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Abstract: Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by motor
dysfunction, cognitive deficits and psychosis. HD is caused by mutations in the Huntingtin (HTT)
gene, resulting in the expansion of polyglutamine (polyQ) repeats in the HTT protein. Mutant HTT
is prone to aggregation, and the accumulation of polyQ-expanded fibrils as well as intermediate
oligomers formed during the aggregation process contribute to neurodegeneration. Distinct protein
homeostasis (proteostasis) nodes such as chaperone-mediated folding and proteolytic systems
regulate the aggregation and degradation of HTT. Moreover, polyQ-expanded HTT fibrils and
oligomers can lead to a global collapse in neuronal proteostasis, a process that contributes to
neurodegeneration. The ability to maintain proteostasis of HTT declines during the aging process.
Conversely, mechanisms that preserve proteostasis delay the onset of HD. Here we will review the
link between proteostasis, aging and HD-related changes.
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1. Introduction

Huntington’s disease (HD) is the most common inherited neurodegenerative disorder with an
incidence of 0.38 per 100,000 persons per year [1,2]. The characteristic symptoms of HD are excessive
motor movements, cognitive decline and psychiatric abnormalities [3,4]. Neuronal loss occurs in many
brain regions, but striatal medium spiny neurons undergo the greatest neurodegeneration [5,6]. HD
patients usually die within 15–20 years of the disease onset [4]. HD is inherited in a dominant
manner and caused by abnormal expansions of CAG repeats in the Huntingtin (HTT) gene [1].
These mutations expand the polyglutamine stretch (polyQ) of the N-terminal domain of the HTT
protein, resulting in proteotoxicity and protein aggregation [1,7,8]. HTT is variable in its structure,
as the many polymorphisms of the gene lead to different numbers of polyQ repeats in the protein.
The wild-type HTT gene encodes a large protein of approximately 350 kDa that contains 6–35 polyQ
repeats. In individuals affected by HD, HTT protein contains >35 polyQ repeats [1]. Normal
function of HTT is involved in several biological processes such as transcriptional regulation,
ciliogenesis, apoptosis, vesicle trafficking, autophagy and embryonic development [9]. Although loss
of normal function could also contribute to HD [9,10], experimental data and the dominant inheritance
pattern of HD indicate that gain-of-function of mutant HTT is toxic and triggers neurodegeneration
(Figure 1) [1,11–13]. The function, folding and clearance of HTT are controlled by different protein
homeostasis (proteostasis) mechanisms including the chaperome network, the ubiquitin-proteasome
system (UPS) and autophagy-lysosome pathways [14–18]. The accumulation of polyQ-expanded
aggregates has been proposed to contribute to neurodegeneration [19]. However, the molecular
mechanisms by which these aggregates induce neural dysfunction and death remain unsolved.
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PolyQ-expanded fibrils may collapse distinct proteostasis nodes such as chaperones and protein
clearance mechanisms (Figure 2) [20–23], sequester regulatory components such as transcription
factors [24] or physically obstruct neuronal extensions [25]. Growing evidence indicates that
intermediate species called “oligomers” formed during the aggregation or disaggregation process also
induce neurotoxicity [26–29].

Whereas mutant HTT can collapse the proteostasis network, mechanisms that preserve or
increase proteostasis ameliorate HD-related changes (Figures 1–3) [17]. Conversely, a decline in
the ability to maintain proteostasis during the aging process could underlie the late onset of HD
(Figure 1). In this regard, it is important to note that the length of the polyQ repeats correlates
with the disease progression and unusually long polyQ stretches predict younger HD onset [1,30,31].
Experiments in model organisms show that highly expanded polyQ repeats accelerates HD-related
changes, proteotoxicity and protein aggregation [17,32], suggesting that the cellular ability to maintain
proteostasis of mutant HTT depends on the polyQ length. In this review, we discuss recent insights
into distinct nodes of proteostasis of HTT and how this network can be adapted to ameliorate HD.
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Figure 1. Huntington’s disease (HD) is caused by mutations in the Huntingtin gene (HTT) that expand
the polyQ stretch of HTT protein, resulting in its aggregation and proteotoxicity. In individuals
affected by HD, HTT contains >35 polyQ repeats. The length of the polyQ stretch correlates with
the accumulation of toxic polyQ-expanded HTT aggregates and oligomers. The protein homeostasis
(proteostasis) network controls the folding and clearance of mutant HTT, reducing its proteotoxicity.
However, the accumulation of polyQ-expanded HTT aggregates and oligomers can result in a collapse
of proteostasis, a feature that contributes to the neurodegeneration phenotype. With age, organisms
lose the ability to maintain the proteostasis network; a process that could explain the late onset of HD.
Conversely, mechanisms that extend longevity sustain proteostasis with age, reducing the accumulation
of toxic mutant HTT aggregates and oligomers.
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Figure 2. Proteostasis collapse induced by mutant HTT. When HTT contains more than 35 polyQ 
repeats, it aggregates and also forms toxic oligomers. The accumulation of polyQ-expanded 
aggregates and oligomers collapses distinct proteostasis nodes such as the chaperone network, the 
ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD) and 
autophagy. Moreover, wild-type HTT act as a scaffolding protein directly involved in autophagy 
regulation whereas mutations in HTT can disrupt its normal function. 

