= International Journal of K\
Molecular Sciences M D\Py
Article

Identification of Proteases and Protease Inhibitors in
Allergenic and Non-Allergenic Pollen

Barbara Héllbacher 1't, Armin O. Schmitt 2, Heidi Hofer !, Fatima Ferreira ! and Peter Lackner %

1 Deptartment of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria;

hoellbacherba@gmx.at (B.H.); Heidi.Hofer@sbg.ac.at (H.H.); Fatima.Ferreira@sbg.ac.at (F.F.)

Faculty of Agricultural Sciences, Georg-August-Universitiat Gottingen, D-37075 Gottingen, Germany;
armin.schmitt@uni-goettingen.de

*  Correspondence: Peter.Lackner@sbg.ac.at

1t These authors contributed equally to this work.

Academic Editor: Joseph V. Moxon
Received: 28 April 2017; Accepted: 1 June 2017; Published: 5 June 2017

Abstract: Pollen is one of the most common causes of allergy worldwide, making the study of
their molecular composition crucial for the advancement of allergy research. Despite substantial
efforts in this field, it is not yet clear why some plant pollens strongly provoke allergies while others
do not. However, proteases and protease inhibitors from allergen sources are known to play an
important role in the development of pollen allergies. In this study, we aim to uncover differences in
the transcriptional pattern of proteases and protease inhibitors in Betula verrucosa and Pinus sylvestris
pollen as models for high and low allergenic potential, respectively. We applied RNA sequencing to
Betula verrucosa and Pinus sylvestris pollen. After de-novo assembly we derived general functional
profiles of the protein coding transcripts. By utilization of domain based functional annotation we
identified potential proteases and protease inhibitors and compared their expression in the two types
of pollen. Functional profiles are highly similar between Betula verrucosa and Pinus sylvestris pollen.
Both pollen contain proteases and inhibitors from 53 and 7 Pfam families, respectively. Some of the
members comprised within those families are implicated in facilitating allergen entry, while others
are known allergens themselves. Our work revealed several candidate proteins which, with further
investigation, represent exciting new leads in elucidating the process behind allergic sensitization.
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1. Introduction

In Europe, more than 20% of the population is affected by allergic rhinitis, where more than 50%
of the cases are triggered by pollen [1]. The development of an allergic disease is a complex process
with many different determinants, from genetic predisposition, over causal allergens to numerous
adjuvants [2]. Although several contributing factors have been identified, a comprehensive mechanistic
model is still missing. Many of the major allergens in pollen have been identified [3-5]. Nonetheless,
it is still unclear, why some pollen, e.g., from Betula verrucosa, strongly provoke allergies while others,
e.g., from Pinus sylvestris, do not.

Both species, Betula verrucosa and Pinus sylvestris are common in the northern parts of Europe
and Asia, where Pinus sylvestris also extents to some southern areas [6]. Flowering periods start in
March for Betula verrucosa and in May for Pinus sylvestris and can last for several weeks [7]. In term of
morphology, pollen of Betula verrucosa has a spherical / triangular shape with a diameter of about 25 pum,
while Pinus sylvestris has saccate pollen grains possessing a pair of air sacs, which leads to a maximum
diameter of about 70 pm [8]. Differences in the resulting buoyancy and the related accessibility to a
person may have some influence on the allergenicity. Further determinants include the solubility of
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the pollen derived allergens [9], the presence of microbial contaminants on the pollen surface [10] or
chemical modifications of allergens [11] as consequence of air pollution [10].

In the past years, proteases have come to the forefront of allergy research due to their relevance in
assisting allergic sensitization [12]. Protease activity first gained attention in the context of allergology
upon the discovery that several allergens are proteases in their natural sources. Besides others these
are the cysteine proteases Der p 1 from house dust mite [13] and Amb a 11 from ragweed [14] or
the serine proteases Der p 3, 6 and 9 from house dust mite [15] and Api m 7 from honeybee [16].
Currently, UniProt/SwissProt alone lists 372 different allergens from 110 different species, where 27 of
these allergens are annotated as proteases and 8 are annotated as protease inhibitors.

Inhaled allergens or contact allergens need to pass the epithelial barrier in order to be recognized
and processed by dendritic cells. Allergen source derived proteases (ASDPs) were shown to disrupt
these barriers. The above mentioned house dust mite allergen Der p 1 was shown to interfere
with the tight junctions between epithelial cells and therefore seems to open its own passage to the
underlying tissue [17,18]. The disruption of the epithelial barrier was also shown to be performed by
ASDPs [19]. Yet other ASDPs have been reported to stimulate mast cells and dendritic cells through
protease activated receptors (PARs), with the subsequent release of mediators triggering the innate
immune system [20-22]. In fact, there are a number of proteases described to be involved in allergenic
phenomena. For a review see Matsumura [23].

