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Abstract: The importance of Wnt/β-catenin signaling in cancer stem cells (CSCs) has been
acknowledged; however, the mechanism through which it regulates the biological function of CSCs
and promotes cancer progression remains elusive. Hence, to understand the intricate mechanism
by which Wnt controls stemness, the specific downstream target genes of Wnt were established by
analyzing the genetic signatures of multiple types of metastatic cancers based on gene set enrichment.
By focusing on the molecular function of Wnt target genes, the biological roles of Wnt were interpreted
in terms of CSC dynamics from initiation to metastasis. Wnt signaling participates in cancer initiation
by generating CSCs from normal stem cells or non-CSCs and augmenting persistent growth at the
primary region, which is resistant to anti-cancer therapy. Moreover, it assists CSCs in invading nearby
tissues and in entering the blood stream, during which the negative feedback of the Wnt signaling
pathway maintains CSCs in a dormant state that is suitable for survival. When CSCs arrive at distant
organs, another burst of Wnt signaling induces CSCs to succeed in re-initiation and colonization.
This comprehensive understanding of Wnt target genes provides a plausible explanation for how
Wnt allows CSCs variation during cancer progression.
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1. Introduction

Wnt signaling is a highly complex and evolutionarily conserved pathway that maintains
pluripotency during embryonic development and regulates homeostasis in somatic stem cells from
various tissues [1]. In recent decades, aberrant activation of Wnt signaling in various types of cancer
has been documented and its roles in healthy tissues have been recognized. Genetic mutations that
activate Wnt signaling reportedly contribute to cancer initiation [2], and nuclear accumulation of
the Wnt signaling molecules β-catenin and lymphoid enhancer-binding factor 1 (LEF1) have been
shown to be positively correlated with poor clinical outcomes, such as cancer progression, invasion,
metastasis, and recurrence, resulting in low survival rates [2–4]. Accordingly, multiple studies on
Wnt signaling have reported specific mechanisms that promote cancer initiation and progression and
can therefore be investigated as therapeutic targets. In these studies, cancer stem cells (CSCs) have
emerged as key players in Wnt-mediated carcinogenesis of various types. CSCs are a subpopulation
of cancer cells with properties, such as self-renewal, slow cell cycle, persistent proliferation, homing,
and mobilization, similar to those of normal stem cells and are central mediators of radio- and
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chemo-resistance in cancers as well as recurrence and metastasis [5,6]. Growing evidence has indicated
increased Wnt signaling in CSCs compared with that in non-CSCs in multiple solid cancers and
leukemia. Similarly, CSCs have elevated expression of Wnt downstream molecules compared with
that in non-CSCs, as indicated by the high expression of frizzled receptors (FZD4/5) and increased
sensitivity to Wnt3a-induced canonical Wnt signaling [7]. Moreover, Wnt signaling inhibition using
genetic modifications or small molecule inhibitors has been shown to limit cancer stemness [8].
Specifically, deletion of the β-catenin gene results in complete regression of CD34+ CSCs in skin
tumors. Conversely, expression of a non-degradable β-catenin expands the CSC population [9].
In the context of Wnt ligand secretion, inhibition of porcupine, which palmitoylates Wnt ligands for
secretion, effectively decreases colony formation by limiting long-term self-renewal [10]. Similarly, the
specific antibody OMP-18R5 blocks the binding of Wnt ligands to FZD [11] and the small molecule
inhibitor CWP23228 prevents the formation of β-catenin/T-cell factor (TCF)/LEF complexes, leading to
significant suppression of cancer growth, metastasis, and chemo-resistance through CSC inhibition in
breast [12] and liver cancers [8]. Although the effects of Wnt on CSC stemness have been investigated in
numerous studies, recent studies have suggested that Wnt signaling also plays roles in the generation
of CSCs from normal stem cells and cancer cells that lack stemness. Accordingly, loss of adenomatous
polyposis coli (APC) elevates the nuclear accumulation of β-catenin in leucine-rich repeat-containing
G-protein-coupled receptor 5 LGR5+ normal stem cells and triggers neoplasia by transforming these
cells into CSCs [13]. In addition, sustained high level of Wnt signaling leads to the transformation of
differentiated gastrointestinal cells, which expressing high levels of doublecortin-like kinase (DCLK1),
into CSCs [14]. Hence, Wnt signaling likely plays important roles in the initiation and maintenance of
CSCs. However, although phenotypes and consequences of altered Wnt signaling have been reported,
details of the associated regulatory mechanisms in CSCs remain unknown. Contributions of Wnt
signaling to CSC initiation, persistence, resistance, invasion, and metastasis have been characterized
in multiple studies, and upon CSC initiation, persistent growth in primary regions follows enhanced
survival, reduced apoptosis, and altered metabolic activities in CSCs and in bulk tumor cells [2–4].
Subsequently, the epithelial-to-mesenchymal transition (EMT) allows entry into the process of invasion
comprising detachment, intravasation, migration, and extravasation stages [2]. CSCs then progress
to metastasis through dormancy, re-initiation, escape of immune surveillance, and establishment of
microenvironments. In addition, defense mechanisms against chemo- and radiotherapy are highly
activated in CSCs, which desensitize cells to DNA strand breaks, cell cycle arrest, and cytoskeleton or
microtubule arrest, allowing continued survival and metastasis [5,6]. In this review, we investigated
Wnt-mediated mechanisms that control stemness by examining downstream target genes involved in
the characteristic features of CSCs from initiation to metastasis.