 
Figure 3. The proteostasis network reduces aggregation and proteotoxicity of mutant HTT. Different 
proteostasis nodes such as the chaperome network, the UPS and autophagy-lysosome pathways, 
control the folding, aggregation and clearance of HTT. Chaperones participate at distinct levels of 
HTT proteostasis, including the regulation of aggregation and disaggregation processes to reduce 
the accumulation of aberrant inclusions and/or intermediates. If refolding activities are not sufficient 
to assure the proper function of HTT, chaperones may also promote its degradation through protein 
clearance mechanisms. The UPS is mostly involved in the degradation of HTT monomers whereas 
autophagy can degrade large polyQ-expanded HTT aggregates. 

Figure 2. Proteostasis collapse induced by mutant HTT. When HTT contains more than 35 polyQ
repeats, it aggregates and also forms toxic oligomers. The accumulation of polyQ-expanded
aggregates and oligomers collapses distinct proteostasis nodes such as the chaperone network, the
ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD) and
autophagy. Moreover, wild-type HTT act as a scaffolding protein directly involved in autophagy
regulation whereas mutations in HTT can disrupt its normal function.
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Figure 3. The proteostasis network reduces aggregation and proteotoxicity of mutant HTT. Different
proteostasis nodes such as the chaperome network, the UPS and autophagy-lysosome pathways,
control the folding, aggregation and clearance of HTT. Chaperones participate at distinct levels of
HTT proteostasis, including the regulation of aggregation and disaggregation processes to reduce the
accumulation of aberrant inclusions and/or intermediates. If refolding activities are not sufficient
to assure the proper function of HTT, chaperones may also promote its degradation through protein
clearance mechanisms. The UPS is mostly involved in the degradation of HTT monomers whereas
autophagy can degrade large polyQ-expanded HTT aggregates.
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2. Regulation of Mutant HTT Aggregation by the Chaperome Network

Nascent proteins are synthesized by the ribosome as linear chains of amino acids that must fold
into the correct three-dimensional structure to perform their biological function(s) [33]. This process
is particularly inefficient for larger proteins and its dysfunction can lead to protein aggregation [33].
Molecular chaperones facilitate the folding of newly synthesized proteins into their proper native
conformation [33–36]. Moreover, chaperones assure the proper folding and localization of proteins
during all their life cycle. When the structure of proteins is challenged by stress conditions or
aggregation-prone mutations (e.g., polyQ-expanded HTT), a series of cellular stress responses are
activated to correct proteostatic deficiencies [37,38]. For instance, chaperones assist the refolding of
proteins when their structure is challenged upon stress conditions such as hyperthermia, hypoxia,
oxidative stress, exposure to toxins and misfolding-prone mutations [36,37,39,40]. Moreover,
chaperones bind to exposed hydrophobic regions of nascent or misfolded polypeptides, thus
preventing these residues from forming aberrant interactions with other proteins [41]. In addition,
chaperones participate at different levels of protein aggregation and disaggregation processes to
reduce aberrant inclusions or intermediates [34]. If refolding activities are not sufficient to assure
the proper function of proteins, chaperones promote the degradation of damaged and misfolded
proteins [37]. Thus, the chaperome network (i.e., chaperones and co-chaperones) preserves proteostasis
by preventing protein misfolding and aggregation.

The human chaperome network consists of 88 chaperones and 244 co-chaperones [42]. Chaperones
are classified according to their molecular weight into six conserved classes: 40 kilodalton heat
shock proteins (HSP40s), HSP60s (chaperonins), HSP70s, HSP90s, HSP100, and the small HSPs [43].
Chaperones are also subdivided into two groups depending on their source of energy for the chaperone
activity: ATP-dependent (e.g., HSP70s, HSP90s, HSP100s, chaperonins) and ATP-independent
molecular chaperones (e.g., small HSPs and conditionally activated chaperones) [42,44,45]. Whereas
distinct chaperones such as members of the HSP90 and HSP70 families are involved in different
aspects of the proteostasis network (e.g., folding of nascent proteins, refolding, degradation of
unnecessary or damaged proteins), specific set of chaperones evolved to primarily protect the
cell from proteotoxic stress [46]. Multiple co-chaperones assist chaperones in their vast range
of proteostatic tasks such as the tetratricopeptide repeat (TPR)-domain-containing family (e.g.,
CHIP, HOP), the BAG-domain-containing family (BAG1–BAG6) and DNAJ-domain-containing
HSP40s [42,43].

