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Abstract: Altered microRNA expression is implicated in cardiovascular diseases. Our objective
was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic
aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the
expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to
controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in
TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p
were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation
of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal
microRNA expression signatures unique to aneurysm location and common to both thoracic and
abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and
miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression
in aneurysmal diseases.
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1. Introduction

Early detection and risk stratification of aortic aneurysms is essential to reduce risk of
catastrophic rupture and dissection, which carries high risk of morbidity and mortality [1]. Aortic
aneurysms occur secondary to pathologic remodeling of the aortic wall and are frequently associated
with hypertension [2], atherosclerosis [3,4] in the abdominal aorta, and bicuspid aortopathy [5],
or connective tissue disorders [6] in the ascending thoracic aorta. The pathogenesis of aneurysms differs
based on the involved aortic segment. Ascending thoracic aortic aneurysms (TAAs) frequently result
from a non-inflammatory process of cystic medial degeneration including smooth muscle cell (SMC)
loss and elastin fragmentation [7]. Conversely, descending TAAs and abdominal aortic aneurysms
(AAAs) involve elastic degeneration, but this can occur via an inflammatory and atherosclerotic
process. TAAs and AAAs each exhibit degeneration of the extracellular matrix (ECM) involving
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increased expression of matrix metalloproteinases (MMPs) and/or decreased expression of MMP
antagonists, the tissue inhibitors of MMPs (TIMPs). Identification of biomarkers that are driven by
aortic remodeling is important to allow for early identification and risk stratification. In addition,
biomarkers may represent therapeutic targets to prevent aneurysm expansion.

In recent years, microRNAs (miRNAs) have emerged as critical regulators of many key cellular
functions and have been linked to a variety of pathologies, including cardiovascular diseases [8].
miRNAs play a vital role in the development of ventricular myocardium, cardiac outflow tract
alignment, chamber septation, and in the maintenance of healthy heart function [9–11]. Some studies
have identified miRNAs expression profiles that are linked to SMC functions such as differentiation [12]
or proliferation [13], whereas other miRNAs are expressed in endothelial cells, and alterations have
been shown to impact angiogenesis and vascular remodeling [14]. Also, important for improving our
understanding of cardiovascular pathophysiology is the mounting evidence of specific functions of
miRNAs, such as miR-29, which participates in pathological ECM remodeling [15–17]. This growing
understanding of miRNA control of ECM perturbations and role in vascular remodeling suggest that
miRNAs have direct contributions to aneurysm pathophysiology.

Prior studies have reported alterations in the expression of several miRNAs in the setting of aortic
diseases [16,18–20]. No study has yet directly compared miRNA expression profiles between AAAs and
TAAs versus non-aneurysmal specimens simultaneously. We hypothesized that aneurysm pathologies
have a unique miRNA signature depending on their anatomic location. Therefore, we comprehensively
analyzed the expression of fifteen miRNAs in human TAA, AAA, and non-aneurysmal specimens
using quantitative reverse transcription polymerase chain reaction (qRT-PCR). This work revealed
unique expression patterns of miRNAs in TAAs and AAAs with some overlapping alterations in
both aortic pathologies. This work adds to a growing body of knowledge and highlights the need for
understanding the function of these important regulators of vascular biology in the setting of disease.

2. Results

2.1. Patient Demographics

We did not observe any significant age differences between TAA and AAA patient samples,
but non-aneurysmal controls were collected from younger patients (control, 57 ± 4 years; TAA,
65 ± 5 years; AAA, 66 ± 1 years) (Table 1).