Protease activity is regulated by distinct protease inhibitors of different specificity. Several authors
investigated changes in allergy related processes upon application of protease inhibitors. Suziki and
coworkers [24] blocked protease allergens by their inhibitors and observed reduced allergic responses.
Inhibition of Der p 1 and Der f 1 with cystatin A was demonstrated to inhibit IL-8 production of
keratinocytes [25]. Runswick et al. [26] have shown that proteolytic enzymes derived from pollen,
including Betula verrucosa, degrade tight junctions. This process could be blocked by inhibitors of
serine and cysteine proteases.

These observations point towards a link between allergenic potential and proteases as well as
protease inhibitors contained in the allergen sources. We therefore examined the transcriptome from
Betula verrucosa pollen as a model of high allergic potential and from Pinus sylvestris pollen as a
model for low allergic potential, for the appearance of proteases and protease inhibitors. Under the
assumption that the mRNA levels correlate with the corresponding expressed proteins in the pollen,
qualitative or even (semi-)quantitative assessment is feasible.

RNA-Seq has proven to be a useful tool to examine the transcriptome of pollen [27]. A recent
study on the highly allergenic common ragweed revealed differentially expressed genes under certain
environmental conditions [28]. Here we used RNA-Seq to obtain general gene expression patterns
in Betula verrucosa and Pinus sylvestris pollen, before focusing on proteases and protease inhibitors.
In lack of a reference genome, we built a de-novo transcript assembly and subsequently compared the
protein functional profiles of the two pollen with each other as well as with the recently published
profiles of Lilium longiflorum pollen [29]. We then employed a protein family based annotation scheme
in order to identify proteases and their inhibitors. A number of highly expressed candidate proteins
are further discussed for their potential role in allergenicity.

Finally, we explored possibilities to approach a quantitative exploration of the expressed proteases
and inhibitors. This is particularly challenging, as quantification requires mapping to a common
reference and is therefore usually only done for samples stemming from the same or closely related
organisms. We report two attempts of inter-species comparison using the transcriptome and proteome
of Arabidopsis thaliana.

2. Results and Discussion

Below we first report the outcome of the RNA-Seq procedure and the de-novo assembly
using Trinity [30]. We then discuss the generation and comparison of transcriptome functional
profiles. Subsequently, we report the Pfam [31] based annotation and identification of proteases



Int. ]. Mol. Sci. 2017, 18, 1199 3of 14

and their inhibitors. We proceed with a discussion of our approach of a quantitative comparison.
Finally, we report the allergen homolgous transcripts in the two pollen. An overview of the analysis
workflow is shown in Figure 1.
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Figure 1. Analysis workflow. Two strategies were implemented: (i) De-novo assembly and mapping
the transcript to SwissProt sequences split into Pfam domains. (ii) Direct read mapping to the
Arabidopsis thaliana reference proteome with subsequent Pfam based assessment. An example of
a multi-domain protease is given by the cartoon of Der p 1, which includes a protease domain (green)
and a propeptide domain (blue).

2.1. RNA Sequencing

RNA-Seq delivered 223 M paired reads for Betula verrucosa and 221 M paired reads for
Pinus sylvestris. We trimmed the reads, removing partially sequenced adapters and low quality bases
from the ends in order to ensure that only high quality reads feed into the transcriptome assembly.
After quality filtering with Trimmomatic [32] these numbers reduced to 218 M for both pollen. The
low loss of read during filtering indicates a good RNA-Seq performance. Basic statistics of the de-novo
assembly with Trinity are summarized in Table 1. Abundances were determined using kallisto [33]
and are given as estimated counts and TPM (transcripts per million transcripts).

Table 1. RNA-Seq and de-novo assembly statistics.

Attribute Betula  Pinus
Total paired reads 223M  221M
GC content (%) 47 46
Read length range 35-151 35-151

Read length median 150 150

Paired reads after filtering: 218M 218M
Assembled Trinity transcripts: 59,581 85,151
Assembled Trinity genes: 25,263 38,064