Defects in chaperone function are linked with HD [37,47,48]. Indeed, numerous studies in HD
mammalian cells and model organisms (e.g., yeast, worms, files and mice) have highlighted the
direct role of chaperones in modulating mutant HTT aggregation and toxicity (Figure 3) [42,47,49–52].
Distinct molecular chaperones can modulate polyQ-expanded toxicity through different mechanisms,
showing synergy in suppression of neurodegeneration [49]. For instance, chaperones can inhibit
polyQ-expanded aggregation by either preventing intramolecular conformational changes in mutant
HTT or promoting its degradation via protein clearance mechanisms. Chaperones can also interfere at
different steps of the aggregation process such as primary nucleation, elongation and fragmentation of
fibril and secondary nucleation [34].

The interaction of members of the Hsp70 family and their DNAJ-domain-containing Hsp40
co-chaperones (e.g., hdj-1) inhibit the formation of spherical aggregates by promoting the accumulation
of less toxic fibrillar and amorphous inclusions [53,54]. Overexpression of Hsp40s and/or Hsp70s in D.
melanogaster and mouse models suppresses polyQ-mediated neurodegeneration [55–59]. Besides
multiple Hsp40s [42,51,57,60,61], other Hsp70s co-chaperones also determine polyQ-expanded
aggregation and toxicity. For instance, the co-chaperones BAG1 and CHIP are involved in the
aggregation fate of mutant HTT via their interaction with HSP70s [62–64]. The differential ability to
induce the HSP70 system exhibited by different neuronal types could provide a potential explanation
to the higher neurodegeneration of the striatum in HD [65]. Notably, cerebellar neurons induce
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Hsp70s levels upon mutant HTT overexpression. On the contrary, striatal neurons cannot sufficiently
upregulate their chaperone system to overcome this proteotoxic stress [65].

Whereas numerous independent studies established a link between HSP70s and HD, in vitro
experiments indicate that HSP90s do not directly modulate polyQ aggregation [54]. Indeed,
overexpression of members of the HSP90 family does not suppress polyQ toxicity [51]. However,
the inhibition of HSP90 induces heat-shock response (HSR) and reduces polyQ-expanded HTT
aggregation in HD organismal models and cells [66]. The HSR is a cellular mechanism controlled by
the transcription factor HSF1 that induces the expression of multiple chaperones to ameliorate acute
proteotoxic stress [67]. Interestingly, activation of HSR delays HD-related changes in D. melanogaster
and C. elegans models [59,68,69]. However, the beneficial effects of HSR activation in HD mouse models
were transient and diminished with disease progression [70]. Moreover, the transgenic overexpression
of HSR-inducible Hsp70 (HSPA1A) and the small Hsp27 (HSPB1) in mouse models is characterized
by modest or absent effects in HD onset and aggregate formation [71–73]. Although mutant HTT
induces a mild upregulation of several small HSPs (e.g., Hspb3, Hspb6, Hspb7) [74], the expression
of polyQ-expanded proteins per se does not activate the HSR, providing a potential explanation to
the lack of strong effects of HSR-canonical chaperones in polyQ disease [75]. In this regard, a screen
for polyQ modifiers identified two DNAJ-containing HSP40s (DNAJB6 and DNAJB8), which are not
activated by HSF1 [76]. Remarkably, DNAJB6 inhibits the conversion of soluble polyQ-expanded
HTT peptides into amyloid fibrils, particularly by suppressing primary nucleation of aggregation [77].
Moreover, DNAJB6 overexpression delays polyQ-expanded aggregation and extends lifespan in HD
mouse models [77].

Another key regulator of mutant HTT aggregation is the TRiC/CCT complex (T-complex protein-1
ring complex, also called CCT for chaperonin containing TCP1). This chaperonin complex consists
of two stacked rings formed by eight paralogous subunits (CCT1–CCT8) [78,79]. Mutation or loss
of a single subunit is sufficient to impair the assembly and function of the TRiC/CCT complex [79],
a process that accelerates mutant HTT aggregation and worsens HD-related changes [42,50–52].
Conversely, simultaneous overexpression of all eight CCT subunits reduces polyQ-expanded HTT
aggregation and neurodegeneration [50]. Ectopic expression of specific single subunits (i.e., CCT1,
CCT8) can also ameliorate HD-related changes. Since CCT8 is sufficient to increase the assembly of the
TRiC/CCT complex, overexpression of this single subunit results in reduced polyQ aggregation [80].
Although CCT1 overexpression does not increase TRiC/CCT assembly, this subunit promotes the
interaction between HTT and TRiC/CCT complex resulting in a remodeling of HTT aggregates and,
therefore, reduced neurotoxicity [52].

Taken together, the chaperome network is a central modulator of mutant HTT aggregation and
toxicity. In addition, it is also important to note that polyQ aggregates can also sequester molecular
chaperones such as inducible and constitutively expressed HSP70s and their co-chaperones (e.g., hdj-1,
hdj-2), a process that could directly contribute to the proteostasis collapse and neurodegeneration
observed in HD (Figure 2) [7,24,81–83].