2.2. Analysis of Candidate miRNA Expression

Expression of the fifteen miRNAs was analyzed by qRT-PCR in TAA, AAA, and control
(non-aneurysmal) aortic specimens (Table 2; Figures 1–3). The selection of these 15 candidate miRNAs
was based on their reported fold changes associated with TAA and AAA vs. controls reported in the
literature. miR-1, miR-133a, and miR-30c-2* were found to be downregulated in TAA when compared
with control specimens (p < 0.05), whereas for downregulation of miR-30c-2* in AAA compared to
control there were no changes in the expression of miR-1, -133a, and -29a in AAA (Figure 1). miR-146a
was upregulated and miR-145 significantly downregulated in AAA, whereas miR-21, -222, and -124
did not exhibit any alteration for either TAA or AAA (Figure 2). miR-221 was upregulated in TAA,
while miR-204 was downregulated in TAA, whereas miR-145 and miR-204 were downregulated
in AAA (p < 0.01) (Figure 2). The expression pattern of miR-331-3p was downregulated in AAA,
while miR-486-5p showed upregulation in both TAA and AAA when compared to control specimens
(Figure 3). Some miRNAs showed overlapping expression profiles in both TAA and AAA (Table 2);
miR-126 and -486-5p were upregulated in TAA and AAA, whereas miR-30c-2*, -155, and -204 were
all downregulated in TAA and AAA when compared with control specimens (Table 2). miR-221
expression level specifically upregulated in TAA and did not change in the AAA group.
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Table 1. Summary of clinical details of human tissue samples used for quantitative reverse transcription
polymerase chain reaction (qRT-PCR) and microarray analysis.

Body Site Ascending/
Descending

Surgical Diagnosis/
Tissue Location

Hypertension/
Smoking

Abdominal

1 AAA
AAA, for repair,
aneurysm tissue,

vessel wall
Y/Y

2 AAA
juxtarenal ascending

aortic aneurysm,
aortic wall

Y/Y

3 AAA AAA, for repair Y/Y

Thoracic

1 TAA ascending aortic arch repair, aorta,
aneurysm wall UK/N

2 TAA ascending ascending arch
aneurysm, aorta Y/Y

3 TAA ascending ascending/arch
aneurysm, aorta Y/Y

4 TAA ascending ascending aneurysm
repair, aorta N/Y

5 TAA descending thoracic aneurysm
repair, aorta N/N

6 TAA ascending ascending TAA, aorta Y/N

7 TAA descending aortic aneurysm above
a previous EVAR, aorta Y/Y

8 DTAA descending descending TAA

9 TAA ascending ascending TAA

10 TAA ascending ascending TAA

11 TAA ascending TAA

Aorta Operation Aortic
Diameter Diagnosis

1 Control Heart transplant
recipient <32 mm Ischemic cardio

myopathy

2 Control Heart transplant
recipient <32 mm Uhl’s anomaly

3 Control
Ascending aorta, total
arch, descending aorta

replacement
34 mm

Kommerell’s
diverticulum

aneurysm

4 Control Heart transplant
recipient <32 mm Ischemic

cardiomyopathy

5 Control Redo root/asc/hemi
arch replacement 42 mm Bicuspid aortic

valve

6 Control Heart transplant
recipient <32 mm Ischemic

cardiomyopathy

7 Control

Aortic valve
replacement/root and

ascending aorta
replacement

40 mm Severe aortic
insufficiency

8 Control Heart transplant
recipient <32 mm Congenital

tricuspid atresia

All 22 tissues (3 abdominal, 11 thoracic, 8 controls) are used for qRT-PCR analysis and 5 TAA tissues (2, 3, 4, 5, 8) are
used for microarray analysis. AAA, abdominal aortic aneurysm; TAA, thoracic aortic aneurysm; DTAA, descending
TAA; Asc, ascending; EVAR, endovascular aneurysm repair; Y, yes; N, No; and UK, unknown.
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Table 2. Summary of differential expression patterns of microRNA (miRNA) in thoracic aortic
aneurysm (TAA) and abdominal aortic aneurysm (AAA) by qRT-PCR.

miRNA TAA AAA

1 miR-1 Downregulated No alteration
2 miR-21 No alteration No alteration
3 miR-29a Downregulated No alteration
4 miR-30c-2* Downregulated Downregulated
5 miR-124 No alteration No alteration
6 miR-126 Upregulated Upregulated
7 miR-133a Downregulated No alteration
8 miR-145 No alteration Downregulated
9 miR-146 No alteration Upregulated

10 miR-155 Downregulated Downregulated
11 miR-204 Downregulated Downregulated
12 miR-221 Upregulated No alteration
13 miR-222 No alteration No alteration
14 miR-331–3p No alteration Downregulated
15 miR-486–5p Upregulated Upregulated