2.2. Functional Profiling

Representative transcripts of the Trinity assemblies were annotated through UniProt/SwissProt
and then used for functional profiling. In order to get a first indication of whether there are
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conspicuous differences in the pollen mRNA contents we performed a coarse functional profiling
using COG [34] (Clusters of Orthologous Groups) and GO [35] (Gene Ontology) (see Figure S1 in
Supplementary File S1 and data in Supplementary Files S2 and S3.) We then compared the distribution
of the transcripts to the different COG and GO classes between Betula verrucosa, Pinus sylvestris
and Lilium longiflorum pollen [29] as reference. Given the lack of normal distribution of our data,
we decided to calculate the non-parametric Spearman rank correlation coefficient to estimate the
similarities of the functional profiles (See Table 2. The correlation coefficients between Betula verrucosa
and Pinus sylvestris are 0.98 and higher, regardless of the underlying classifications. There are larger
differences between Lilium longiflorum on the one hand and Betula verrucosa/Pinus sylvestris on the
other hand. For the 26 COG classes, the correlation Betula verrucosa/Lilium longiflorum is 0.8 and
Pinus sylvestris / Lilium longiflorum is 0.82. The fraction of transcripts which are related to an active
metabolism (energy production and conversion, translation, transcription, signal transduction) are
higher in Lilium longiflorum. This is intuitively explicable, as in the Lilium longiflorum pollen experiment
different stages starting from mature pollen to growth of pollen tubes were pooled [29]. With GO
biological process, the correlation coefficient between Lilium longiflorum and Betula verrucosa and
Lilium longiflorum and Pinus sylvestris is 0.52. For GO molecular function and GO cellular location the
correlation coefficient is above 0.43 and 0.87.

Table 2. Spearman rank correlation between functional profiles.

COG GO-BP GO-MF GO-CC
Bet Pin Bet Pin Bet Pin Bet Pin

Lil 080 082 052 052 043 043 0.87 0.87
Bet 0.98 1.00 0.99 0.98

COG: COG Categories, GO-BP: GO Biological Processes, GO-MF: GO Molecular Functions, GO-CC:
GO Cellular Components, Bet: Betula verrucosa, Pin: Pinus sylvestris. Lil: Lilium longiflorum.

For all four kinds of classifications, the profiles of Betula verrucosa and Pinus sylvestris are almost
identical (r > 0.98). The composition of transcripts is highly similar, showing that there is no a priori
bias which would distort our downstream analyses.

2.3. Annotation of Proteases and Their Inhibitors

We deployed a protein family based annotation for two reasons. First, the evolutionary distance
between Betula verrucosa and Pinus sylvestris can cause homologues to generate hits to distinct
UniProt/SwissProt entries. On the Pfam level, these hits will refer to the same molecular function
allowing for a straightforward inter-species comparison. The second reason pertains to the long
known problem in functional annotation caused by the existence of protein domains. If a peptidase
contains additional, non peptidase domains like adapters or transporters, these domains may give
rise to false positive annotations by matches of transcripts to those domains but not to the specific
peptidase domain. Possibly less evident is the high content of transposons resembling retro viruses.
These encode polyproteins which also contain peptidases. In the context of annotations, a match to
those transposons can also lead to false positive hits, if the transcript has similarity to a sequence
region outside of the peptidase entity.

We thus decided to employ a domain based strategy to identify peptidases and their inhibitors.
Pfam already defines the respective domains and protein families. Selecting the families of interest
just by keywords again may lead to numerous false positives. As described in the methods section we
used the pfam2go mapping and complemented this by keyword searches. All matching Pfam entries
were manually verified. A helpful resource for validation was MEROPS, the Peptidase database [36],
which is cross-linked to SwissProt and Pfam. This process resulted in 256 Pfam entries for proteases
and 22 for protease inhibitors.
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Based on these lists, we extracted all proteases and protease inhibitors from the Pfam
Betula verrucosa/Pinus sylvestris annotations. The proteins were then grouped by Pfam family
assignments and ranked by the sum of TPM (transcripts per million transcripts) values. Pfam families
where both Betula verrucosa and Pinus sylvestris had TPM values less than 1 were omitted. The results
are summarized in Tables 3 and 4. Detailed results by SwissProt entry are given in the Supplementary
File S4. Below we briefly discuss the most abundant Pfam hits regarding their native functions and
possible roles in the context of allergenicity. Note that TPM of Betula verrucosa and Pinus sylvestris
should not be compared in a quantitative manner, as the calculations are based on two separate
transriptomes. Ranking by TPM is intended to get a first overview about protein expression of the
various protease/inhibitor families.

2.3.1. Proteases

We were able to identify 53 different Pfam protease families (Table 3). The most abundant
proteases in both pollen were subtilases (Pfam-ACC: PF00082). Subtilases convergently evolved an
Asp /Ser /His catalytic triad, as also found in trypsin serine proteases. They are mostly endopeptidases.
Subtilases are over-represented in plants with a large number of different functions, including general
protein turnover, developmental processes, responses to environmental signals and cell death [37].
The AllFam [38] database of allergen families lists 23 allergens for this Pfam family, most of them
originating from fungi. Ibrahim and coworkers have shown that there is a subtilase in cedar pollen [39],
which, when extracted and purified has high IgE-binding capacity and IgE cross-reactivity tested with
melon extract. Therefore, the subtilases in Betula verrucosa and Pinus sylvestris may act as allergen
as well.