3. The Mechanistic Links between the Ubiquitin Proteasome-System (UPS) and HD

Protein clearance mechanisms are essential to adjust the proteome composition to the specific
requirements of a particular cell type and status [17,84], including the degradation of numerous
cellular regulatory factors and structural components. In addition, protein clearance systems
terminate toxic, damaged and misfolded proteins to diminish aberrant protein aggregation
and proteotoxicity [17,84]. Impairment of protein clearance mechanisms contributes to HD
pathology [85–87]. Conversely, enhancement of these mechanisms can ameliorate the proteotoxic
stress associated with polyQ-expanded aggregation [15,17,88]. Notably, blockade of mutant HTT
expression in inducible HD models at an age that have already presented symptomatic changes results
in disappearance of pathological aggregates and amelioration of behavioral phenotype [89]. These



Int. J. Mol. Sci. 2017, 18, 1568 6 of 18

findings provided experimental evidence of clearance mechanisms to scavenge polyQ-expanded HTT
aggregates in neurons.

The ubiquitin proteasome-system (UPS) is the primary selective proteolytic process, regulating
the degradation of both unnecessary and misfolded proteins [17]. Proteins are tagged for proteasomal
degradation by the attachment of ubiquitin molecules, an evolutionary conserved small protein of
8.5 kDa (Figure 4) [90]. Ubiquitination is accomplished through a sequential mechanism involving
three enzymes [91]. In the first step of the ubiquitination cascade, the E1 ubiquitin-activating enzyme
activates ubiquitin in an ATP-dependent manner. Then, activated ubiquitin is transferred to an
E2 ubiquitin-conjugating enzyme. In the third step, E3 ubiquitin ligases catalyze the transfer of
ubiquitin to their specific target proteins [92]. The same three-step sequential mechanism links
additional ubiquitin molecules to one of the seven lysine residues of the primary ubiquitin, forming
a polyubiquitin chain. A chain of at least four lysine 48-linked ubiquitin molecules is the main
signal for proteasomal recognition and degradation, whereas other ubiquitin chains participate in
different biological processes such as signal transduction [93]. The proteasome is a macromolecular
proteolytic machinery formed by the assembly of multiple subunits. The main core of the proteasome
is the 20S particle, which contains the catalytic subunits [94]. However, free 20S complex is normally
inactive in the cell and its activation requires the binding of regulatory proteasome particles [95].
The most common regulatory particle is the 19S core, which binds to 20S forming active 26S/30S
proteasomes [96–98]. 19S is central for recognition, unfolding and, finally, translocation to the catalytic
20S core of polyubiquitinated targets [17,97,98]. Besides the 19S, other regulatory factors can also
activate the 20S catalytic core such as the Blm10/PA200 protein or the PA28 complex (also known
as 11S) [99].
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Figure 4. The ubiquitin-proteasome system (UPS). Unnecessary, damaged and misfolded proteins
are marked for proteasomal degradation by the attachment of ubiquitin molecules via a three-step
sequential mechanism. In the first step, ubiquitin is activated in an ATP-dependent manner by the
ubiquitin-activating enzyme (E1). Then, activated ubiquitin is transferred to ubiquitin conjugating
enzymes (E2s) forming E2-ubiquitin thioester structures. Finally, E3 ligases catalyze the attachment
of ubiquitin to their specific substrate by binding both the E2-ubiquitin thioester structure and the
target protein. The same cascade ubiquitination mechanism links additional molecules to the primary
ubiquitin through internal ubiquitin lysines, forming a polyubiquitin chain. A chain of at least four
lysine 48-linked ubiquitins is considered the primary signal for proteasomal degradation. E3 enzymes
confer specificity to the UPS. Accordingly, more than 600 E3 ligases have been identified in humans so
far. After the polyubiquitination cascade process, target substrates are recognized and degraded by the
26S/30S proteasome.

