tracer showed a decrease of binding in
brain sections from AD patients [141], making this radiotracer a tool to follow the death of cholinergic
neurons in neurodegenerative diseases. More recently, Martín et al. [86] used 2-18F-fluoro-A85380 as a
marker of neuroinflammation in a model of cerebral ischemia. Their results showed an uptake of this
tracer similar to the one of PK11195 (for TSPO PET imaging), confirming the inflammatory expression
of α4β2 in this model. Moreover, authors confirmed by immunohistochemistry the overexpression of
α4β2 in microglia and astrocytes. Nonetheless, this overexpression of α4β2 in activated microglia is
not well characterized yet and the neuronal expression of α4β2 is a limiting factor for the use of the
nAChR tracer to follow microglia activation in vivo.

5.1.7. Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are a family of endopeptidases able to degrade the components
of the extracellular matrix (collagen, gelatin, elastin) and are involved in tissue remodeling and
degradation. Several subtypes of MMPs have been identified and their expression is enhanced by
pro-inflammatory signals, such as cytokines (IL-1β, TNFα) or LPS. MMPs are associated in the CNS to
excitotoxicity, neuronal damage, and BBB disruption, but also to the progression of neurodegenerative
diseases [142,143]. Several tracers of MMPs or specific to one MMPs subtype have been synthetized in
the last years.

Among them, the 18F-BR-351, derived from a non peptidic MMP inhibitor, was used in a rat model
of stroke by transient middle cerebral artery occlusion (tMCAo) [88,144]. In this study, PET imaging
of MMPs and TSPO were performed with the 18F-BR-351 and the 18F-DPA714, respectively. Authors
showed time course expression of MMPs and TSPO following tMCAo by PET imaging and confirmed the
expression of MMP-9 in microglia in the infarct brain part by immunofluorescence. The same compound
has very recently been used in a mice model of gliomas [145]. In parallel, other MMPs inhibitors, specific
of one or several MMPs, have been labeled with 18F or 11C and showed brain uptake in small rodent
biodistribution. These tracers have not been tested in a pathological model yet [146,147].

5.2. Molecular Targets Evaluated in Other Inflammatory Diseases

Even if not tested for microglia imaging yet, the molecular targets cited here might be promising
for PET microglia imaging (Table 2). For these targets, PET ligands have been developed and tested
in peripheral inflammatory conditions (i.e., macrophages expression). Some of these targets could
be specific to the M1 or M2 phenotypes, but this specificity has never been demonstrated by in vivo
imaging. Furthermore, the capacity of their ligands to cross the BBB must be studied before any
application related to microglia activation.
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Table 2. Proposed alternative microglia molecular targets

Target Cellular Localization Cellular Expression Functions M1/M2 Expression Applications References

iNOS Cytoplasmic enzyme Microglia, macrophages,
astrocytes

Immune innate response: NO
production by immune cells

Potentially specific of
M1 phenotype

In human study in healthy
volunteers with endotoxin
administration in one lung

[148,149]

FRβ Surface receptor Microglia Captation and internalization of
folic acid

Potentially specific of
M2 phenotype

In vivo preclinical study on models
of peripheral inflammation (paw
inflammation, rheumatoid arthritis)

[150,151]

IDO-1 Cytoplasmic enzyme Microglia, neurons Tryptophan catalization No data on microglia
subtypes expression

Compound labelled but not
evaluated in preclinical study [152]

KMO Cytoplasmic enzyme Microglia, macrophages Tryptophan catalization No data on microglia
subtypes expression No PET tracer developed yet [153]

P2Y12R Purinergic
G-protein-coupled receptor Microglia Involved in platelet agregation Potentially specific of

M2 phenotype No PET tracer developed yet [154,155]

COX: cyclooxygenase; FRβ: folate receptor β; IDO-1: indoleamine 2,3-dioxygenase 1; iNOS: inducible nitric oxide synthase; KMO: kynurenine-3-monooxygenase; MMPs: matrix
metalloproteinases; P2Y12: purinergic ion channel Y12.
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5.2.1. Inducible Nitric Oxide Synthase

