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Abstract: Recent advances in high-throughput laboratory techniques captured large-scale
protein–protein interaction (PPI) data, making it possible to create a detailed map of protein
interaction networks, and thus enable us to detect protein complexes from these PPI networks.
However, most of the current state-of-the-art studies still have some problems, for instance,
incapability of identifying overlapping clusters, without considering the inherent organization within
protein complexes, and overlooking the biological meaning of complexes. Therefore, we present a
novel overlapping protein complexes prediction method based on core–attachment structure and
function annotations (CFOCM), which performs in two stages: first, it detects protein complex cores
with the maximum value of our defined cluster closeness function, in which the proteins are also
closely related to at least one common function. Then it appends attach proteins into these detected
cores to form the returned complexes. For performance evaluation, CFOCM and six classical methods
have been used to identify protein complexes on three different yeast PPI networks, and three
sets of real complexes including the Munich Information Center for Protein Sequences (MIPS), the
Saccharomyces Genome Database (SGD) and the Catalogues of Yeast protein Complexes (CYC2008)
are selected as benchmark sets, and the results show that CFOCM is indeed effective and robust for
achieving the highest F-measure values in all tests.

Keywords: protein–protein interaction network; overlapping; clustering

1. Introduction

Most proteins in living organisms, performing their biological functions or involving with cellular
processes, barely serve as single isolated entities, but rather via molecular interactions with other
partners to form complexes [1]. In fact, protein complexes are the key molecular entities to perform
cellular functions, such as signal transduction, post-translational modification, DNA transcription, and
mRNA translation. Moreover, the damage of protein complexes is one of the main factors inducing
severe diseases [2]. Identification of protein complexes, therefore, becomes a fundamental task in
better understanding the biological functions in different cellular systems, uncovering regularities of
cellular activities and contributing to interpreting the causes, diagnosis, and even the treatments of
complex diseases. As a result, lots of techniques including laboratory-based and computational-based
have been proposed to address this issue.

Up to now, significant progress in high-throughput laboratory techniques involving Tandem
Affinity Purification (TAP) [3] and Mass Spectrometry (MS) [4] has been made to discover protein
complexes on a large scale. However, laboratory experiments are expensive and time-consuming,
resulting in poor coverage of the complete protein complexes. Fortunately, the genomic-scale
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protein–protein interaction (PPI) networks created from pairwise protein–protein interactions make it
possible to automatically and computationally detect protein complexes. Given a PPI network, as the
protein complexes are formed by physical aggregations of several binding proteins, they are assumed
to be the functionally and structurally cohesive substructures, and thus graph clustering methods have
been put forward to search densely connected regions in PPI networks as protein complexes.

Since some proteins have multiple functions, in other words, they may belong to more than
one protein complex, so the ideal approaches need to be able to detect overlapping complexes.
However, several types of graph clustering methods don’t allow overlaps between detected protein
complexes due to the confinements of the rationales behind them. For example, the partition-based
clustering methods such as the Restricted Neighborhood Search Clustering algorithm (RNSC) [5],
the Bayesian Nonnegative Matrix Factorization(NMF)-based weighted Ensemble Clustering algorithm
(EC-BNMF) [6], obtain, however, some highly reliable protein complexes, since they need prior
knowledge of the exact number of clusters that thus cannot detect overlapping functional modules,
and, in addition, most of the hierarchy-based clustering methods [7–9] utilize hierarchical trees to
represent the hierarchical module organization for a PPI network, but it is difficult to detect overlapping
complexes as well. In addition, although some algorithms are capable of finding overlapping
complexes, they still have some distinct shortcomings—for instance, the Molecular Complex Detection
(MCODE) [10] predicts only quite a small number of protein complexes. CFinder [11] first discovers
k-cliques by using the clique percolation method (CPM) [12], and then combines the adjacent k-cliques
to get the functional modules, but may fail to detect some regular complexes. ClusterONE [13] requires
one pre-determined parameter, which is depended on the quality of PPI network, and it is difficult
to determine.