Cumulative evidence indicates a role of the UPS in the regulation of polyQ-expanded HTT
aggregation and toxicity (Figure 3). In human HD postmortem brains and model organisms,
polyQ-expanded HTT inclusions contain ubiquitinated proteins as well as components of the
proteasome [24,100–105]. Moreover, pharmacological studies based on both HD cellular and animal
models showed that downregulation of proteasome activity by specific inhibitors results in increased
aggregation of mutant HTT [105,106]. Likewise, knockdown of different proteasome subunits results
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in diminished proteasome activity and triggers the accumulation of polyQ-expanded repeats in
HD models [51,86]. Conversely, enhancement of proteasome assembly/activity has been proven
beneficial in HD organismal models. For instance, proteasome activation with sulforaphane promotes
elimination of mutant HTT in cell culture [107]. Overexpression of specific proteasome subunits also
ameliorates HD-related changes. For example, the scaffolding proteasome subunit PSMD11/Rpn6
promotes the assembly of 26S/30S proteasomes and decreases polyQ aggregation in HD C. elegans
models [86]. A genetic gain-of-function screen showed that increased levels of Rpn11 block the
age-associated decline of 26S/30S proteasome activity, suppressing polyQ-expanded aggregation and
neurodegeneration in HD D. melanogaster models [108]. Increased expression of other proteasome
regulators such as PA28γ activator also ameliorates neurodegeneration induced by polyQ-expanded
HTT in striatal neuronal cultures [109]. Besides direct proteasome activity regulators, overexpression
of other UPS components also has beneficial effects in HD models. For instance, ectopic expression
of ubiquilin-1, a factor that facilitates protein disposal through the proteasome, delays mutant HTT
accumulation and extends lifespan in HD mouse models [110]. Moreover, the overexpression of
distinct proteins with E3 ubiquitin ligase activity (e.g., Hrd1, Parkin, CHIP) improves clearance of
mutant HTT and reduces cell death [62,111,112].

Besides the direct role of the UPS in reducing the accumulation of mutant HTT oligomers and
aggregates, the impairment of proteasome activity by polyQ-expanded HTT also determines the
severity of HD-related changes [113] (Figure 2). In contrast to the soluble form of HTT, aggregated HTT
has been found ubiquitinated itself, suggesting an impairment of the UPS to degrade polyQ-expanded
HTT that could aggravate HD [101]. Moreover, proteasome activity is downregulated in HD patients
and mice models [101]. These findings support the hypothesis of a global dysfunction of proteasome
function induced by mutant HTT, a process that could result in proteostasis collapse [20]. Indeed,
in vitro studies suggest that the proteasome is not able to cleave within expanded polyQ stretches
and the failure of these undegradable sequences to exit the proteasome could affect proteasome
activity [114]. Notably, cells transiently transfected with polyQ-expanded fragments exhibit decrease
proteasome activity [115]. Likewise, degradation of proteasomal reporters (i.e., ubiquitinated GFP)
is impaired in cells overexpressing a fragment of mutant HTT [22,116,117]. In HD mouse models,
the expression of ubiquitinated mutant HTT in its aggregated form inhibits 26S/30S proteasome
activity [21]. A potential molecular mechanism to explain this phenomenon could rely on intrinsic
properties of polyQ proteins that could prevent their efficient clearance, resulting in the trapping of
proteasomes within aggregates [22]. Although these findings suggest that mutant HTT impairs the
proteasome machinery, it is important to note that other studies do not support this model. For instance,
a study reported increased proteasome activity in neuronal cells expressing polyQ-expanded HTT [102].
In addition, other studies did not find a direct effect of polyQ aggregates on blocking 26S/30S
proteasomes [116,117], suggesting that mutant HTT could alter UPS function by impinging on either
the activity or distribution of UPS modulators. Alternatively, alteration of proteasome activity could
also be due to a general proteostasis collapse induced by the sequestration of chaperones by mutant
HTT and the concomitant accumulation of misfolded proteins [117]. Interestingly, mutant HTT not
only affects proteasomal degradation of cytosolic proteins but also ER-associated degradation (ERAD),
a process that induces ER stress [27]. Remarkably, ERAD collapse is triggered by the sequestration of
the cytosolic chaperone p97/VCP [27]. Since ER stress precedes the accumulation of polyQ aggregates,
the presence of oligomeric mutant HTT could be sufficient to induce sequestration of p97/VCP
chaperone [27]. Altogether, the findings discussed here indicate that: (1) the proteasome directly
contributes to clear mutant HTT and inhibit its aggregation; and (2) proteasome activity is impaired by
mutant HTT, a process that could contribute to general proteostasis collapse and neurodegeneration.
Thus, modulation of the UPS could be a potential therapeutic approach for HD.
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4. The Dual Role of PolyQ-Expanded HTT in the Autophagy-Lysosome System

Autophagy degrades cytosolic fractions as well as damaged or outlived organelles and
macromolecules, including proteins. Autophagy not only function as a cellular recycling system but
also as a protective mechanism to terminate misfolded and aggregated proteins [17,37]. The catalytic
component of autophagy is the lysosome, a membrane-bound organelle that contains cellular
hydrolases, nucleotidases, glycosidases, lipases, and proteases. The three most characterized types of
autophagy are macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), which
differ on their cargo recognition and delivery system to lysosomes [118]. Macroautophagy (hereafter
referred as autophagy) is a bulk clearance process that starts with the formation of a double membrane
structure known as the phagophore, a process regulated by the ULK complex (Figure 5) [84,119,120].
Then, the VPS34-BECN1 complex promotes the expansion of the phagophore. Once the cytoplasmic
fraction and/or organelles are engulfed into the phagophore, the membrane elongates until it closes
forming the autophagosome. Finally, autophagosomes are trafficked and fused to the lysosome for
degradation of their content. In microautophagy, parts of the cytoplasm are delivered directly to the
lysosomes [121]. In CMA, chaperones such as HSP70 mediate the degradation of proteins with the
pentapeptide motif KFERQ [122].