2. Target Genes of Wnt/β-Catenin Signaling

Wnt signaling regulates the expression of various genes through multiple pathways. In the
canonical pathway, low β-catenin expression is maintained through phosphorylation of Ser/Thr
residues and ubiquitination by protein degradation complexes. Following the stimulation of
Wnt signaling by canonical ligands, degradation complexes are disrupted and de-phosphorylated
β-catenin is translocated into the nucleus to bind LEF1/TCF4 family transcription factors, thereby
transforming them from transcriptional repressors into transcriptional activators. In contrast, binding
of non-canonical ligands to Wnt/FZD receptors transduces signals through intracellular calcium
ions, c-Jun N-terminal kinases (JNK), receptor tyrosine kinase (RYK) or receptor tyrosine kinase-like
orphan receptor (ROR), but not through β-catenin [15]. The canonical pathway has been studied more
comprehensively than the non-canonical pathway and has been found to be activated by multiple
mechanisms, including the destruction of degradation complexes, such as APC, and the consequent
nuclear accumulation of β-catenin, in various types of cancer. Furthermore, the notion that CSCs
possess higher activity of Wnt signaling covers canonical pathway as the LEF/TCF binding element
showed higher transcriptional activity in CSCs than non-CSCs [16–19]. Therefore, to investigate the
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contributions of Wnt signaling to CSC regulation, we considered genes that are regulated by the
canonical pathway and discuss their specific molecular mechanisms. Initially, we performed gene set
enrichment analysis (GSEA) and identified a group of genes that are induced by β-catenin/LEF1/TCF4
complexes and are significantly upregulated in metastatic liver, colon, gastric and ovarian cancers
compared with non-metastatic ones (Figure 1). In addition, we compared gene expression profiles
in metastatic primary cancer (duke stage D) and early-stage non-metastatic primary cancers (duke
stage A) using microarray data of colon cancers (GSE14333) and ovarian cancers (GSE2109) from
the Gene Expression Omnibus. Subsequently, we identified genetic profiles that drive metastasis
and applied gene expression data to GSEA to determine whether expression levels of the a priori
defined set of genes differ significantly between the biological states. In these computations, genes
that are upregulated by LEF1 were significantly enriched in metastatic cancers. Moreover, metastatic
liver and gastric cancers showed increased expression of LEF1 target genes (TCGA). Thus, to further
investigate the ensuing molecular mechanisms in CSC regulation, we generated target gene list from
various source e.g., LEF1_UP.v1_UP gene set browsed from MSigDB, β-catenin target gene [20],
and β-catenin chip assay result [21], and considered the biological functions of these genes and
accordingly categorized them using Ingenuity Pathway Analysis (Ingenuity® System, Available online:
http://www.ingenuity.com, Redwood City, CA, USA). Subsequently, we interpreted these biological
functions in terms of initiation, persistence, maintenance, resistance to anticancer therapy, invasion of
neighboring tissues, and metastasis of CSCs (Table 1). The full list of gene (Table S1) and the detailed
analytical method can be found in Supplementary Materials.
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Figure 1. Enrichment of Wnt target genes in multiple metastatic cancer types. A group of genes that are
induced by β-catenin/LEF1/TCF4 complex were identified through performed gene set enrichment
analysis (GSEA). Microarray data of four different cancer, liver (LIHC), colon (GSE14333), gastric
(STAD) and ovarian cancer (GSE2109), were analyzed. Genes upregulated by LEF1 were significantly
enriched in metastatic cancers. The detailed methods are described in Supplementary Materials. TCGA;
The Cancer Genome Atlas, LEF1; lymphoid enhancer-binding factor 1, GEO; Gene Expression Omnibus.
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Table 1. Summary of Wnt target genes and their biological functions in cancer stem cells (CSCs).

Biological Function Gene Full Name Direct/Indirect
Target Reference

Initiation
LGR5 Leucine-rich repeat-containing

G-protein-coupled receptor 5 Direct [21]

DCLK1 Doublecortin-like kinase Direct [22]

Persistence

KLF5 Krueppel-like factor 5 Direct [21]

EDN1 Endothelin-1 Direct [23]

ASCL2 Achaete-scute homolog 2 Direct [24]

FRA1 Fos-related antigen 1 Direct [21]

MYC Myc proto-oncogene protein Direct [21]

CCND1 CyclinD1 Direct [21]

ABCB1 ABC multidrug transporter Direct [25]

Invasion

MMP7 Matrix Metallopeptidase 7 Direct [26]

HAS2 Hyaluronan synthase-2 Direct [27]

CD44 Cluster of differentiation 44 Indirect [28]

CXCL12 C-X-C motif chemokine ligand 12 Direct [29]

CXCR4 Chemokine receptor type 4 Direct [30]

Metastasis

CXCL12 C-X-C motif chemokine ligand 12 Direct [29]

CXCR4 Chemokine receptor type 4 Direct [30]

DKK1 Dickkopf-related protein 1 Direct [31]

CLDN1 Claudin-1 Direct [32]

CD44v6 Cluster of differentiation 44 variant exon 6 Indirect [33]

FN1 Fibronectin Direct [34]

COX2 Cyclooxygenase-2 Direct [35]

3. Initiation

Cancer initiation is associated with various intrinsic and extrinsic factors, including direct DNA
damage by genotoxic compounds, viral infection, and inherent and acquired genetic mutations.
Tumorigenesis is strongly associated with the presence of CSCs, which cause heterogeneity of cancer
cells according to proposed hierarchical models [36]. Although the exact mechanisms behind the
production of CSCs and acquisition of pluripotency remain unknown, transformation of normal stem
cells into CSCs or re-acquisition of stemness in subpopulations of cancer cells have been related
to Wnt signaling and the expression of its target molecules [37]. For example, the intestinal stem
cell marker LGR5 is expressed in 5–10% of adenoma cells and is a direct Wnt target gene that is
induced by direct β-catenin binding [21]. In addition, β-catenin accumulation upon APC loss increases
RAC1 expression, leading to increased generation of reactive oxygen species (ROS) and nuclear
transcription factor-κB (NF-κB) signaling, which are known to stimulate the expansion of LGR5+ cell
populations [38]. The positive correlation between LGR5+ cells and Wnt activation was also confirmed
in localization analyses of LGR5+ cells [13], which were transformed into neoplasia following nuclear
accumulation of β-catenin due to APC deletion [13]. A recent study has also shown that LGR5
regulates the tumor-initiating ability of CSCs and that selective apoptosis of LGR5+ cells decreases
tumor formation in human organoids [39]. Moreover, LGR5 is known to bind the Wnt receptor
component R-spondin [37], creating a positive feedback loop between aberrant Wnt signaling and
expansion of LGR5+ cell populations and contributing to tumor initiation [40].