Instances where miR-126 and miR-486–5p were upregulated in both TAA and AAA are indicated in bold font.
Similarly, instances where miR-30c-2*, miR-155, and miR-204 were downregulated in both TAA and AAA are
indicated in bold font.
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Figure 1. Alterations in microRNA profiles of miR-1 (a), miR-21 (b), miR-29a (c), miR-30c-2* (d),
miR-124 (e), and mir-126 (f) by qRT-PCR. Expression levels in TAA (n = 11) and AAA (n = 3) as
compared with non-aneurysmal control aorta (n = 8). The relative amount of each miRNA was
normalized to small nucleolar RNA (RNU44). Statistically significant differences: * p < 0.05, ** p < 0.01,
*** p < 0.001.
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1260a, miR-1268a, miR-4284, miR-4286, miR-4306, miR-4454, miR-4459, miR-4763-3p, miR-6090) and 
21 miRNAs with decreased expression in the TAA (miR-125b-5p, miR-204-5p, miR-371b-5p, miR-572, 
miR-638, miR-1227-5p, miR-1273g-3p, miR-1273f, miR-2861, miR-3135b, miR-3652, miR-3665, miR-
3960, miR-4324, miR-4507, miR-4787-5p, miR-5001-5p, miR-6068, miR-6089, miR-6125, miR-6724-5p) 
when compared with non-aneurysmal control specimens, as described in the heat map in Figure 4 

Figure 2. Alteration in microRNA profiles of miR-133a (a), miR-145 (b), miR-146a (c), miR-155 (d),
miR-204 (e), and miR-221 (f) by qRT-PCR. Expression levels in TAA (n = 11) and AAA (n = 3) as
compared with non-aneurysmal control aorta (n = 8). The relative amount of each miRNA was
normalized to RNU44. Statistically significant differences: * p < 0.05, ** p < 0.01.
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Figure 3. Alteration in microRNA profiles of miR-222 (a), miR-331-3p (b), and miR-486-5p (c) by
qRT-PCR. Expression levels in TAA (n = 11) and AAA (n = 3) as compared with non-aneurysmal control
aorta (n = 8). The relative amount of each miRNA was normalized to RNU44. Statistically significant
differences: * p < 0.05.

2.3. Microarray Expression Analysis

Microarray analysis of three control aortic specimens and five TAA tissue samples revealed 45
differentially expressed miRNAs between the control aorta and the TAA at p < 0.05 and fold change >1.5.
These differentially-expressed miRNAs consisted of 24 miRNAs with increased expression in the TAA
(miR-15b-5p, miR-16-5p, miR-21-3p, miR-21-5p, miR-25-3p, miR-106b-5p, miR-126-3p, miR-146b-5p,
miR-185-5p, miR-223-3p, miR-451a, miR-486-5p, miR-494, miR-642a-3p, miR-1260b, miR-1260a,
miR-1268a, miR-4284, miR-4286, miR-4306, miR-4454, miR-4459, miR-4763-3p, miR-6090) and 21
miRNAs with decreased expression in the TAA (miR-125b-5p, miR-204-5p, miR-371b-5p, miR-572,
miR-638, miR-1227-5p, miR-1273g-3p, miR-1273f, miR-2861, miR-3135b, miR-3652, miR-3665, miR-3960,
miR-4324, miR-4507, miR-4787-5p, miR-5001-5p, miR-6068, miR-6089, miR-6125, miR-6724-5p) when
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compared with non-aneurysmal control specimens, as described in the heat map in Figure 4 and in
the volcano plot in Figure 5. The differentially regulated miRNAs in microarray analysis with their
fold change and p values are shown in Table 3 (upregulated) and Table 4 (downregulated). Further,
we compared five TAA samples that were evaluated by both qRT-PCR and microarray analysis to
examine if any correlations exist among two molecular methods of expression analysis. Interestingly,
miR-126 and miR-486-5p were found to be upregulated commonly by both qRT-PCR and microarray
in TAA patients, while miR-204 was found to be downregulated, indicating the validity of correlation
among two different platforms of gene expression analysis.
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Figure 4. Heat map (Human miRNA microarray) depicting 45 differentially expressed miRNAs in TAA.
Differentially expressed miRNAs (p < 0.05 and absolute value (fold change) > 1.5) in TAA specimens as
compared with non-aneurysmal control aorta is shown. Arrows indicate the miRNAs whose expression
was similar in qRT-PCR analysis. TAA (n = 5) and normal (n = 3).
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Figure 5. Volcano map demonstrating differences in miRNA expression levels in TAA by microarray.
The log-fold change is plotted against the log odds of differential expression. The miRNAs with
significant differences in expression levels between the TAA (n = 5) and control (n = 3) groups (p < 0.05)
after Benjamini-Hochberg correction are indicated.

