## Comparative Studies on Behavioral, Cognitive and Biomolecular Profiling of ICR, C57BL/6 and Its Sub-Strains Suitable for Scopolamine-Induced Amnesic Models

Govindarajan Karthivashan <sup>1</sup>, Shin-Young Park <sup>1</sup>, Joon-Soo Kim <sup>1</sup>, Duk-Yeon Cho <sup>1</sup>, Palanivel Ganesan <sup>1,2</sup> and Dong-Kug Choi <sup>1,2,\*</sup>

**Supplement Figures:** 



**Figure.S1**. ICR and C57BL/6 strains – a) COX-2 (70 kDa); b) iNOS (130 kDa).







**Figure.S2**. ICR and C57BL/6 strains – a)  $Ik\beta\alpha$  (39 kDa); b) p-Ik $\beta\alpha$  (40 kDa).

а

| b       |         |      |      |          |  |
|---------|---------|------|------|----------|--|
|         | C57 str | ain  | ICF  | र strain |  |
|         | Cont    | Scop | Cont | Scop     |  |
| 130 kDa |         |      | -    |          |  |

**Figure.S3**. ICR and C57BL/6 strains – a) COX-2 (70 kDa); b) iNOS (130 kDa).



b



**Figure.S4**. ICR and C57BL/6 strains – a) Ik $\beta\alpha$  (39 kDa); b) p-Ik $\beta\alpha$  (40 kDa).

а



**Figure.S5**. ICR and C57BL/6 strains –  $\beta$ -actin (43 kDa)







b

Figure.S7. C57BL/6N and C57BL/6J strains – a) iNOS (130 kDa); b) COX-2 (70 kDa)