DCLK1, the transcription factor, is regulated by Wnt signaling through the LEF-binding site at its
promoter region [22] and has been shown to be enriched in metastatic liver and colon cancers [41–43].
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DCLK1 is generally known as a marker for gastrointestinal tuft cells but has recently been considered a
CSC marker because it is expressed in quiescent cancer cells and because high fractions of DCLK1+ cells
exhibit the stem-like characteristics and the ability to overcome quiescence with sufficient niche
signals [44,45]. Although DCLK1 has been associated with various signaling pathways, such as those
mediated by Notch, Hedgehog, and NF-kB, the resulting control of stemness has not yet been clearly
elucidated [46–48]. DCLK1 is positively correlated with nuclear translocation of β-catenin upon APC
deletion [49], and β-catenin knockdown in APCmin/+ mice leads to significant reduction in DCLK1
protein levels, which consequently attenuates crypt hyperplasia and tumorigenesis in APCmin/+ mice
without affecting downstream NF-kB signaling [50]. In addition, DCLK1 knockdown in APCmin/+ mice
attenuates intestinal adenoma and adenocarcinoma, whereas DCLK1 overexpression facilitates
intestinal tumorigenesis in this model [51]. Wang et al. have investigated DCLK1 expression under
normal and pathological conditions and have demonstrated their roles in colon cancer initiation [45].
In their study, DCLK1 expression was specifically increased in long-lived tuft cells, which originated
from LGR5+ stem cells. Long-lived DCLK1+ tuft cells were also involved in regeneration upon chemical
or microbial-induced injury and likely contributed to colon cancer as a tumor-initiating population
with persistent Wnt activation [45]. Taken together, these studies have suggested that DCLK1 is a
downstream molecule of the Wnt signaling pathway and is associated with direct LEF binding and
cancer initiation.

Other CSC biomarkers include cluster of differentiation 44 (CD44), cluster of differentiation 133
(CD133), and aldehyde dehydrogenase (ALDH), which are positively regulated by Wnt/β-catenin
signaling. Accordingly, compared with non-CSCs, ALDH+ or CD44+/CD24− breast CSCs exhibit
higher TCF/LEF-dependent transcriptional activity and treatment with Wnt3a further increases
relative numbers of CSCs, whereas Wnt ligand knockdown decreases them [52]. Similarly, relative
numbers of ALDH1+/CD133+ liver CSCs decrease following the blockade of β-catenin-dependent
transcription [8]. However, further studies are needed to determine whether these CSC biomarkers are
involved in Wnt-mediated generation of CSCs.

4. Persistence

Both CSCs and non-CSCs can grow persistently, whereas only CSCs adapt to the surrounding
environment to avoid cell death. Accordingly, small subpopulations of CSCs of patients have been
maintained for years in differentiated culture systems, and non-CSCs can be de-differentiated to CSCs
using cytokine supplements under appropriate culture conditions [53,54] and non-CSCs are reportedly
derived from persistent CSCs [55] which proliferate more rapidly, express anti-apoptotic genes, and
have consequent higher survival rates. In a recent study, genetic disruption of proliferation was
found to deplete the maintenance of CSC populations remaining non-CSCs population intact among
human epithelial breast and colon cancer cells [56]. CSCs have also been shown to resist the effects of
radio- and chemotherapy conditions, which are extremely deleterious for tumor and surrounding cell
populations [5].

Kruppel-like factor (KLF5) is a zinc-finger transcription factor that is critical for maintaining
stem cell integrity and regulating the cell cycle [57]. The KLF5 gene is upregulated in various cancer
types, including hepatocellular carcinoma and breast and intestinal cancers, and KLF5 deletion in the
presence of induced mutant β-catenin suppresses the transcription of histone deacetylase 1 (HDAC1),
which promotes colorectal cancer by promoting both stem and transit-amplifying cell proliferation [57].
KLF5 is constantly upregulated in CD44high/CD133high CSC populations, and KLF5 overexpression
enhances colony-forming ability and resistance to anticancer drugs, such as cisplatin and 5-fluorouracil,
reflecting increased anchorage-independent growth [58]. Regulatory roles of KLF5 on cancer stemness
have also been indicated in siRNA-mediated KLF5-knockdown experiments that have shown reduced
numbers of CD44high/CD133high cells [58]. In mice, inducible deletion of KLF5 in LGR5+ stem cells
suppresses their proliferation and survival in association with nuclear localization of β-catenin and
the generation of abnormal apoptotic cells in intestinal crypts [57].
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Endothelin1 (EDN1) is primarily expressed in vascular epithelial cells, where it maintains vascular
tone. EDN1 is reportedly secreted by many solid tumors, and it induces persistent growth and survival
by promoting cell proliferation and suppressing apoptosis. Although the mechanisms that lead
to pathological EDN1 levels are unclear, β-catenin suppression has shown to be closely associated
with reduced EDN1 mRNA expression [23]. Moreover, END1 peptide secretions from colorectal
cancer cells are significantly reduced after the introduction of dominant-negative TCF4 or β-catenin
mutants, whereas overexpression of wild-type β-catenin or TCF results in increased END1 peptide
production. In addition, treatments of APC-induced growth arrested cells with exogenous EDN1
restore proliferation by suppressing cell death. Furthermore, END1 overexpression enhances cell
proliferation in vitro and in xenotransplantation assays and is accompanied with increases in the
expression of several cell cycle and proliferation molecules [59]. Chip assays and sequencing analyses
have also indicated direct regulation of EDN1 by β-catenin, and four potential TCF-binding elements
have been identified in the EDN1 promoter region. Subsequent luciferase reporter assays have
confirmed that β-catenin directly regulates EDN1 expression through these TCF-binding elements [23],
and Rosano et al. have shown that EDN1 and its receptor are upregulated in cisplatinum-resistant and
taxo-resistant cell lines, reflecting decreased sensitivity to cytotoxic drugs and increased survival and
proliferation due to enhanced MAPK and Akt signaling [60].