Furthermore, the aforementioned methods still have a common fatal weakness—ignorance of the
inherent organization of the complexes—but actually experimental analysis has already reported that
a protein complex generally consists of a core, in which proteins share similar functions and tend to be
highly co-expressed, and other attach proteins surrounding to the core [14]. Based on these, several
core–attachment based algorithms have been presented, and experimental results indicate that they can
acquire better performance compared to traditional methods neglecting inherent organization. Among
them, CORE [15] first calculates the probability of each pairwise proteins to be in the same core and
then uses it to detect cores. COACH [16] detects cores from neighborhood graphs of the selected seed
proteins, and then applies an outward growing strategy to generate protein complexes. Compared with
CORE, COACH can find overlapping cores. Other methods including [17] predict complexes based on
multi-structures in PPI network, and achieve significant performance. The complexes predicted by
structure-based methods, in general, have been verified more in accordance with the known complexes.

In addition, to precisely predict more biological explainable complexes, some methods of
fusing various types of prior knowledge including functional annotations [18–20], gene expression
data [21–23], as well as sub-cellular location of proteins [24], are presented and have already been
proved that can help to improve the performance to some extent. However, these kinds of valuable
information are either used in data preprocessing or post-processing, such as filtering low-confidence
edges, weighting edges, discarding some biological meaningless complexes, but seldom helps mining
cores with better biological meaning, in which most proteins are co-subcellular or co-expression or
with similar functions. Furthermore, since these data are undeniably incomplete and imprecise, how
to generate a impartial and efficient model incorporating different types of data is still a hot topic in
complex prediction [25–27].

In summary, we may come to the conclusion that a comparatively well-designed protein
complexes identification method may need to meet the following conditions: capable of detecting
overlapping complexes, fewer parameters, being easy to be determine, consideration of the inherent
organization of protein complexes, particularly finding topological and biological meaningful cores,
properly incorporating prior information as much as possible into the predicting model, and robust
to PPI networks with false positives and false negatives. Unfortunately, even though many effective
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techniques have been proposed, as far as we know, few of them satisfy most of the above-mentioned
requirements, which results in impeding further practical applications, and thus there is still urgent
need for new approaches.

In this manuscript, we introduced a novel core–attachment based method to predict protein
complexes, and the proteins in our detected cores are closely linked, share high similar topology that
is highly connected to internal vertexes and relatively sparsely connected to outsides, and are more
biologically significant, namely more likely to participate in one or more biological processes with the
appliance of GO functional annotation. Furthermore, the detected complexes can be overlapping. We
applied our algorithm to two PPI networks of yeast, and validated our predicted complexes using
benchmark complexes collected from several public databases. The experimental results indicated that
our algorithm is efficient and outperforms other existing classical methods.

2. Results

We have applied our CFOCM method on the Database of Interacting Proteins (DIP) data and
Gavin data. In this section, we will first discuss parameter t affecting the performance of CFOCM.
Next, we perform comprehensive comparisons with various existing classical methods and analyse
the results in detail. Finally, we explore the functional definition of the complex-core as a whole,
contributing to the biological significance of the detected complexes.

2.1. Evaluation Metrics

The neighborhood affinity score NS(p, r) can also be devoted to measure the overall similarity
between a predicted complex p and a real complex r, and if NS(p, r) ≥ ω, p and r are considered to
be matching. On the one hand, the greater setting value of ω means the more stringent matching of
between the predicted complex and the real complex in the benchmark, probably resulting in a sharp
decline in all the prediction measure values; on the other, the smaller value could not only lead to
identify the low-confidence predicted complex as the real complex, which is also not reasonable. In our
experiments, we set ω to 0.2 the same as most literatures do [5,7,11,13,15,28], which provides easy and
fair comparisons between results of various algorithms.

Let P and R represent the set of predicted complexes and the real complexes in benchmarks,
respectively. Ncp = {p ∈ P|∃r ∈ B, NS(p, r) ≥ ω} denotes the predicted complexes matching at least
one real complex, and Ncr = {r ∈ R|∃p ∈ P, NS(r, p) ≥ ω} denotes the real complexes matching
at least one predicted complex. In addition, then the performance of a clustering algorithm can be
measured using precision, recall, and F-measure, which can be calculated as follows:

Precison =
|Ncp|
|P| ,

Recall =
|Ncr|
|R| ,

F-measure = 2× Precison× Recall/(Precision + Recall) ,

where Precision means the ratio of predicted protein complexes that are matched with the real
complexes, Recall means the rate of real complexes that are successfully detected and F-measure
evaluates the overall performance.