Table 3. Upregulated TAA miRNAs in Agilent’s Human miRNA microarray Release 19.0 *.

Serial Number miRNA Fold Change p Value

1 hsa-miR-15b-5p 1.66 0.021
2 hsa-miR-16-5p 1.93 0.0072
3 hsa-miR-21-3p 1.58 0.036
4 hsa-miR-21-5p 3.67 0.0079
5 hsa-miR-25-3p 2.12 0.0079
6 hsa-miR-106b-5p 1.54 0.00071
7 hsa-miR-126-3p 3.88 0.0091
8 hsa-miR-146b-5p 2.72 0.013
9 hsa-miR-185-5p 1.88 0.0032

10 hsa-miR-223-3p 5.81 0.0081
11 hsa-miR-451a 17.91 0.00016
12 hsa-miR-486-5p 4.00 0.018
13 hsa-miR-494 1.72 0.021
14 hsa-miR-642a-3p 2.32 0.032
15 hsa-miR-1260b 2.32 0.0019
16 hsa-miR-1260a 3.62 0.00004
17 hsa-miR-1268a 1.60 0.0051
18 hsa-miR-4284 1.63 0.048
19 hsa-miR-4286 1.91 0.00050
20 hsa-miR-4306 1.73 0.017
21 hsa-miR-4454 1.83 0.014
22 hsa-miR-4459 1.69 0.42
23 hsa-miR-4763-3p 1.96 0.044
24 hsa-miR-6090 1.79 0.043

* miRNAs expression changes in TAA with p value < 0.01 are indicated in bold font. Out of 24 miRNAs, 12 miRNAs
(50%) were significantly upregulated in TAA specimens by microarray.
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Table 4. Downregulated TAA miRNAs in Agilent’s Human miRNA microarray Release 19.0 †.

Serial Number miRNA Fold Change p Value

1 hsa-miR-125b-5p 0.41 0.041
2 hsa-miR-204-5p 0.47 0.035
3 hsa-miR-371b-5p 0.50 0.00078
4 hsa-miR-572 0.50 0.0020
5 hsa-miR-638 0.52 0.0035
6 hsa-miR-1227-5p 0.53 0.0025
7 hsa-miR-1273g-3p 0.54 0.00018
8 hsa-miR-1273f 0.54 0.00002
9 hsa-miR-2861 0.56 0.0085

10 hsa-miR-3135b 0.56 0.0014
11 hsa-miR-3652 0.59 0.00074
12 hsa-miR-3665 0.61 0.014
13 hsa-miR-3960 0.61 0.0019
14 hsa-miR-4324 0.62 0.039
15 hsa-miR-4507 0.62 0.0099
16 hsa-miR-4787-5p 0.63 0.0051
17 hsa-miR-5001-5p 0.64 0.00065
18 hsa-miR-6068 0.64 0.0022
19 hsa-miR-6089 0.65 0.00013
20 hsa-miR-6125 0.66 0.00096
21 hsa-miR-6724-5p 0.66 0.0029

† miRNAs expression changes in TAA with p value < 0.01 are indicated in bold font. Out of 21 miRNAs, 17 miRNAs
were significantly downregulated in TAA specimens by microarray.