Int. J. Mol. Sci. 2017, 18, 1568  8 of 17 

 

(Figure 5) [84,119,120]. Then, the VPS34-BECN1 complex promotes the expansion of the 
phagophore. Once the cytoplasmic fraction and/or organelles are engulfed into the phagophore, the 
membrane elongates until it closes forming the autophagosome. Finally, autophagosomes are 
trafficked and fused to the lysosome for degradation of their content. In microautophagy, parts of 
the cytoplasm are delivered directly to the lysosomes [121]. In CMA, chaperones such as HSP70 
mediate the degradation of proteins with the pentapeptide motif KFERQ [122]. 

 
Figure 5. The autophagy-lysosome system. Autophagy, or macroautophagy, starts with the 
formation of a double membrane structure known as the phagophore, which can be either newly 
synthesized or originated from the plasma membrane, ER or mitochondria. The ULK complex 
(formed by, among others, ULK1/2, ATG13, FIP200 and ATG101) regulates this first step of 
autophagy. Then, the VPS34-BECN1 complex (formed by VPS34, BECN1, AMBRA1, ATG14L and 
other proteins) promotes the expansion of the phagophore. Once the cytoplasmic fraction is engulfed 
into the phagophore, the membrane elongates until it closes forming the autophagosome, a process 
regulated by the ATG12-ATG5-ATG16L1 complex. Conjugation of cytosolic LC3 (LC3I) to 
phosphatidylethanolamine generates LC3II, which is recruited to the membrane of the 
autophagosome. Finally, LC3II-containing autophagosomes are trafficked to the lysosome for 
degradation of their content including polyQ-expanded aggregates. 

Whereas autophagy and microautophagy can degrade organelles and proteins, CMA is 
essentially involved in protein degradation [123]. Although autophagy was originally defined as a 
bulk degradation mechanism, it is emerging as a selective proteolytic system where 
adapters/receptors such as p62/SQSTM1 and NBR1 bind to both ubiquitinated proteins and 
autophagy components to induce lysosomal degradation of specific cargos [85,124,125]. The 
discovery of these adapters provided a molecular link between autophagy and the UPS, which could 
lead to novel therapeutic strategies in proteostasis-related diseases [124]. In this regard, it is 
important to note that autophagy is able to degrade large protein complexes and aggregates [17,37], 
whereas protein inclusions block the proteasome machinery (Figures 2 and 3) [116]. This role of 
autophagy in proteostasis includes degradation of aberrant aggregates triggered by 
polyQ-expanded HTT expression [126,127]. Accordingly, dysregulation of autophagy hastens 
HD-related changes. For instance, loss of p62/SQTM1 increases cell death induced by mutant HTT 
[128]. Conversely, enhancement of autophagy ameliorates HD-related proteotoxicity [88,129,130]. 
For example, inhibition of mTOR by rapamycin induces autophagy resulting in decreased toxicity of 
mutant HTT in flies and mice [88]. Likewise, small molecules that activate autophagy promote 
clearance of polyQ-expanded HTT in yeast, fly and mammalian HD models [130]. 

Besides the role of autophagy in the degradation of mutant HTT aggregates, several 
independent findings reported autophagy dysfunction in HD [131]. For instance, HD mouse models 
and cells from HD patients exhibit impaired ability of autophagic vacuoles to recognize cytosolic 
cargo [132]. Remarkably, HTT can function as a scaffolding protein for selective autophagy, having a 
direct role on autophagy regulation [133]. Thus, HTT has a dual impact on HD as an 
aggregation-prone protein and also as a scaffolding protein involved in autophagy, adding a new 
layer of complexity to HD [133]. Whereas the N-terminal domain of HTT contains the 
polyQ-expanded region that leads to its aggregation, the C-terminal domain is essential to bind to 
ULK1 and p62. Interaction of HTT with these factors is crucial for the progress of two main stages of 
autophagy: autophagy induction and cargo recognition [133]. Moreover, the C-terminal domain of 

Figure 5. The autophagy-lysosome system. Autophagy, or macroautophagy, starts with the
formation of a double membrane structure known as the phagophore, which can be either newly
synthesized or originated from the plasma membrane, ER or mitochondria. The ULK complex
(formed by, among others, ULK1/2, ATG13, FIP200 and ATG101) regulates this first step of
autophagy. Then, the VPS34-BECN1 complex (formed by VPS34, BECN1, AMBRA1, ATG14L
and other proteins) promotes the expansion of the phagophore. Once the cytoplasmic fraction is
engulfed into the phagophore, the membrane elongates until it closes forming the autophagosome,
a process regulated by the ATG12-ATG5-ATG16L1 complex. Conjugation of cytosolic LC3 (LC3I) to
phosphatidylethanolamine generates LC3II, which is recruited to the membrane of the autophagosome.
Finally, LC3II-containing autophagosomes are trafficked to the lysosome for degradation of their
content including polyQ-expanded aggregates.