Nitric oxide (NO) is a ubiquitous cellular messenger, involved in several physiological processes
in peripheral systems, but also in the brain. NO production by immune cells (macrophages,
microglia) participates in innate responses, and especially in cell death, through the inhibition
of mitochondrial respiration [156,157]. The inducible nitric oxide synthase (iNOS) that produces
NO is not expressed in the brain, or at very low concentration, in physiological conditions but,
in inflammatory conditions, iNOS is overexpressed in microglia and astrocytes [158]. iNOS is
also considered as specific of a M1 phenotype in both macrophages and microglia [148,159].
iNOS macrophage’s expression in inflammatory condition has been assessed in vivo using the
18F6-(2-fluoropropyl)-4-methyl-pyridin-2-amine, both in mouse and human. It was tested in vivo
in a mouse model of iNOS induction by LPS injection. Results showed a significantly higher uptake
of the tracer in the lung of LPS mice vs. control [160]. More recently, the same compound, renamed
18F-NOS, was used in healthy volunteers for the first in-human evaluation. A comparison was made
on subjects after endotoxin administration in the right lung, which evidenced an increase of 30% of
18F-NOS intake in this lung vs. the left one [149].

5.2.2. Folate Receptor β

Folate receptor (FR) is a family of four receptor subtypes (α, β, γ or δ) that bind folic acid.
FRβ expression is described in activated macrophages in the model of inflammatory diseases
(rheumatoid arthritis, Crohn’s disease, etc.) [161]. FRβ is not expressed in quiescent or resting
microglia. As FRβ award macrophages to internalize molecules derived from folic acid, the
development of tracers derived from folic acid could allowed the following of activated macrophages
and microglia [162]. Moreover, in vitro studies showed that FRβ is specifically expressed by M2
polarized macrophages [163]. In an in vivo rat model of restraint stress MacDowell et al. [164] used
FRβ as a specific marker of M2 microglia. Nonetheless, this seems to be the only publication describing
FRβ as a specific marker of M2 microglia. On the other hand, a study on macrophages isolated from
mice after bacterial infection showed a correlation between FRβ expression, ROS production, and
TNFα secretion, both of which were more specific to an M1 phenotype [165]. FRβ might be involved
in microglia M1/M2 polarization, but extended studies on this receptor expression in microglial cells
are still required to assess its interest for PET microglia imaging.

Kularatne et al. [150] developed two conjugated molecules derived from folic acid for FRβ PET
imaging: 4-18F-fluorophenylfolate and 68Ga-DOTA-folate. They tested these compounds to follow
macrophages activation in a model of paw inflammation in the rat and showed that uptake of both
radiotracers was increased in the inflamed paw. Another compound, 18F-fluoro-PEG-folate, also gave
interesting results in a rat model of rheumatoid arthritis [151]. If no clinical studies using PET tracers
of FRβ have been performed yet, a single-photon emission computed tomography (SPECT) tracer,
9mTc-EC20, was used on patients with rheumatoid arthritis [166].

5.3. Potential Targets of Microglia Activation

In this part, we regroup targets expressed in activated microglia but for which no radiotracer has
been synthetized or tested yet (Table 2). More investigations are needed to assess in vivo expression of
these targets in activated microglia.

5.3.1. Enzymes of the Kynurenine Pathway: Indoleamine 2,3-dioxygenase-1 and
Kynurenine-3-monooxygenase

The kynurenine pathway (KP) mediates the tryptophan catalyzation in both periphery and
CNS. KP is stimulated by inflammatory molecules, such as IFN-γ, and, in the brain, products of KP
have been identified to be neuroprotective (picolinic acid, kynurenic acid) or neurotoxic (quinolinic
acid, 3-hydroxykinurenine) [167]. Indoleamine 2,3-dioxygenase-1 (IDO-1) is one of the limiting
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enzymes of KP, is expressed in immune peripheral cells and, in the brain, in microglia cells, astrocytes,
and neurons. IDO-1 is strongly induced in primary microglial cells by LPS and IFN-γ [168] and
is overexpressed during neurodegenerative disease processes, such as for MS [169], AD [170], and
PD [171]. Furthermore, in AD patient brains, IDO-1 immunoreactivity is increased in microglia and
astrocytes [172], making IDO-1 a serious candidate to follow microglia activation in vivo.