Second most frequent were matches to the serine carboxypeptidase family PF00450. AllFam lists
only two members, Api m 9 from bee and Tri a CPDW-II from wheat. According to AllFam
15% of honeybee sensitized patients have IgE antibodies to Api m 9. In our pollen, in particular
carboxypeptidase-like 40 transcript (UniProt-ID: QOWRX3) was highly expressed.

On 3rd rank we encountered matches to the aspartyl protease family PF14543. This family has
eight entries in AllFam originating from fungi, plants and animals.

Next best rank is occupied by the cysteine protease family PF00112. AllFam lists 13 different
allergens for this family from plants and animals. To the latter belongs Der p 1 from house dust mite,
which is a cysteine protease involved in the disruption of the epithelial barrier [17,18]. Widmer and
coworkers [19] have shown that pollen derived proteases are likewise able to degrade tight junctions.
Homologues of Der p 1 are also found e.g., in Arabidopsis thaliana and Oryza sativa. We extracted all
Trinity transcripts mapped to PF00112, translated them to protein sequence and created a multiple
sequence alignment. The alignment confirmed that the catalytic residues (Cys132, His268 and Asn288
in Der p 1) are conserved in the majority of the mapped transcripts of both Betula verrucosa and
Pinus sylvestris. This shows that the Der p 1 homolog in Betula verrucosa and Pinus sylvestris is a
cysteine protease with potential for epithelial barrier disruption. The TPM values indicate that
there is a larger amount accessible in Betula verrucosa pollen, which could contribute to higher
allergenicity. However, the sheer amount of protease expressed within the pollen is only one of
multiple variables determining the levels of accessibility. One has to keep in mind that the amount
of pollen a person is exposed to, plays just as important a role. Other mechanistic differences could
rely on substrate specificity or different efficiency of the protease activation by auto-cleavage of the
activation peptide [40].

Overall, 11 out of the 53 identified Pfams are registered in the AllFam database. Hence, such
identified members of these protease families, deriving from the two pollens, have the potential to
emulate the properties of allergens.



Int. ]. Mol. Sci. 2017, 18, 1199

6 of 14

Table 3. List of 53 protease families identified in the Pinus sylvestris and Betula verrucosa transcriptomes.

Sums over transcripts per million transcripts (TPM) of all Trinity transcripts assigned to a certain Pfam

family are given.