Whereas autophagy and microautophagy can degrade organelles and proteins, CMA is essentially
involved in protein degradation [123]. Although autophagy was originally defined as a bulk
degradation mechanism, it is emerging as a selective proteolytic system where adapters/receptors
such as p62/SQSTM1 and NBR1 bind to both ubiquitinated proteins and autophagy components
to induce lysosomal degradation of specific cargos [85,124,125]. The discovery of these adapters
provided a molecular link between autophagy and the UPS, which could lead to novel therapeutic
strategies in proteostasis-related diseases [124]. In this regard, it is important to note that autophagy
is able to degrade large protein complexes and aggregates [17,37], whereas protein inclusions
block the proteasome machinery (Figures 2 and 3) [116]. This role of autophagy in proteostasis
includes degradation of aberrant aggregates triggered by polyQ-expanded HTT expression [126,127].
Accordingly, dysregulation of autophagy hastens HD-related changes. For instance, loss of p62/SQTM1
increases cell death induced by mutant HTT [128]. Conversely, enhancement of autophagy ameliorates
HD-related proteotoxicity [88,129,130]. For example, inhibition of mTOR by rapamycin induces
autophagy resulting in decreased toxicity of mutant HTT in flies and mice [88]. Likewise, small
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molecules that activate autophagy promote clearance of polyQ-expanded HTT in yeast, fly and
mammalian HD models [130].

Besides the role of autophagy in the degradation of mutant HTT aggregates, several independent
findings reported autophagy dysfunction in HD [131]. For instance, HD mouse models and cells
from HD patients exhibit impaired ability of autophagic vacuoles to recognize cytosolic cargo [132].
Remarkably, HTT can function as a scaffolding protein for selective autophagy, having a direct
role on autophagy regulation [133]. Thus, HTT has a dual impact on HD as an aggregation-prone
protein and also as a scaffolding protein involved in autophagy, adding a new layer of complexity to
HD [133]. Whereas the N-terminal domain of HTT contains the polyQ-expanded region that leads to its
aggregation, the C-terminal domain is essential to bind to ULK1 and p62. Interaction of HTT with these
factors is crucial for the progress of two main stages of autophagy: autophagy induction and cargo
recognition [133]. Moreover, the C-terminal domain of mutant HTT interacts with p97/VCP in the
mitochondria inducing mitophagy, a selective form of autophagy that degrades this organelle [134]. In
parallel, the N-terminal domain also participates in activation of autophagy as mutant HTT aggregates
sequester and inactivate mTOR [88]. Moreover, HTT can undergo proteolytic post-translational
modifications by caspases that generate N- and C-terminal fragments [135]. The addition of 14
carbon myristate to a glycine residue exposed on a caspase-3-cleaved 34-amino acid fragment of HTT
(HTT553–586) induces autophagosome formation, a process altered in HD cellular models [136,137].
Notably, it has been recently shown that the isolated polyQ tract of the deubiquitinating enzyme
ataxin 3 is sufficient to regulate BECN1 and autophagy in an mTOR-independent manner. However,
a polyQ-expanded N-terminal HTT fragment comprising exon 1, which occurs in vivo as a result of
alternative splicing, blocks ataxin 3-BECN1 interaction in a competing manner resulting in impaired
autophagy [138]. Taken together, these findings highlight the key role of autophagy in HD, either as
a mechanism to scavenge mutant HTT or an essential biological process directly regulated by HTT
function (Figures 2 and 3).