| , | ١ |  |
|---|---|--|
| 2 | 1 |  |
|   |   |  |

b

С

d

|                 | 3           | 1.11/        | 1124  | S-C.C      | 0.090 | 0.091      | 0.089 | S-C.C           | 0.092    | 0.087  | 0.088 |
|-----------------|-------------|--------------|-------|------------|-------|------------|-------|-----------------|----------|--------|-------|
|                 | 4           | 1.424        | 1463  | T- Hip     | 0.086 | 0.087      | 0.085 | T- Hip          | 0.091    | 0.087  | 0.090 |
|                 | 5           | 1.711        | 1723  | T-C.C      | 0.084 | 0.084      | 0.082 | T-C.C           | 0.087    | 0.085  | 0.085 |
| -               |             |              |       | N-Hipp     |       | J-Hipp     |       | N-C.C           |          | J-C.C  |       |
| Calcula         | ted values  | _            | Con   | 11.28      | 1.17  | 14.02      | 2.80  | 8.98            | 4.82     | 10.47  | 1.38  |
|                 |             |              | Tac   | 28.59      | 2.38  | 38.48      | 4.92  | 22.29           | 2.30     | 27.80  | 2.73  |
| SO              | D std       | a management |       |            | -     | Ν          |       |                 |          | J      |       |
| 1               | 000         | 0.193        | 0.140 | C-Hip      | 0.436 | 0.429      | 0.431 | C-Hip           | 0.428    | 0.439  | 0.437 |
| 500             |             | 0.227        | 0.223 | C-C.C      | 0.437 | 0.441      | 0.439 | C-C.C           | 0.431    | 0.449  | 0.436 |
| 250             |             | 0.281        | 0.282 | S-Hip      | 0.454 | 0.45/      | 0.447 | S-Hip           | 0.437    | 0.446  | 0.442 |
| 125             |             | 0.205        | 0.205 | S-C.C      | 0.405 | 0.440      | 0.437 | S-C.C           | 0.441    | 0.445  | 0.435 |
| 3:              | 1.25        | 0.417        | 0.464 | T-C.C      | 0.457 | 0.464      | 0.455 | T-C.C           | 0.444    | 0.438  | 0.447 |
|                 |             |              |       | N-Hipp     |       | J-Hipp     |       | N-C.C           |          | J-C.C  |       |
| Calcula         | ted values  |              | Con   | 41.89      | 1.54  | 40.75      | 2.50  | 38.90           | 0.85     | 39.04  | 3.98  |
|                 |             | 1.           | Scop  | 33.08      | 1.50  | 37.77      | 1.92  | 28.58           | 2.41     | 37.62  | 1.28  |
|                 |             |              | Tac   | 38.19      | 0.89  | 38.33      | 1.30  | 30.52           | 2.01     | 37.20  | 1.95  |
| CA              | T std       | -            | 1     | N          |       |            |       | J               | <u> </u> |        |       |
|                 | 100         | 0.175        | 0.173 | C-Hip      | 0.944 | 0.972      | 0.946 | C- Hip          | 1012     | 0.992  | 0.984 |
|                 | 50          | 0.441        | 0.462 | C-C.C      | 1.009 | 0.994      | 0.980 | C-C.C           | 1012     | 1.027  | 1.002 |
|                 | 25          |              | 1.100 | S-Hip      | 1.039 | 1.003      | 1054  | S- Hip          | 1.044    | 1.009  | 1.002 |
|                 | 2.5         | 1.101        | 1.262 | S-C.C      | 0.955 | 0.990      | 0968  | S-C.C<br>T- Hin | 1.027    | 0.991  | 0.990 |
| 3.125           |             | 1.318        | 1.298 | T-C.C      | 1.010 | 1.008      | 1038  | T-C.C           | 1.021    | 1.036  | 1.037 |
| 1.              | 5625        | 1.323        | 1.321 |            |       |            |       |                 |          |        |       |
|                 | 0           | 1.354        | 1.394 |            |       |            |       |                 |          |        |       |
|                 |             |              |       | N-Hipp     |       | J-Hipp     |       | N-C.C           |          | J-C.C  |       |
|                 |             |              | Con   | 666.91     | 28.73 | 595.38     | 24.58 | 598.22          | 31.34    | 585.29 | 34.59 |
| Calcula         | ted values  |              | Scop  | 545.43     | 34.18 | 584.18     | 28.40 | 499.45          | 28.80    | 528.13 | 21.59 |
|                 |             |              | Tac   | 637.96     | 26.81 | 584.03     | 35.45 | 555.78          | 31.08    | 535.21 | 15.47 |
| GPx<br>(10 min) | N           |              |       |            |       | 1          |       |                 |          |        |       |
| (20 1111)       | C-Hip       | 1.085        | 1.0   | 064        | 0.532 | C- Hi      | 0     | 0.536           | 0.5      | 522    | 0.472 |
|                 | C-C.C       | 1.033        | 1.0   | 012        | 0.486 | C-C.C      | 5     | 0.519           | 0.486    |        | 0.465 |
|                 | S-Hip       | 1.085        | 1.0   | 064        | 0.505 | S- His     | p     | 0.512           | 0.       | 503    | 0.530 |
|                 | S-C.C       | 1.058        | 1.0   | 037        | 0.506 | S-C.C      | -     | 0.523           | 0.4      | 488    | 0.468 |
|                 | т- нір 1.06 |              | 1.047 |            | 0.495 | T- Hip     |       | 0.504           | 0.4      | 466    | 0.446 |
|                 | T-C.C       | 1.078        | 1.0   | 057        | 0.518 | T-C.C      | :     | 0.531           | 0.5      | 537    | 0.534 |
| GPx             |             |              |       |            |       |            |       |                 |          |        |       |
| (20 min)        | N           |              |       |            |       | J          |       |                 |          |        |       |
|                 | C-Hip       | 0.871        | 0.8   | 865        | 0.328 | C- Hip     | p     | 0.335           | 0.       | 331    | 0.301 |
|                 | C-C.C       | 0.843        | 0.0   | 0/1        | 0.287 | C-C.C      | 2     | 0.339           | 0.       | 289    | 0.276 |
|                 | S-Hip       | 0.958        | 0.9   | 249        | 0.382 | S- Hp      | P     | 0.369           | 0.       | 215    | 0.3/2 |
|                 | S-C.C       | 0.952        | 0.    | 865        | 0.309 | S-C.C      | -     | 0.240           | 0.       | 208    | 0.295 |
|                 | T-Hp        | 0.072        | 0.0   | R91        | 0.324 | T-Hp       | P     | 0.340           | 0.       | 347    | 0.2/1 |
| Calculate       | d values    | 0.511        | 0.0   |            | 0.500 | 1-0.0      |       | 0.555           | 0.       |        | 0.550 |
| Carculate       | N-Hi        | pp           |       | J-Hipp     |       | 24.<br>[]] | N-C.C |                 |          | J-C.C  |       |
| Con 32.84 1.71  |             | 28.81 3.42   |       | 30.07 1.10 |       | 29.03 1.90 |       |                 |          |        |       |
| Con             | 01.04       |              |       |            |       | 00.01      |       |                 | 20.01    |        | 1.00  |
| Con<br>Scop     | 14.03       | 1.37         | 21.94 | 1          | 3.03  | 16.57      | ,     | 1.36            | 25.67    | 7      | 0.26  |

**Figure S8:** Raw absorbance and corresponding calculated values of the a) lipid peroxidation (malondialdehyde, MDA); b) superoxide dismutase (SOD); c) catalase (CAT); d) glutathione peroxidase (GPx) levels in the hippocampus (Hipp) and cerebral cortex (C.C) of scopolamine-induced amnesic models—C57BL/6N and C57BL/6J sub-strains. Data are expressed as mean  $\pm$  SD (n = 4; pooled biological replications).





Figure.S9. C57BL/6N and C57BL/6J strains – a) CREB (40 kDa); p-CREB (40 kDa)

а



Figure.S10. C57BL/6N and C57BL/6J strains – a) CREB (40 kDa); p-CREB (40 kDa)



**Figure.S11**. C57BL/6N and C57BL/6J strains – BDNF (28 kDa); below bands represents monomer at approximately 14 kDa.





**Figure.S12**. C57BL/6N and C57BL/6J strains -  $\beta$ -actin (43 kDa).