2.2. Optimization of the Parameter t

Recall that the process of mining cores from PPI network in Algorithm 1 of CFOCM employs a
user-defined parameter t calculated by NS(mci, mcj) to decide whether a certain candidate core mcj
should be merged into the family of the current candidate core mci. In general, CFOCM can predict
more complexes with the bigger value of t; nevertheless, this may lead to compromise on the quality
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of the predicted complexes, and thus how to choose a relatively appropriate t to achieve a balance
between the predicted complexes’ quality and quantity needs to be probed. Here, varying t from 0.2 to
0.6 with the interval 0.01, the F-measure values of each predicted complex set are computed, and help
us to intuitively observe that the variation of t affects the performance of our CFOCM method and
selects the relatively suitable t as well (see Figure 1).

Figure 1. The effect of t, showing how the variation of parameter t affects the performance of our
proposed overlapping protein complexes prediction method based on core–attachment structure and
function annotations (CFOCM) in terms of F-measure.

In Figure 1, all the curves of different CFOCMs, based on DIP data or Gavin data, validated in
benchmark set MIPS or SGD or CYC2008, are comparably smooth and steady when the t varies from
0.2 to 0.44. However, the curves change abruptly near t = 0.45, and the causation of this phenomenon
can be rationally explained with the NS score of two candidate cores being 4/9 (≈0.44) in which the
number of proteins are both three and two of them are the overlapping; that is to say, these two cores
can not be put into the same family if t is larger than 4/9, resulting in a rapid increase of low-confidence
detected cores with size 3 and a sharp decease of recall value and F-measure score as well. For example,
under t = 0.44, CFOCM based on DIP and Gavin network generates 751,453 complexes respectively,
while under t = 0.45 generates 2629, 1703 complexes respectively, conforming to the above analysis
and interpretation.

As stated above, t should definitely not be set to larger than 0.44 as increasing abundant
low-confidence three-size cores, and actually the performance of CFOCM does not change significantly
when t ∈ [0.2, 0.44]. Still, demand for more complexes shows a preference to a larger t; otherwise, if
there is demand for a fewer number of complexes, a preference is shown for a smaller t. For example,
CFOCM predicts 545 complexes with average matching of 156 real complexes in MIPS when t = 0.2,
while predicting 751 complexes matching 205 real complexes in MIPS when t = 0.44. In the following
part, either in DIP data or Gavin data, the t of our CFOCM algorithm is set to 0.4.

2.3. Comparison Experiments on Different Datasets

For performance evaluation, the comparison experiments between CFOCM and six representative
algorithms including MCL, MCODE, RNSC, CORE, COACH and ClusterONE are performed on both
DIP data , Gavin data and Srihari data. Note that the parameters of these six comparative methods are
set to the default values. Figure 2, Table 1, Figure 3, Table 2 ,Figure 4, and Table 3 exhibit the overall
comparison results in terms of Precision, Recall and F-measure on DIP data, Gavin data and Srihari
data, respectively.
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Figure 2. Comparative performance of CFOCM and the other six methods in DIP data using benchmark
MIPS, SGD, CYC2008, respectively.

Table 1. Results of various approaches using DIP data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 4838 63 543 592 341 746 748
Np (MIPS) 305 31 65 78 69 179 205
Nb (MIPS) 117 42 96 113 89 134 126
Np (SGD) 621 39 106 117 112 231 285
Nb (SGD) 262 53 134 138 121 176 168

Np (CYC2008) 853 46 134 153 145 311 351
Nb (CYC2008) 358 55 149 168 132 215 196

In Figure 2, no matter whether benchmarks MIPS or SGD or CASP2008 are used, MCODE achieves
the highest precision that is far beyond other methods. However, since the number of predicted protein
complexes is very limited and also matches with fewer real complexes, resulting in much low recall and
F-measure values. In addition, CORE, RNSC, and ClusterONE are observed to attain high recall values,
but, nevertheless, the F-measure values of them merely end up with relatively lower F-measure value
due to their very low precision values. In fact, CFOCM and COACH demonstrate their distinctive
competitive advantages in F-measure as a result of balanced precisions and recalls. Moreover, it is
obvious that CFOCM remarkably outperforms COACH in F-measure when using benchmark MIPS
and SGD. Meanwhile, both CFOCM and COACH are based on core–attach structure, it may indicate
that the protein complex detection method seems more appropriate when taking consideration of the
inherent organization of complex. As Table 1 shows, CFOCM detects moderate number of complexes,
many of which correctly match with the real complexes and have a high coverage rate of real complexes
as well.