3. Discussion

miRNAs are promising diagnostic and therapeutic targets for the management of cardiovascular
diseases, but the current literature available on their role in TAA and AAA is still scarce. A few prior
studies have identified altered miRNA expression patterns in aneurysmal aortic diseases, however,
findings have been inconsistent. No prior study has compared expression between TAA and AAA,
which are pathologically and clinically distinct diseases. Further prior studies done so far followed a
conventional approach of screening by first microarray followed by validation using qRT-PCR. Our
study used a non-conventional approach, as it examined the top 15 candidate miRNAs associated
with TAA and AAA, and later further examined their expression pattern by stringent microarray
analysis. In this study, we identified unique miRNA expression signatures for specific aneurysm
locales as well as overlapping profiles in both pathologies, partially confirming prior work reported in
the literature [15,16,18,19,21,22].

While TAA and AAA have differing miRNA expression profiles, there are select miRNAs with
similar expression profiles in both aneurysm pathologies. These uniformities may help identify
common mechanisms-of-action that give rise to both TAA and AAA. An upregulation of miR-126 was
detected in TAA and AAA alike. Work by others revealed that miR-126 promoted angiogenesis by
alleviating suppression of VEGF (vascular endothelial growth factor) and FGF-2 (fibroblast growth
factor) signaling by Spred1 (Sprouty-related, EVH1 domain-containing protein 1) [23], while the
influence of upregulated miR-126 in aneurysm formation is not yet clear. Likewise, miR-155 has
been linked to atherosclerotic lesions by limiting endothelial response to inflammatory cytokines [24].
The downregulation of miR-155 as a negative regulator of endothelial inflammatory response in AAA
specimens is consistent with the inflammatory nature of AAA. Conversely, in the thoracic aorta, where
medial degeneration occurs in the absence of inflammation, miR-155 deficiency may play an alternative
role in aneurysm pathogenesis. In TAA and AAA, we also noted downregulation of miR-30c-2*
which has been shown to participate in cardiac remodeling and fibrosis as a negative regulator of
connective tissue growth factor (CTGF), a pro-fibrotic growth factor that promotes deposition of ECM
components [25]. Hence, miR-30c-2* downregulation in TAA and AAA likely impacts composition of
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the ECM. The upregulation of miR-486-5p noted in our TAA and AAA specimens suggest involvement
of this miRNA in medial SMC contractile function as a factor influencing aneurysm formation.
The similarities of certain miRNA expression profiles in both TAA and AAA suggests a role for
them in the common pathways of aneurysm progression such as degeneration of the collagen and
elastin matrix and defective SMC function in the aortic wall.

In TAA specimens, we noted an upregulation of miR-221 that was not seen in AAA. This outcome
was somewhat surprising, given that miR-221 regulates the proliferation of SMCs during neointimal
hyperplasia [21], which has not been well described for TAAs. In opposition, miR-1, -29a, and -133a
were found to be downregulated in TAA patients only. Jones and colleagues identified a similar
downregulation of these miRNAs in 30 human TAA samples [18]. Furthermore, they reported that
downregulation of miRNA-29a in human TAA was dependent on aortic diameter and proteolytic
activity [18]. In contrast, miR-29 upregulation was noted in animal models and human TAA
specimens [15]. The miR-29 family is one of the most heavily studied miRNA families. Expression of
miR-29a/b/c were all shown to be increased in fibullin-4-deficient mice [15], a model of TAA, and in
fibrillin-1-deficient mice [22], a model of Marfan syndrome. It was further demonstrated that miR-29a
directly influenced maintenance of ECM components including collagen and elastin [15]. Interestingly,
the only miR-29 family member to exhibit increased expression in human TAA specimens examined
was miR-29b [15]. Decreases in miR-133a expression level, as we confirmed here, likely play a role in
matrix degradation and remodeling as MMP-2 and -9 were shown to be targets of miR-29a in vitro [18].
The study by Jones et al. also documented downregulation of miR-21, which we did not observe in
our TAA specimens.