PfamID Name Y TPM Total ) TPM Betula Y TPM Pinus
PF00082  Subtilase family 28,858.7 21,782.0 7076.6
PF00450  Serine carboxypeptidase 6259.0 4190.4 2068.6
PF14543  Xylanase inhibitor N-terminal 4466.0 1185.8 3280.2
PF00112  Papain family cysteine protease 4439.9 3076.1 1363.7
PF00227  Proteasome subunit 1451.6 319.9 1131.7
PF14541 Xylanase inhibitor C-terminal 1147.3 880.4 266.9
PF12146  Serine aminopeptidase, S33 871.5 427.1 444.4
PF00443  Ubiquitin carboxyl-terminal hydrolase 699.6 266.3 433.3
PF00026  Eukaryotic aspartyl protease 554.0 240.7 3133
PF00557  Metallopeptidase family M24 547.5 183.9 363.6
PF01694  Rhomboid family 518.0 328.8 189.2
PF04258  Signal peptide peptidase 469.7 267.2 202.5
PF01434 Peptidase family M41 341.0 199.0 142.0
PF02338  OTU-like cysteine protease 253.4 91.8 161.6
PF05903  PPPDE putative peptidase domain 253.1 106.6 146.6
PF01433  Peptidase family M1 230.4 80.7 149.7
PF00574  Clp protease 228.3 48.9 179.5
PF02127  Aminopeptidase I zinc metalloprotease (M18) 179.6 137.3 42.4
PF00717  Peptidase S24-like 174.8 66.9 107.9
PF01088  Ubiquitin carboxyl-terminal hydrolase, family 1 166.1 35.3 130.8
PF00326  Prolyl oligopeptidase family 146.6 60.9 85.7
PF01965  DJ-1/Pfpl family 123.3 13.7 109.6
PF05577  Serine carboxypeptidase 528 106.6 21.7 84.8
PF10502  Signal peptidase, peptidase 526 103.5 66.5 37.0
PF02902  Ulpl protease family, C-terminal catalytic domain 99.7 20.9 78.8
PF02099  Josephin 99.5 74.6 249
PF04389  Peptidase family M28 95.9 11.2 84.8
PF01435  Peptidase family M48 93.2 23.0 70.2
PF13365 Trypsin-like peptidase domain 80.8 39.4 41.3
PF10275  Peptidase C65 Otubain 79.0 14.6 64.5
PF00883  Cytosol aminopeptidase family, catalytic domain 73.5 15.6 57.9
PF00675 Insulinase (Peptidase family M16) 64.7 20.1 44.6
PF00089  Trypsin 60.1 13.7 46.4
PF01470  Pyroglutamyl peptidase 54.5 2.0 52.5
PF01432  Peptidase family M3 52.8 26.0 26.8
PF08325 WLM domain 52.7 39.7 13.0
PF03416  Peptidase family C54 45.6 5.8 39.7
PF09668  Aspartyl protease 39.6 1.8 37.9
PF09768  Peptidase M76 family 36.6 28.8 7.7
PF02163  Peptidase family M50 31.9 4.9 27.0
PF00246  Zinc carboxypeptidase 29.9 20.6 9.4
PF05362  Lon protease (516) C-terminal proteolytic domain 27.0 2.8 24.2
PF14538  Raptor N-terminal CASPase like domain 26.2 16.9 9.3
PF07910  Peptidase family C78 18.8 3.1 15.7
PF03572  Peptidase family S41 12.2 5.0 7.2
PF03571  Peptidase family M49 11.6 53 6.3
PF02586  SOS response associated peptidase (SRAP) 11.6 59 5.6
PF00814  Glycoprotease family 10.3 3.7 6.5
PF01457  Leishmanolysin 8.0 0.6 74
PF00648  Calpain family cysteine protease 5.5 1.8 3.7
PF00413  Matrixin 5.2 5.2 0.0
PF01551  Peptidase family M23 4.4 0.0 4.4
PF06480  FtsH Extracellular 1.3 0.6 0.6
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Table 4. Protease inhibitor families. Legend see Table 3.

PfamID Name Y TPM Total Y TPM Betula Y TPM Pinus
PF00188  Cysteine-rich secretory protein family 19,707 4 19,611.2 96.3
PF05922  Peptidase inhibitor I9 4382.9 2866.2 1516.7
PF16845  Aspartic acid proteinase inhibitor 1328.2 1328.2 0.0
PF00031  Cystatin domain 820.3 0.0 820.3
PF00280  Potato inhibitor I family 154.1 121.2 329
PF00079  Serpin (serine protease inhibitor) 84.4 31.7 52.8
PF00197  Trypsin and protease inhibitor 6.5 6.5 0.0

2.3.2. Protease Inhibitors

In addition to the proteases, we identified members of seven protease inhibitors in the
transcriptome. These inhibitors may not only mediate how much a pollen derived protease contributes
to the pollen allergenicity, but also interact with host proteases. Of note is, that all of these Pfam
families are also listed in the AllFam database. Thus, some of the identified proteins may act as
allergen themselves.

Proteases often contain pro-peptides or activation peptides which are cleaved in order
to activate the protease. Interestingly, several of these cleaved peptides can act as specific
inhibitors [41]. Moreover, several protease inhibitors encoded on separate genes are homologous to
these pro-peptides [41].

Most abundant are members of the cysteine-rich secretory protein family (PF00188),
which includes the peptidase inhibitor 15 (PI15) and 16 (PI16) proteins. In human, PI15 was
shown to have a weak inhibitory effect on trypsin [42]. In plants these proteins are described
as pathogenesis-related (PR) proteins with different antifungal, antibacterial and antiviral effects.
A functional role as protease inhibitors in plants has to be confirmed.

The inhibitor family 19 (PF05922) contains subtilase inhibitors. The versatile functions of subtilases
potentially requires a range of inhibitors which are also present in the pollen.

The families aspartic acid proteinase inhibitor (PF16845) and cystatin (PF00031) belong to the
cystatin clan. The aspartic acid proteinase inhibitor is exclusively found in Betula verrucosa, cystatin is
only expressed in Pinus sylvestris. Thus, aspartyl proteases may be inhibited in Betula verrucosa and
active in Pinus sylvestris. In contrast, the higher expressed cysteine proteases in Betula verrucosa may be
active in Betula verrucosa while they are inhibited in Pinus sylvestris.