Achaete-scute homolog 2 (ASCL2) is an intestinal stem cells transcription factor that contains a
basic helix-loop-helix domain and a downstream Wnt signaling target [61]. ASCL2 overexpression is
observed in colorectal cancers [62], and ASCL2 overexpression shifts the hierarchy of stem/progenitor
cells in liver metastases and affects clinical outcomes [63]. Hence, dysregulated ASCL2 expression is
thought to facilitate colorectal cancer cell proliferation [64,65]. Elevated ASCL2 expression in patients
with osteosarcoma is also associated with osteosarcoma metastasis and poor prognosis [66]. Hence,
with β-catenin and TCF, ASCL2 activates genes that are fundamental for maintaining the stem cell
state, suggesting that ASCL2 forms a transcriptional switch that is Wnt-responsive and Wnt-dependent
and defines stem cell identity. Moreover, ASCL2 is regulated in a direct autocrine loop that leads to
distinct on/off expression patterns, and Wnt/R-spondin reportedly activates this regulatory loop [24].
Lastly, compared with control cells, ASCL2-overexpressing cells exhibit 5-FU resistance due to greater
overall survival and fewer apoptotic cells [67].

As a member of the activator protein-1 superfamily, Fos-related antigen-1 (FRA1) positively
regulates transcription and post-transcriptional processes. Accordingly, elevated FRA1 mRNA
levels are associated with aberrant β-catenin accumulation in lung [68], brain [69], breast [70], and
bladder [71] cancers. Furthermore, β-catenin accumulation and FRA-1 are positively correlated
with WHO disease grades [69], and Chip assays have shown direct biding of β-catenin and
FRA1 [21]. In experimental systems, FRA1 overexpression is sufficient to increase cell motility and
anchorage-independent growth, and these are representative features of stem cells. In addition,
compared with FRA1 expression, FRA1 knockdown prevents cell cycle progression, cell growth, and
colony formation under anchorage-independent conditions and increases sensitivity to cisplatin [72].
At the protein level, FRA1 overexpression reduces p53 and increases MDM2 expression levels,
consistent with apoptosis inhibition [68].

The transcription factor Myc proto-oncogene protein (MYC) favors cell growth and proliferation
and suppresses cell cycle arrest [73,74]. These roles of MYC have been well documented in lymphocytes
using conditional knockout systems [75,76]. In addition, MYC overexpression in B lymphocytes is
sufficient to increase cell proliferation [77], and ectopic expression of MYC in hepatocytes using an
adenoviral gene transfer system in vivo results in significant cell growth [78]. MYC is reportedly
essential for Wnt-mediated growth, and its absence reduces Wnt-induced cell growth and proliferation
in colonic crypts [78]. MYC can also switch metabolic phenotypes between aerobic glycolysis
and oxidative phosphorylation by directly upregulating the transcription of glucose transporter-1,
hexokinase-2, enolase, and lactate dehydrogenase [79]. In general, highly proliferative cancer cells
depend on aerobic glycolysis rather than oxidative phosphorylation, and the ensuing rapid energy
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and lactic acid production is known as the Warburg effect [80]. Compared with non-CSCs, CSCs prefer
Warburg-type energy metabolism, thereby allowing constitutive proliferation and resistance to cell
damage by radiation-induced ROS [80,81]; this potentially reflects scavenging of ROS by abundant
lactate in these cells [82]. In addition to metabolic and proliferative contributions to stemness, CSCs
have to escape immune surveillance. MYC has been shown to directly regulate the expression of the
tumor cell surface immune checkpoint protein cluster of differentiation 47 (CD47) and programmed
death-ligand 1 (PD-L1), which mediate “don’t eat me” and “don’t find me” signals, respectively,
following MYC binding to their promoters. MYC inactivation in mouse tumors also leads to decreased
CD47 and PD-L1 expression and enhanced antitumor immune responses. However, MYC inactivation
in tumors due to enforced CD47 or PD-L1 expression leads to suppressed immune responses and
continued tumor growth [83,84]. Thus, MYC likely initiates and maintains tumorigenesis, in part,
by modulating immune regulatory molecules.

Cyclin D1 (CCND1) is a traditional Wnt/β-catenin target gene, and time-lapse photography and
quantitative image analyses have shown that CCND1 facilitates continued cell cycle progression [85].
This study has also revealed a highly ordered mechanism underlying continued proliferation, in which
the decision to continue the cell cycle occurs at the G2 phase under conditions of elevated CCND1
expression. These conditions are maintained through the G1 phase and are required for initiation
of the S phase, during which CCND1 levels are automatically reduced to allow DNA synthesis.
High CCND1 expression is again required upon entry into the G2 phase. Consistent with this fact,
CCND1 expression was found to be higher in metastatic lymph nodes than in primary regions of
papillary thyroid carcinomas that were co-localized with β-catenin [86]. Another study demonstrated
that CCND1 expression is upregulated in lung CSCs and promotes cell proliferation and clonogenic
formation [87] in association with resistance against progestin [88] and cisplatin [89]. Collectively,
these studies have indicated that Wnt-mediated re-colonization at distant orgnas is partly dependent
on CCND1.