In contrast to TAA, expression of miR-1, -29a, and -133a were unaltered in AAA specimens.
An upregulation of miR-146 was noted in our AAA specimens. miR-146 has shown involvement
in inflammatory diseases including AAA [16]. Downregulation of miR-145 and miR-331-3p were
identified during analysis of AAA specimens. Downregulation of miR-145 via knock-down of Dicer
in a mouse model led to decreased thickness of the aortic media, associated with reduced SMC
differentiation [13]. The mechanism of action for miR-145 in AAA has yet to be elucidated, but may
involve a negative influence on the contractile SMC phenotype [26–29] and potentially contribute to a
dysfunctional matrix-cell unit and weaken vessel integrity. The exact functions of miR-331-3p in cardiac
function and disease have not been established, and a role in aneurysm has not previously been studied.
Since miR-331-3p downregulation has been associated with cancer [30], with the downregulation of
miR-331-3p we noted in AAA specimens, we could speculate that miR-331-3p might play a role in
cell cycle regulation of SMCs in the setting of AAA. While our study did not reveal an alteration in
expression of miR-21 in AAA specimens, others have shown that over-expression of miR-21 in a mouse
model of AAA abrogated aneurysm expansion by increasing SMC proliferation [31].

Recent studies have proposed multiple miRNAs as useful biomarkers for cardiovascular
diseases [32–34]. The hemodynamic alterations and genetic background of patients also need to
be taken into consideration before drawing conclusions on the role of particular miRNAs in aneurysm,
as these factors can attribute to the heterogeneity in patients. This is confirmed in our study, as we did
observe variation in expression profiles between our study and a recent study done using ascending
aorta patients with stenotic tricuspid (TAVA) or bicuspid aortic valve (BAV) tissues [35]. Also, it is of
further significance to note that there exists a variability in the expression of miRNAs between site of
aneurysmal tissue (i.e., aortic tissue body (site of maximum dilation) and neck (non-dilated aorta)) [36].
From our observation in the current study, we deduce that individual pathologies should be uniquely
considered with respect to miRNA expression pattern, and any therapeutic intervention by miRNAs
should be designed specifically for each disease.

One of the potential treatments for TAA might be the use of miRNA mimics or miRNA antagomirs,
specifically for miR-126-3p, miR-204, and miR-486-5p, as expression of these miRNAs were found
to be upregulated in TAA specimens. Out of these three miRNAs, miR-126 seems to have the
most prominent role in vascular integrity. The deletion of miR-126 in mice led to the formation
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of leaky blood vessels and caused defects in angiogenesis. However, the function of miR-126 in
TAA and its use as a potential biomarker of TAA in vivo has not yet been studied. Importantly,
it was reported that atorvastatin can selectively affect miR-126-3p expression and aspirin plays a role
in downregulation of the miR-126-3p [37–39]. However, these modulations in the miR expression
can vary based on the cell type and function. On the other hand, miRNAs like miR-145, miR-146a,
and miR-486-5p were differentially expressed in AAA, and miR-146 had a more specific role for
AAA. It was suggested that angiotensin receptor blockers and statins can downregulate miR-146a
expression level via Interleukin-1 receptor-associated kinase 1 (IRAK-1), TNF Receptor Associated
Factor 6 (TRAF6), and Toll-like receptor -4 (TLR-4) pathways [40]. In addition, hormonal therapy
also could be an option for manipulation of miR-146a expression level, as estrogen moderates miR’s
expression and progesterone leads to a delay in miR-146a expression [41,42]. Overall, it seems that
treatment with statin group medication is a reasonable option for suppression of both miR-126-3p and
miR-146a expression levels, leading to prevention of aortic diseases. However, manipulation of miRs
expression by medication is complex because they have multiple and controversial interaction in the
human body [43].

In conclusion, we identified unique miRNA signatures for TAA and AAA and clarified profiles
in expression that represent common features in both pathologies (Figure 6). Importantly, this
work validates prior reports in the literature and provides further justification for the pursuit of
employing miRNA detection as a novel diagnostic/prognostic approach of aneurysmal disease and
the development of methods to regulate their expression as therapeutic targets.
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4. Materials and Methods

4.1. Patient Demographics

The study population consists of three patient groups: TAA, AAA, and controls. Aortic tissue
specimens were obtained from TAA (n = 7) and AAA (n = 3) patients at the time of elective aortic surgery
(Table 1). These fresh tissues were collected from the Biorepository; Clinical and Translational Science
Institute (CTSI) (IRB 201300201); and Department of Surgery, University of Florida (IRB 614-2008).
Normal control artery (aortic diameters <50–55 mm, i.e., below the threshold of intervention) consisting
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of non-aneurysmal ascending aortic specimens <45 mm (banked tissue) (n = 8) (IRB PR007020120)
were obtained from the Department of Cardiothoracic Surgery, University of Pittsburgh (Table 1).
All procedures performed in studies involving human participants were in accordance with the
ethical standards of the institutional and/or national research committee and with the 1975 Helsinki
declaration and its later amendments in 2000 (5) or comparable ethical standards. Informed consent
was obtained from all patients for being included in the study.