Members of the potato inhibitor I family (PF00280) and serpins (Serine protease inihibitors,
PF00079) inhibit trypsin type serine proteases or subtilases [41]. Both are expressed in Betula verrucosa
and in Pinus sylvestris. Finally, the Kunitz STI protease inhibitor (PF00197) was initially identified in
legumes, as a potent inhibitor of trypsin. Therefore, it is assumed to protect seeds against herbivores.
The two latter protein families were only present at a low abundance.

2.4. Towards a Quantitative Comparison

For quantitative analysis two prerequisites need to be fulfilled. First, the equivalent transcripts
need to be grouped together. Second, the amount of total RNA measured needs to be comparable.
Usually, quantitative studies are performed on samples from tissues or cell types under various
experimental conditions but within a certain organism. Then, grouping of equivalent transcripts is
relatively easy, especially when a reference genome or trancriptome of the same or a closely related
organism is available.

In our case we aim to compare pollen from two organisms, which have an evolutionary distance
of 313 M years (according to timetree.org [43]). The nearest, well investigated and most complete
genome is the one of Arabidopsis thaliana, with a distance of 106 M years from Betula verrucosa and
313 M years from Pinus sylvestris.
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We first used the transcriptome (all types of RNA) from Arabidopsis thaliana and applied BLAT [44]
to directly assign the quality filtered reads to the transcripts by DNA-DNA matching. The filtering
was less stringent than for the de-novo assembly, as sequencing errors are compensated to a large
extent by the alignment procedure. Since paired reads are not especially considered in BLAT,
we restricted the alignment to the forwards reads only. Betula verrucosa, which is more closely related
to Arabidopsis thaliana, yielded an assignment of 42 M reads to 17,984 different transcripts, while for
Pinus sylvestris 72 M reads were aligned to 9203 different transcripts, which seems to contradict the
evolutionary distances. We proceeded by dissecting matches to protein coding RefSeq mRNAs (NM
prefixes) and to non coding RefSeq RNA (NR prefixes, ncRNA) and obtained a quite different picture.
For mRNA, Betula verrucosa delivers 14 M hits to 17,588 mRNAs, while Pinus sylvestris delivers 6 M
hits to 8960 mRNAs. These differences are presumably due to higher sequence similarity between
Betula verrucosa and Arabidopsis thaliana. The number of different ncRNAs identified is 396 with 28 M
hits in Betula verrucosa and 223 with 65 M hits in Pinus sylvestris. Among the ncRNA with the highest
number of hits are 16S ribosomal RNAs and several uncharacterized RN As (miscRNAs). It is well
known that rRNAs are better conserved than mRNAs. Thus, these data suggest that there is more
highly conserved rRNA (and other ncRNA) in Pinus sylvestris pollen than in Betula verrucosa. As a
consequence, the different ncRNA contents in the pollen decrease the TPM values of mRNA to a
differing extent between the samples. The relative rank of the mRNA transcripts ordered by TPM
is not affected. It needs to be noted that the existence of ncRNA in the final RNA preparations are
artefacts. The preparation protocol enriches poly-andenylated RNA, which represents mRNA but also
other RNA types. This causes a considerable challenge in comparing the abundances of protein coding
transcripts between species via de-novo assemblies.

We then moved to a proteome based strategy, using the Protein-DNA alignment feature of BLAT.
This mitigates the problems caused by the different evolutionary distances between our pollen and
Arabidopsis thaliana, since protein sequences are more conserved than the corresponding nucleotide
sequences. The reference was taken from UniProt/Proteomes. As this provides only one representative
splice variant for a certain protein, we allow each sequencing read to match only once to a protein.
Since we are using a reference proteome, the annotation is an implicit part of the mapping and does
not require a second assignment step. The number of reads assigned to a reference RNA or protein
respectively, is a measure for its expression level in the sample.

When abundances are calculated in respect to a common reference, the raw counts need to be
normalized in order to obtain a comparable metric. We therefore adopted the trimmed mean of M
values (TMM) method introduced by Robinson and Oshlack [45]. This method assumes that the
expression of most genes is similar and that only a rather small number of genes is differentially
expressed. The method finally estimates an effective library size and a weighting factor for each of the
two probes to be compared.

In Supplementary File S5 we provide the TMM values for all proteins in the Arabidopsis thaliana
proteome, which have at least one read assigned in at least one of the two datasets, Betula verrucosa
or Pinus sylvestris. Interestingly, the largest TMM value is assigned to the subtilisin-like protease
SBT5.4 (SP-ACC F4JXC5) in Betula verrucosa, followed by the subtilisin-like protease SBT5.3 (SPP-ACC
Q9ZSP5), thereby highlighting the importance of proteases within the pollen transcriptome. According
to TMM the expression of SBT5.4 is 13 times higher than in Pinus sylvestris, and the expression of
SBT5.3 is 10 times higher than in Pinus sylvestris. The two top ranking proteins in Pinus sylvestris are
the alcohol dehydrogenase class-P protein (SP-ACC P06525, 30 times more than in Betula verrucosa)
and Glyceraldehyde-3-phosphate dehydrogenase (12 times more than in Betula verrucosa).