Chemo-resistance has also been associated with the ATP-binding cassette subfamily B member 1
(ABCB1), which is an ATP-dependent drug efflux pump that transports molecules across cell
membranes. ABCB1 overexpression and its product P-glycoprotein are responsible for multiple
drug resistance (MDR). The basal promoter of ABCB1 has several β-catenin/TCF4/LEF1-binding
sites, suggesting that the canonical Wnt/β-catenin pathway regulates ABCB1, as shown in early
colorectal [25], neuroblastoma [90] and breast [91] cancers. Furthermore, ABCB1 is highly overexpressed
in doxorubicin-resistant cell lines [90], and β-catenin depletion in a chronic myeloid leukemia cell
line leads to reduced ABCB1 mRNA expression, whereas Wnt signaling increases ABCB1 mRNA
expression [92]. Taken together, these studies have indicated that resistance in CSCs can be achieved
indirectly by mechanisms that lead to constitutive proliferation and resistance to apoptosis or directly
by defense mechanisms that desensitize CSCs to anticancer agents and facilitate persistent growth.

5. Invasion and Migration

Although the origin of CSCs remains controversial, re-acquisition of CSC phenotypes in
differentiated non-CSCs has been reported in multiple studies, and EMT is considered a major
driver. EMT is a crucial process for morphogenesis during embryonic development and was
initially recognized by developmental biologists. However, studies conducted in the last decade
have shown that EMT can be aberrantly rebooted in adult tissues under pathological conditions,
such as fibrosis and cancer in terms of poor wound healing and cancer invasiveness, respectively.
EMT also contributes to the acquisition of invasion potential during breast carcinogenesis and
chemotherapy. Specifically, during EMT, morphologic and phenotypic changes increase cancer cell
motility, dissemination, invasiveness, and dedifferentiation [93,94]. Multiple signaling pathways are
involved in the EMT process, and their downstream transcription factors, such as Snail, Twist, and
Zeb, function as master controllers of the EMT process [95]. Moreover, among various signaling
pathways, Wnt/β-catenin signaling is known to strongly promote EMT through LEF/TCF-dependent
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transcriptional activation [96]. Wnt/β-catenin activation is also required for generating CSCs from
de-differentiated non-CSCs. In particular, inhibition of glycogen synthase kinase-3β (GSK-3β)
expression promotes nuclear translocation of β-catenin and restores stem cell phenotypes in
differentiated colorectal cells [97]. Moreover, activation of the E-twenty-six-related gene–FZD4 axis
causes nuclear accumulation of β-catenin and transforms prostate cancer cells through EMT [98].
More recently, it has been confirmed that β-catenin forms a complex with Twist1/TCF4 and enhances
its transactional activity, and consequently promotes tumorigenesis and re-acquisition of the CSC
phenotype [99]. The invasion potential of CSCs is reportedly higher than that of non-CSCs, and this has
been demonstrated in established cancer cell lines and patient-derived cancer cells. These experiments
have indicated that glioma CSCs exhibit higher invasion activity than non-CSCs in the frontal region
of tumors [100]. Similarly, ECM matrix penetration and cellular motility are enhanced in various types
of CSCs, including those from breast [101] and liver [102] cancers, and some Wnt/β-catenin target
genes have been shown to promote CSC invasion and migration.

Matrix metalloproteinase-7 (MMP7) is a well-known β-catenin target gene. Accordingly, ectopic
LEF1 expression increases β-catenin binding to TCF-binding sequences and activates the MMP7
promoter [26]. Moreover, the conserved LEF1 recognition site is present on the promoter region
of MMP-7 and is bound directly by LEF1 in oral squamous cell carcinoma cell lines and human
oral squamous cell carcinoma tissues [103]. Members of the MMP family contribute to extracellular
matrix (ECM) degradation and are classified according to their substrates as gelatinases (MMP2 and
MMP9), collagenases (MMP1 and MMP13), metalloelastase (MMP12), and matrilysin (MMP7) [104].
MMP7 is synthesized and secreted into the extracellular matrix to increase invasion potential of cells via
proteolytic degradation of ECM proteins. Although most MMPs degrade their ECM substrates, MMP7
is expressed in many epithelial cell types [105] and is reportedly expressed at high levels in multiple
cancer types, including pancreatic [106], colon [107], and gastric [108] cancers. In particular, MMP7 is
associated with highly invasive phenotypes that lead to poor prognoses in cancer patients. In addition
to ECM degradation, MMP7 promotes cancer invasion by converting inactive forms of other MMPs,
such as MMP2 and MMP9, into active forms [104]. MMP7 is involved in Wnt-mediated invasion in
cancer cells. Accordingly, Wnt signaling activation by transfection with a mutant β-catenin that lacks
the GSK-3β-specific phosphorylation site leads to morphological changes in oral squamous cancer cells
from polygonal shape to spindle shape and decreases cell–cell interactions of cells with high invasion
and migration capacity by inducing MMP7 [103]. These studies have implicated MMP7 as a mediator
of increased CSC invasion potential in response to Wnt/β-catenin signaling. Similarly, membrane
type 1-matrix metalloproteinase 1 (MT1-MMP) is directly regulated by the β-catenin/TCF complex
through direct binding to its TCF promoter-binding site [109]. MT1-MMP increases invasion capacity
through actin-rich cell protrusions that are known as invadopodia and are responsible for matrix
degradation [110]; ectopic MT1-MMP overexpression promotes EMT [111]. Furthermore, CD133+

ovarian CSCs exhibit high MT1-MMP expression, and MT1-MMP knockdown specifically inhibits CSC
invasiveness without affecting non-CSCs [112]. These experiments have indicated that MT1-MMP is a
target of Wnt/β-catenin signaling that facilitates CSC infiltration into surrounding tissues.