Several analogues of tryptophan have been synthetized, labelled, and used in vitro or in animal
models with tumor grafts [173]. These molecules are promising to follow tryptophan metabolism but
are not specific of IDO expression. Huang et al. [152] used another approach to develop a tracer of
IDO-1 by using IDOL5, a strong antagonist of IDO-1. They successfully labeled IDOL5 with 18F but
this potential tracer has not been evaluated neither in in vitro nor in vivo tests so far.

More recently, the kynurenine-3-monooxygenase (KMO), another enzyme involved in KP, has
been described as regulated by proinflammatory cytokine signals. In vivo, in the brain, KMO is
predominantly expressed in microglia [153] and is involved in the regulation of quinolinic acid
production. KMO is overexpressed, in vitro, in macrophages and microglia activated by IFN-γ. KMO
is also increased by LPS treatment in rat brains. KMO could be an interesting target to follow microglia
activation, but its characterization requires more investigation.

5.3.2. P2Y12 Receptor

The P2Y12 receptor (P2Y12R), a purinergic G-protein-coupled receptor, is exclusively expressed
in microglia in the CNS. This receptor is not found in peripheral macrophages and is, thus, a
good marker to distinguish resident microglia from infiltrated macrophages [174]. Expression of
P2Y12R in activated microglia is still hard to qualify but showed that in vitro M2-polarized microglia
overexpressed P2Y12R [155]. On the other hand, pathological conditions, such as AD, are associated
with a decrease of P2Y12R expression in microglia, notably near the plaques or lesion sites, compared to
microglial cells in other brain areas [174,175]. This decrease of P2Y12R expression in such inflammatory
conditions (i.e., the presence of proteins able to activate the toll like receptor 4 (TLR4) pathway) may
be associated with an increase of M1, and a diminution of M2, microglial cells in these areas. This
hypothesis is supported by the P2Y12R expression in microglia of brains with parasite infections,
a condition known to privilege M2 polarization of immune cells [155]. P2Y12R may, thus, be a
promising target of M2 microglia but further studies are needed to confirm its in vivo expression in
this microglia subpopulation.

6. Conclusions

It is, to date, broadly recognized that neuroinflammation, and in particular microglia activation,
plays a crucial role in various brain disorders, from acute (stroke, TBI) to chronic (neurodegenerative
disorders) ones. Initially, the large body of post mortem evidence of activated microglia in various
CNS conditions led most of the authors to consider the microglial cells’ shift from sensing activity to a
reactive state as a deleterious process. This microglial activation has been first assessed in vivo thanks
to PET radioligands targeting TSPO. Polymorphism and multicellular expression of TSPO, as well as
the lack of a specific brain region of negative control, led to identifying other molecular biomarkers
of activated microglia that would likely be complementary to TSPO PET imaging. Among the
targets of interest summarized in the present review, P2X7 receptor appears to be the most promising
one regarding: (1) its implication in neurodegenerative diseases’ pathophysiology, highlighted by
numerous current clinical trials aiming at evaluating P2X7 antagonists in CNS indications [176]; (2) the
recent development of efficient dedicated radiopharmaceuticals that are currently coming available
for clinical trials; (3) its implication on M1 microglial polarization. Thus, a multi-targets approach for
PET imaging of microglia activation, combining TSPO radiopharmaceuticals with new probes specific
of P2X7 expression may help to characterize the involvement of neuroinflammation over the CNS
disorder’s progression, as well as to follow the effects of clinical treatments on microglia polarization.
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