Using a combination of proteome mapping with BLAT and the concept of TMM could also prove
useful for other biological questions which aim to compare protein coding transcripts in the same type
of cell or tissue between organisms.
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2.5. Allergen Homologous Transcripts

The transcriptome data generated in this study provides the basis for many other analyses.
In order to complement the study we additional searched for transcripts homologous to known
allergens, as the presence of allergens are essential for the development of an allergy. The list of query
allergens was taken from UniProt. Out of the 375 query sequences, 198 had a hit in Betula verrucosa
and 204 in Pinus sylvestris, respectively. If we consider only those 298 query allergens which obtain a
Blast hit in Betula verrucosa or Pinus sylvestris and which are also classified in Pfam, we can reduce the
number to 52 distinct families. Thus, approximately fifty distinct allergen homologous proteins are
contained in the pollen. As expected, the Bet_v_1 family is predominant in Betula verrucosa. In Pinus
sylvestris the glycoside hydrolases family 28 is most abundant. Allergen members of the latter family
are Cha 0 2, Cryj 2 and Jun a 2. Other abundant transcripts homologous including Cuc m 1 (a serine
protease), Hev b 3 (a small rubber particle protein), Fus c 2 (a thioredoxin-like protein) or members
of the profilin family are identified, which might have some allergenic potential in general. Detailed
results are given in Supplementary File S6.

3. Materials and Methods

3.1. RNA Sequencing

Total RNA was isolated from the pollen of Betula verrucosa (Allergon AB, Thermo Fisher
Scientific, Angelholm, Sweden, batch 012510101) as well as Pinus sylvestris (Crystal Laboratory LLC,
Luther, OK, USA, batch 209]1J02) as previously described [46] . In brief, 500 mg pollen were
homogenized and resuspended in 4.2 M of guanidine thiocyanate, 50 mM of N,N-Bis(2-hydroxyethyl)-2-
aminoethanesulfonic acid pH 7.2, 4 mM EDTA, supplemented with 1% p-mercaptoethanol, 1% of
N-lauryl-sarkosyl, and 1% n-butanol. Following a centrifugation step at 15,000 g for 15 min, RNA was
extracted from the supernatant using TRIzol LS Reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s manual.

RNA-sequencing was performed on Illumina’s HiSeq 2500 system (Illumina, San Diego, CA,
USA), using the TruSeq RNA LT sample preparation kit (Illumina, San Diego, CA, USA ) and delivered
about 220 M paired reads for both Betula verrucosa and Pinus sylvestris. For a summary see Table 1. Per
base sequence quality was encoded in the Phred +33 format and assessed using the tool FastQC [47].
We removed low quality bases from the ends of the reads with Trimmomatic [32] and only continued
processing those pairs where both reads passed the checkpoint. As our organisms of interest are
not fully sequenced yet, we deployed the Trinity [30] pipeline, which sequentially applies the three
tools Inchworm, Chrysalis and Butterfly for de-novo transcriptome assembly. Inchworm decomposes
the sequenced reads to form a k-mer library, which is then used to assemble contigs with a greedy
algorithm approach. Chrysalis joins contigs with sequence overlap to clusters and creates a de Bruijn
graph for each of these clusters. Butterfly then follows this graph and uses the full length reads to
resolve ambiguities and construct possible splice forms. Quantification of the assembly was performed
with kallisto [33].

Quality parameters and general statistics were obtained by FastQC [47], the fastqutils from
NGSUtils [48] and from the RN A-Seq provider’s report.

3.2. Annotation

Annotation of the Trinity assembled transcripts: Blastx (E-value cutoff 10e ) was applied to align
the transcripts to UniProt/SwissProt (version 11_2016).

3.3. Functional Profiling

For functional classification we only considered the longest isoform from each Trinity gene in
the Betula verrucosa and Pinus sylvestris assembly in order to avoid double counting. We call this set
“representative Trinity transcripts” below.
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GO assignments for molecular function were extracted from the UniProt/SwissProt knowledge
base for annotated representative Trinity transcripts. UniProt parsing was performed with
Biopython [49]. The GO terms ware traced back up to GO level 2 using the goatools Python library on
the GO term hierarchy as defined in the go-basic.obo release 16 January 2017 [35].