In a previous study, inhibition of hyaluronan (HA) synthase-2 (HAS2), a biosynthetic enzyme of
hyaluoran which is known as one of MMP7 regulators, was shown to decrease MMP7 expression under
the condition of HAS2 inhibition and consequently inhibit the invasion ability of colon cancer cells [113].
HAS2 expression is also higher in bone-metastatic sub-clone breast cancer cells than in parental
cells, and it increases the perforation of basement membranes by enhancing MMP activities without
affecting their expression, reflecting inhibited expression of tissue metalloproteinase inhibitor 1 [114].
HAS2 expression is regulated by Wnt/β-catenin signaling, and LEF1 overexpression increases HAS2
mRNA expression in colon cancer cell lines by through its multiple binding sites on the promoter region
of HAS2. Furthermore, HAS2 protein levels are indirectly increased by LEF1 via enhanced expression
of HAS2 antisense RNA, which stabilizes HAS2 mRNA [27]. Consistent with this finding, breast
CSCs with invasive phenotypes have been shown to express HAS2 at high levels, and subsequent
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treatment with the HAS2 inhibitor 4-methylumbelliferone has been shown to decrease the ability of
CSC migration and invasion [115].

HA biosynthesis is activated as a consequence of increased HAS2 expression following Wnt
signaling activation. Thereupon, the extracellular matrix components enter into HA-rich condition.
As CD44 has HA binding site in its extracellular domain, HA binds to CD44 and transfers
signals that mediate cellular responses to microenvironments, thereby increasing its motility [116].
This HA-induced invasive phenotype is dependent on C-X-C chemokine receptor type 4 (CXCR4)
at least in part, due to its nearby location of HA binding site on CD44. The binding of HA on CD44
facilitates CXCR4 activation with its ligand, C-X-C motif chemokine ligand 12 (CXCL12), which
consequently enhances MMP expression and CSC invasion [117]. Singh et al. revealed that the
induction of CXCL12 enhanced the expression of MMP family members such as MMP1, MMP13,
MMP9, MMP3, MMP10, MMP11 and MMP14 which are able to destruct the extraceullar matrix
to increase invasion potentials [117]. For several decades, CD44 has been considered as one of the
traditional Wnt target gene because CD44+ populations tend to expand when Wnt signaling is activated
by APC mutation. In contrast, CD44+ populations are depleted by abrogation of the TCF4/β-catenin
complex following genetic disruption of the TCF4/β-catenin-binding site [28]. Similarly, under
HA-rich conditions, CD44+ populations frequently bound to CXCR4/CXCL12 [118], suggesting that
indirect CXCR4 regulation by Wnt and HAS2 may increase the invasiveness of CD44+ CSCs with
TCF/β-catenin-dependent expression.

Moreover, the direct regulation of Wnt on CXCL12 has been confirmed in previous studies [29].
Specifically, under conditions of Wnt activation in stem-like basal cancer cells, β-catenin binds to
the promoter region of CXCL12 via a LEF/TCF-binding site and increases its mRNA expression.
Moreover, this signaling mechanism is inhibited following β-catenin disruption by treatment with
ICG-001 [29]. In another study, dense intra-tumoral microvessels have been observed near CD133+

glioma CSCs that co-express the CXCR4 [119], and one study has shown that CXCR4+ subpopulations
of CD133+ pancreatic CSCs can evade primary tumors and disseminate into the blood stream [120].
Various experiments using CXCR4 inhibitors have suggested that CSCs exploit the CXCR4/CXCL12
axis to induce the secretion of vascular endothelial growth factor and further promote invasion into
vessels [121,122]. Collectively, these studies have indicated that Wnt/β-catenin in CSCs promote
invasive phenotypes via CXCR4/CXCL12 axis-mediated angiogenesis and lymphangiogenesis.
Subsequently, invasive CSCs penetrate into surrounding tissues and into proximal blood and lymphatic
vessels, leading to systemic distribution in the circulation system and arrival at metastatic sites.

6. Metastasis

Both cancer cell and CSC populations are heterogeneous, and CSC subpopulations with higher
metastatic potency are likely to be disseminated into nearby tissues. In addition, migration to
distant sites through the blood stream leads to the colonization of secondary organs and outgrowth.
Circulating disseminated CD44+/CD24−/low or ALDH1high/CD24−/low expressing CSCs have been
discovered in patients with metastatic breast cancer [123]. Similarly, disseminated CD133-expressing
CSCs have been identified in patients with metastatic prostate [124] and recurrent colon [125] cancer.
During circulation in the blood stream or at pre-metastatic niches, CSCs maintain dormancy and
increase survival potential. Although the regulatory roles of Wnt in dormancy remain controversial,
a recent study has suggested that Wnt-related mechanisms are involved in the regulation of latent
competency, which is a dormant state with metastatic potential. Specifically, following Wnt signaling
activation, the CXCR4/CXCL12 axis contributes to survival and dormancy status. In addition, analyses
of patients with breast cancer have indicated that the expression of proto-oncogene tyrosine-protein
kinase (Src) is positively correlated with late relapse in bone, but not in other tissues, and further
mechanistic studies have shown that CXCR4/CXCL12-activated Src supports the survival of indolent
breast cancer cells in bone marrow by activating Akt [126].
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Dickkopf-related protein (DKK1) is a Wnt downstream molecule and a negative feedback
component that likely plays essential roles in the regulation of late competency. Upon activation,
Wnt reportedly binds TCF in the promoter region of DKK1 and induces its expression [31]. Li et al.
have shown that instead of directly binding to the Wnt ligand, DKK1 antagonizes Wnt signaling
by forming a complex with LDL receptor related protein 6 (LRP6) and Kremen and then removing
LRP6 from the cell surface, thereby promoting its degradation and inhibiting Wnt binding and LRP6
turnover [127]. As an inhibitor of this Wnt autocrine loop, DKK1 decelerates the cell cycle and
reduces the expression of innate immune sensors, allowing evasion of NK-cell-mediated immune
surveillance [128]. Taken together, these data have indicated that Wnt activation may be essential for
CSC transformation into dormancy and that it likely acts by upregulating DKK1 expression.