5. The Melding Fields of Proteostasis of Aging, Pluripotency and HD

With age, the proteostasis network undergoes a decline in its function, a process that contributes
to the onset of age-related diseases such as HD (Figure 1) [139]. For instance, the expression of
32% of the chaperome network is downregulated in human brains with age [42]. These include
ATP-dependent chaperones such as cytosolic HSP90, HSP70 family members (e.g., HSPA8, HSPA14)
and subunits of the TRiC/CCT complex [42]. On the other hand, only 19.5% of the chaperome
network is upregulated during human brain aging [42]. Interestingly, these changes in the chaperome
network were further promoted in the brains of HD patients when compared to age-matched control
groups [42]. In support of a role of chaperone dysfunction in HD, knockdown experiments of distinct
chaperones which are downregulated during aging (e.g., HSPA14, HSPA8 or CCT subunits) worsen
proteotoxicity in HD mammalian and C. elegans models [42]. Likewise, protein clearance mechanisms
are downregulated with aging and mimicking this condition at early ages hastens HD-related changes
in disease models [17]. A direct link between aging, polyQ-expanded aggregation and HD-related
changes has been established in invertebrate models [32,140,141]. In both D. melanogaster and C. elegans
models that express polyQ of different lengths, the onset of polyQ-expanded aggregation and severity
of neurodegeneration not only correlates with repeat length but also age [32,140,141]. Concomitantly,
the proteostasis collapse induced by polyQ aggregates in these models [141,142] could further
accelerate age-related proteostasis and the aging process itself. Indeed, treating C. elegans models
with Thioflavin T, a compound that binds polyQ-expanded aggregates, slows protein aggregation and
dramatically extends lifespan [143,144]. Remarkably, mechanisms that extend longevity enhance the
proteostasis network and preserve the integrity of the proteome during aging [17,48]. For instance,
well-characterized longevity mechanisms such as reduced insulin/IGF-1 pathway or dietary restriction
induce autophagy and proteasome activity [86,145–148], resulting in a delay of polyQ-expanded
aggregation and other HD-related changes [17,48].
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Further evidence of a link between the age-related decline in proteostasis and HD was provided
by studies using induced pluripotent stem cells (iPSCs) from HD patients. These cells opened a new
door to a better understanding of the molecular mechanisms underlying HD. As such, iPSCs are an
invaluable resource for drug screening to identify novel therapeutic approaches [149]. HD-iPSCs can
be terminally differentiated into neurons (including striatal neurons) with HD-related phenotypes
such as cumulative risk of death over time and increased vulnerability to stressors [149]. In addition,
proteotoxicity induced via oxidative stress or autophagy inhibition leads to increased degeneration in
HD neurons compared with controls [149]. Despite these HD-related changes, mutant HTT-expressing
neurons present important limitations for disease modeling such as lack of polyQ aggregation
and robust neurodegeneration [149,150]. Despite the efforts to detect polyQ-expanded inclusions
under different conditions (e.g., cellular stressors, proteasome inhibitors) in neurons from HD-iPSCs,
the presence of aggregates has not been observed in these cells [149,150]. The lack of polyQ aggregates
in HD neurons could reflect the long period of time before aggregates accumulate in HD, supporting a
role of age-related proteostasis dysfunction in this process [149]. Remarkably, HD human neurons do
not accumulate detectable mutant HTT inclusions at 12 weeks after transplantation into HD rat models
whereas these inclusions could be observed after 33 weeks of transplantation [150]. These findings also
suggest a rejuvenation process during the reprogramming process that prevents polyQ aggregation in
differentiated neurons until they undergo a demise of proteostasis with age. Indeed, iPSCs exhibit
an increased proteostasis network linked with their immortality and ability to generate differentiated
cells with an intact proteome [151–153]. For instance, iPSCs have increased assembly of the TRiC/CCT
complex, a process regulated by intrinsic high levels of the CCT8 subunit [80]. In addition, iPSCs
exhibit enhanced expression of PSMD11/RPN6, resulting in up-regulation of proteasome assembly
and activity [154]. In somatic tissues, overexpression of CCT8 and PSMD11/RPN-6 induces TRiC/CCT
assembly and 26S/30S proteasome assembly, respectively [80,154]. Moreover, overexpression of
CCT8 and PSMD11/RPN6 in neuronal cells of HD C. elegans models mimics the proteostasis
network of immortal iPSCs and reduces polyQ-expanded aggregation [80,154]. Besides intrinsic
TRiC/CCT and proteasome assembly, pluripotent stem cells also exhibit autophagy induction during
their neural differentiation, supporting the hypothesis of a rejuvenation step to generate “healthy
neurons” [155,156].

6. Concluding Remarks

In the last two decades, numerous studies have demonstrated the positive impact on HD-related
changes induced by mechanisms that can enhance proteostasis or preserve this network during the
aging process. Modulation of distinct nodes of the proteostasis network can have distinct effects on
mutant HTT to control its toxicity: it can reduce the aggregation or formation of mutant HTT oligomers
and also stimulate the degradation of these toxic factors. Moreover, manipulation of proteostasis
either genetically or pharmacologically can also compensate the proteostasis collapse induced by
mutant HTT expression. Thus, it will be of central importance to define novel regulatory proteostasis
pathways. In this paradigm, it will be important to define regulatory pathways that can simultaneously
enhance multiple proteostasis nodes or delay the global proteostasis decline characteristic of the
aging process. In these lines, iPSCs from HD patients represent an important source of human
striatal neurons for discovery of proteostasis regulators in the relevant cells. A potential step towards
personalized cell therapy will be genome editing of HD-iPSCs to compensate proteostasis defects in
their derived neurons.
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Abbreviations

CMA Chaperon-Mediated Autophagy
HD Huntington’s disease
HTT Huntingtin
HSR Heat-shock response
ER Endoplasmic reticulum
ERAD Endoplasmic reticulum-associated degradation
iPSCs Induced pluripotent stem cells
TRiC/CCT T-complex protein-1 ring complex/Chaperonin containing TCP1 complex
UPS Ubiquitin-proteasome system
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