4.2. Sample Preparation and miRNA Analysis

Resected aortic tissue specimens were homogenized in cell disruption buffer using a Qiagen
TissueRuptor kit. Total RNA was isolated by following mirVana miRNA isolation kit protocol (Applied
Biosystems, Foster City, CA, USA). The PCR conditions for reverse transcription were 16 ◦C for 30 min,
42 ◦C for 30 min, 85 ◦C for 5 min, and held at 4 ◦C. For quantitative PCR, assays were conducted in
duplicate for each sample. The real-time PCR assay was performed using the 7500 Fast Real-Time PCR
System (Applied Biosystems) for miRNAs (miR-1, miR-21, miR-29a, miR-30c-2*, miR-124a, miR-126,
miR-133a miR-145, miR-146a, miR-155, miR-204, miR-221, miR-222 miR-331-3p, and miR-486-5p);
and RNU44, internal control to analyze specific miRNA expression following the 2−∆∆Ct method.
miRNAs were analyzed with TaqMan MicroRNA Assays (Applied Biosystems, Foster City, CA, USA).
The two-step procedure was as follows: initial denaturation for 10 min at 95 ◦C, followed by 40 cycles
of 15 s at 95 ◦C, and 60 s at 60 ◦C [44].

4.3. Microarray and Bioinformatics Analysis

The Human miRNA Microarray (miRBase database Release 19.0, 8 × 60 K) was selected for the
assessment of 2006 human miRNAs on the healthy control and TAA transcriptome. One hundred
nanograms of total RNA from TAA samples (n = 5) and healthy control samples (n = 3) were labeled and
hybridized using the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santaclara, CA,
USA) according to the manufacturer’s instructions. In short, RNA samples were first dephosphorylated
using calf intestinal phosphatase and denatured using dimethylsulfoxide. Next, RNA samples were
labeled with cyanine 3-pCp using T4 RNA ligase for 2 h at 16 ◦C and hybridized onto the miRNA
microarrays for 20 h at 55 ◦C in a hybridization oven at 20 rpm. The slides were scanned and
Agilent Feature Extraction Software was used to generate text files for each RNA hybridization chip.
All analyses were performed using R3.0.0 software [45]. Background adjustment, summarization, and
quantile normalization were performed using Limma package. Normalization was made using the
Robust Multichip Average pre-normalization algorithm [46]. Data quality was assessed using various
Quality control (QC) charts (Density & Intensity plot). Using biological replicate microarrays, each
probe-set signal value from TAA samples (n = 5) was compared to the probe-set signal value of healthy
control samples (n = 3) to generate gene expression ratios.

4.4. Statistical Analysis

Prism for Windows, Version 5.0 (GraphPad Software Inc., La Jolla, CA, USA) was used for analysis
of qRT-PCR data, and p < 0.05 was considered significant. Genes were considered to be differentially
expressed at p < 0.05 and fold change >1.5. An unpaired, nonparametric two-tailed Student’s t-test
was used to compare two independent groups (TAA vs. control, AAA vs. control, and TAA vs. AAA)
for miRNA expression analyses.

4.5. Study Limitations

This is an observational study and has some limitations. (a) A small number of samples were
available for this study and this study may not reflect the complete gender-based analysis of TAA and
AAA; for such evaluations, future research is needed with large numbers of patient-based studies.
(b) Due to the difficulties in obtaining the normal control and samples from patients, this study
incorporated groups of patients with unequal number. (c) Being an observational study, the study
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is limited by its inability to perform validations. In order to validate miRNAs in relation to growth
of each aneurysms we need to include a large number of patients in each group, and inclusion of
matched controls would be needed, which were beyond the scope of this study.
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