Moreover, one study has indicated that Wnt/β-catenin signaling controls metastatic colonization
of target organs and that human lung adenocarcinomas enhance the competence of lung
adenocarcinoma cells to colonize bone and brain tissues using distinct Wnt signaling pathways
through LEF1 and HOXB9 [129]. During re-colonization at distant organs, CSCs escape from
dormancy and re-initiate proliferation. This can be achieved by direct transcriptional activation
in CSCs or by stimulation from cells, such as fibroblasts and immune cells, in the microenvironment.
Wnt/β-catenin signaling can re-initiate cell cycle progression in dormant CSCs by upregulating c-MYC
(MYC) expression through direct promoter binding [21,130]. Accordingly, MYC is central to the
core interactome in metastatic breast cancer patients, and stable MYC knockdown decreases colony
formation at secondary organs [131]. These studies have suggested that MYC mediates Wnt-induced
metastatic colonization by re-initiating the cell cycle and cell growth.

Claudin1 (CLDN1) is a tight junction protein (TJP) that regulates the permeability of epithelial
barriers through which small ions and neutral solutes enter [132]. Recently, the roles of CLDN1 in
metastasis have received increasing attention because increased permeability of endothelial cells is
required for cancer cells to intravasate and extravasate [133]. Moreover, CLDN1 expression in cancer
cells is positively correlated with cancer progression because TJP is essential for cell–cell interactions
that promote carcinogenesis and metastasis [134]. However, although CLDN1 overexpression in lung
cancer cells increases cell–cell connections and prevents dissemination into proximal tissues [135],
CLDN1 induces EMT in hepatocellular carcinomas and promotes invasion and metastasis by activating
cellular signaling via Ras and extracellular signal-regulated kinases [136]. Moreover, inhibition of
CLDN1 expression in gastric cancer cells results in decreased re-initiation of proliferation and leads
to anoikis [137]. Similarly, CLDN1 augments anchorage-independent growth to favor metastatic
colonization. However, clinical evidence has indicated that CLDN1 is a poor prognostic marker
because higher CLDN1 levels are present in tumor tissues from distant metastatic sites in patients than
in matched primary tumors [138,139]. Although further studies are needed to elucidate the precise
mechanisms of CLDN1 in CSCs, resistance to anoikis is a typical phenotype of CSCs and is essential
for anchorage-independent survival and colonization. Accordingly, CLDN1 expression is increased in
CSCs compared with that in non-CSCs [140], and CLDN1 is directly upregulated by Wnt signaling.
Specifically, ectopic APC expression decreases CLDN1 expression in Wnt-activated APC-deficient colon
cancer cells, and CLDN1 requires its TCF-binding site for transcriptional activation [32]. In addition,
the typical intestinal transcription factor caudal homeobox protein binds to the promoter of CLDN1
and increases its expression by forming a complex with TCF4 [141]. Hence, CLDN1 may mediate
Wnt-induced re-initiation of CSCs at metastatic sites. Collectively, these studies have indicated that Wnt
signaling re-activation at secondary organs can induce CLDN1 overexpression and trigger dormant
CSC proliferation by promoting resistance to anoikis.

Metastatic CSCs has recently emerged which refers the specific subpopulations of CSCs that
colonize better at the distant organs than other cell populations [142,143]. Therefore, various
ongoing studies are directed at the discovery of biomarkers for metastatic CSCs, and the variant
isoforms of CD44 (CD44v) have gained attention as one of novel biomarkers. CD44v are generated
through alternative splicing from CD44 and gain the additional extracellular domains providing



Int. J. Mol. Sci. 2017, 18, 1604 11 of 21

more glycosylation sites which enhance the ability of capturing various microenvironmental ligands
including hepatocellular growth factor (HGF), osteopontin (OPN), vascular endothelial growth
factor (VEGF), fibroblast growth factors (FGF), and CXCL12. Hence, these ligands are concentrated
nearby CD44v and activate their downstream signalings such as PI3K-Akt, Smad, Src, and β-catenin
pathway promoting metastasis in CD44v+ CSC [116,118,144]. For these reasons, CD44v makes CSCs
respond to microenvironmental cytokines facilitating metastatic signalings via diverse pathways.
Among existing numerous variants, CD44v6+ CSCs are recently documented as a subpopulation
that forming outgrowths at distant metastatic sites by exhibiting constitutive reprogramming [33].
The specific inhibition of CD44v6 using antibodies have proved that metastasis of head and neck cancer
is dependent of CD44v6+ CSCs [118]. Interestingly, in colon cancer, CD44v6+ CSCs are more frequently
observed from the secondary organ outgrowth site with elevated β-catenin accumulation level, while
CD44v6+ CSCs are hardly observed from the primary tumor site [33]. In addition, the presence of
CD44v6+ populations was significantly decreased under the conditions of TCF4 loss [28]. Accordingly,
the genetic profiles present that Wnt-signaling molecules are up-regulated in CD44v6+ CSCs compared
to that of CD44v6− counterpart, and the LEF/TCF-dependent transcriptional activity is activated in
CD44v6+ CSCs as well [33]. Moreover, Wnt3a ligand-mediated activation of Wnt signaling increases
the existing population of CD44v6+ CSCs [33]. From these together, Wnt signaling enhances metastatic
potential of CSCs through CD44v6 which activates metastatic signaling exhibiting more sensitive
response to microenvironment.