For the classification by COG the Betula verrucosa and Pinus sylvestris representative transcripts
were assigned to the COG protein sequences (prot2003-2014.fa) by blastx. = Subsequently,
the corresponding COG assignments (cog2003-2014.csv) and the COG accession to name mapping
(cognames2003-2014.tab) was utilized to count the functional classes. Figure S1 was prepared
with ggplot [50].

3.4. Identification of Proteases and Protease Inhibitors

For the Pfam (version 30) based annotations we used the uniprot_sprot_pfam30.fa database
and the corresponding domain definitions in swisspfam.gz as provided at ftp:/ /ftp.ebi.ac.uk/pub/
databases/Pfam/releases/Pfam30.0/ in order to compile a search database consisting only of the
Pfam domain sequences. Again, blastx was used to assign the assembled transcripts to these
domain sequences.

The collection of peptidase/inhibitor Pfam entries was based on the pfam2go mapping obtained
from http:/ /geneontology.org/external2go. This map links GO terms to Pfam entries. We extracted
those Pfam-ACCs where a GO ID corresponding to peptidase/inhibitor was assigned. Unfortunately,
this mapping is neither complete nor faultless. We first manually confirmed that all indicated Pfam
entries received a correct GO assignment using the information and references provided by Pfam.
We then performed a keyword search for “(protease or peptidase) and not inhibito” and “(protease or
peptidase) and inhibito” respectively in the Pfam-A header as contained in the Pfam-A.full database file.
This search was implemented in Python, as Pfam does not support combinatorial queries. Subsequently,
all candidates identified by keyword search were manually verified and added to our list if they were
indeed a protease/inhibitor.

3.5. Quantitative Inter-Species Comparison

For the quantitative comparison the reads were trimmed with Trimmomatic using less stringent
parameters than required for the de-novo assembly. These quality filtered reads were then aligned
with the BLAT tool to the Arabidopsis thaliana reference trancriptome and proteome. The default BLAT
parameters have been used. The transcriptome TAIR10, version GCF_000001735.3 was obtained
from ftp://ftp.ncbinlm.nih.gov/genomes/. This transcriptome contains alternative transcripts
for numerous genes. We therefore allowed a read to be aligned to more than one transcript.
The proteome was obtained from http://www.uniprot.org/proteomes/ and is built upon genome
assembly GCA_000001735.1. The proteome does not contain splice variants and therefore we allowed
a read to align only once.

We counted the number of reads mapping to a protein as a measure for its abundance. The TMM
calculation was performed in Bioconductor with the edgeR package [51]. The Pfam annotation is based
on the protease and inhibitor list described above and on the Pfam UniProt annotation given in the
swisspfam.gz file as contained in the Pfam version 30.

3.6. Identification of Allergen Homologues

The list of allergens contained in UniProt was obtained from http://www.uniprot.org/docs/
allergen. For each allergen, the first appearing isoform (UniProt accession code) was taken as a query
for a tblastn search against the Trinity assemblies of Betula verrucosa and Pinus sylvestris, respectively.
The TPM value of the top ranking transcript hit is reported in Supplementary File Sé6.
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4. Conclusions

RNA-Seq is a highly valuable tool for the determination of the expression status of a certain
biological sample. However, transcript assembly and annotation is challenging. Using domain based
annotation avoids false positive hits when searching for distinct functions such as proteases and their
inhibitors. However, erroneous classifications in well established databases like Pfam or SwissProt are
still observable and need to be resolved manually.

Quantitative comparison of the expression level of certain transcripts between species is
problematic when there is no reference genome of a closely related species. This is especially true for
the comparison of samples from organisms with increasing evolutionary distance. Using the proteome
of an as close as possible model organism and using DNA-Protein alignments can help to achieve
this goal. While there are pipelines supporting data analysis within an organism, analysis tools for
cross-species RNA-Seq is an orphaned area.

RNA-Seq of Betula verrucosa and Pinus sylvestris pollen revealed a number of proteases and
inhibitors that are candidates for further investigations on protein level. In particular, the Der p 1
homolog should be a promising target.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1199/s1,
Supplementary File S1 (pdf) contains Figure S1 and column header description of all Supplementary data Files
S2 to S6. Supplementary Files S2 and S3 (tsv) Functional profiles raw data, Supplementary File 54 (tsv) List of
proteases and inhibitors including abundances. Supplementary File S5 (tsv) Proteome based annotation including
TMM values. Supplementary File S6 (tsv) Transcripts homologous to known allergens. Raw reads are available
from NCBI BioProject PRINA384502.
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