In pre-metastatic niches, various components of secondary microenvironments can stimulate CSC
colonization by activating Wnt signaling. For example, the extracellular matrix protein tenascin C
is commonly found in stem cell niches and supports Wnt-mediated outgrowth of breast cancer
micrometastases by increasing the expression of Syndecan 4, which has been implicated as a
co-receptor of the Wnt receptor FZD7 [145–147]. Periostin is another matrix protein in stem cell
niches that promotes the outgrowth of micrometastatic colonies by facilitating Wnt ligand secretion
from tumor cells [148]. Tumor-associated macrophages also secrete interleukin-1β, which activates
Wnt signaling in colon cancers by phosphorylating GSK-3β, stabilizing β-catenin, and enhancing
TCF target gene expression [149]. Conversely, Wnt signaling contributes to microenvironments that
favor re-colonization by CSCs. Wnt 7a is a canonical ligand of the Wnt pathway [150,151] and is
required for the recruitment of cancer-associated fibroblasts that enhance invasion and metastatic
potential of cancer cells [152]. Interestingly, the common ECM protein fibronectin (FN1) is directly
upregulated by Wnt signaling through LEF/TCF-binding sites on its promoter region [34]. Moreover,
FN1 promotes organ-specific metastasis in which hematopoietic progenitor cells expressing the FN1
receptor integrin α4β1 migrate and adhere to FN1-rich regions through ligand–receptor bonds and
subsequently produce MMP-9 [153].

Lastly, Wnt signaling activation facilitates immune surveillance evasion through Cyclooxygenase-2
(COX2), which is directly upregulated by Wnt through its LEF/TCF promoter-binding site [35] and
produces prostaglandin E2 (PGE2) to convert CD4+ T cells to regulatory T cells, thereby inducing
apoptosis of CD8+ cytotoxic T cells [154]. Through this molecular mechanism, Wnt activation can
promote bone metastasis of breast cancers by aggregating dead CD8+ cytotoxic T cells [30]. Collectively,
current data indicate that Wnt signaling is a potent inducer of metastasis, induces CSC dormancy
during circulation in the blood, re-initiates outgrowth of CSCs at secondary organs, and modulates
microenvironments to favor CSCs.

7. Conclusions

Wnt signaling is considered as a major contributor to CSC biology. In this review, we summarized
and characterized Wnt signaling mechanisms that regulate CSCs from initiation to metastasis. Initially,
continuously upregulated Wnt signaling converts normal stem cells and differentiated cells into CSCs.
Subsequently, abnormally hyperactivated Wnt signaling allows entry into the early stages of metastasis
and then facilitates persistent growth, invasion, migration, and homing. Negative feedback of Wnt
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signaling pathway then induces CSC dormancy, and subsequent hyperactivated Wnt signaling is
central to re-initiation and colonization of metastatic sites. Although Wnt signaling inhibitors have been
developed in multiple studies, their use is limited by the involvement of Wnt signaling in homeostasis
and development, leading to potential side effects. Moreover, Wnt signaling is dynamic throughout
the process from initiation to metastasis, complicating the timing of therapeutic interventions that
target Wnt. Therefore, further comprehensive studies on the downstream mechanisms of Wnt are
required to develop novel therapeutic agents.
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LEF1 Lymphoid Enhancer-binding factor 1
CSC Cancer stem cell
FZD Frizzled receptor
TCF T-cell factor
APC Adenomatous polyposis coli
LGR5 Leucine-rich repeat-containing G-protein-coupled receptor 5
DCLK1 Doublecortin-like kinase 1
EMT Epithelial-to-mesenchymal transition
JNK c-Jun N-terminal kinases
RYK Receptor tyrosine kinase
ROR Receptor tyrosine kinase-like orphan receptor
GSEA Gene set enrichment analysis
ROS Reactive oxygen species
NF-κB Nuclear transcription factor-κB
CD44 Cluster of differentiation 44
CD133 Cluster of differentiation 133
ALDH Aldehyde dehydrogenase
KLF5 Kruppel-like factor
HDAC1 Histone deacetylase 1
EDN1 Endothelin 1
ASCL2 Achaete-scute homolog 2
FRA1 Fos-related antigen-1
CD47 Cluster of differentiation 47
PD-L1 Programmed death-ligand 1
CCND1 Cyclin D1
ABCB1 ATP-binding cassette subfamily B member 1l
MDR Multiple drug resistance
GSK-3β Glycogen synthase kinase-3β
MMP7 Matrix metalloproteinase-7
ECM Extracellular matrix
MT1-MMP Membrane type 1-matrix metalloproteinase 1
HA Hyaluronan
HAS-2 Hyaluronan synthase-2
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CXCR4 C-X-C chemokine receptor 4
CXCL12 C-X-C motif chemokine ligand 12
Src Proto-oncogene tyrosine-protein kinase
DKK1 Dickkopf-related protein
LRP6 LDL receptor related protein 6
CLDN1 Claudin1
TJP Tight junction protein
CD44v CD44 variant
HGF Hepatocellular growth factor
OPN Ostepontin
VEGF Vascular endothelial growth factor
FGF Fibroblast growth factors
FN1 Fibronectin
COX2 Cyclooxygenase 2
PGE2 Prostaglandin E2
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