In order to evaluate the robustness of algorithm CFOCM, comparison experiments are also carried
on Gavin network, which is different from the DIP network for containing much fewer and more
densely connected proteins. Figure 3 illustrates the results for Gavin data, CFOCM shows even better
performance for Gavin data, which achieves the highest precision values when using benchmark MIPS
and CYC2008, and, apparently, CFOCM obtains the best F-measure value for every benchmark. This
may suggest that CFOCM indeed works on dense network as well. For each method, the total number
of identified complexes, the number of correct predictions Np matching at least a real complex, and the
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number of real complexes Nb matching at least a predicted one are listed in Table 2, reaching similar
conclusions that are consistent with DIP data.

Figure 3. Comparative performance of CFOCM and the other six methods in Gavin data using
benchmarks MIPS, SGD, CYC2008, respectively.

Table 2. Results of various approaches using Gavin data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 232 69 476 267 292 326 453
Np (MIPS) 59 31 22 69 65 106 191
Nb (MIPS) 96 47 21 98 80 94 91
Np (SGD) 86 46 53 101 109 130 250
Nb (SGD) 114 61 55 120 121 118 119

Np (CYC2008) 115 51 68 130 136 171 305
Nb (CYC2008) 142 63 79 148 143 135 131

For further evaluation, Srihari data derived from three different repositories are also used for
comparison, and the results are showed in Figure 4 and Table 3. Similar conclusions can be reached
as in DIP and Gavin data, except that both the Precision value and Recall value of CFOCM are better
than COACH, and this may indicate that CFOCM has more potential on composite data.

Table 3. Results of various approaches using Srihari data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 4732 88 552 525 773 726 758
Np (MIPS) 325 26 78 92 117 219 225
Nb (MIPS) 168 42 102 111 131 150 152
Np (SGD) 654 36 108 176 224 299 322
Nb (SGD) 292 44 184 189 217 231 240

Np (CYC2008) 846 46 138 218 275 397 452
Nb (CYC2008) 362 57 154 236 272 281 290
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Figure 4. Comparative performance of CFOCM and the other six methods in Srihari data using
benchmarks MIPS, SGD, CYC2008, respectively.

In a word, either in relatively sparse DIP networks or in relatively dense Gavin data even using a
composite data set, CFOCM is able to identify a suitable number of protein complexes, and, meanwhile,
the predicted complexes are also biologically meaningful as a consequence of cooperating the protein
function annotations into our model, so it compellingly performs better than other existing methods
in term of F-measure. Thus, we can come to the conclusion that CFOCM is efficient and has strong
adaptability and robustness to different types of data.

3. Discussion

3.1. The Effectiveness of Functional Annotation

As the assumption of the complex-core described before, the proteins in each CFOCM detected
core must be functional related to a certain common GO item, namely either annotated with that GO
item or annotated with a GO item that is functionally interdependent with that GO item. To estimate the
contribution of this, comparison experiments between CFOCM and CFOCM without use (unCFOCM)
are conducted. As the results listed in Table 4 (DIP) and Table 5 (Gavin), unCFOCM in all the tests
predicts much more biological meaningless complexes on account of not using GO annotation, leading
to lower F-measure values. In other words, owing to the requirement of functional relevance within
the discovered cores, CFOCM is capable of filtering abundant low-confidence protein complexes, and
the detected protein complexes are supposed to be more biologically significant. Therefore, the cores
detected by CFOCM should share some common functions, which is more in conformity with the
original definition of the complex core, and it is greatly obliged to help finding more accurate protein
complexes.

3.2. Case Studies

This section illustrates two predicted protein complexes, namely the Glycine decarboxylase
complex and the RNA polymerase I complex as Figure 5. The Glycine decarboxylase complex is a
small-sized complex responsible for the oxidation of glycine by mitochondria, and it consists of four
proteins including YDR019C, YMR18W, YAL044C and YFL018C. As showed, CFOCM successfully
identified these four proteins, in which YDR019C, YMR18W, and YAL044C are recognized as core
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proteins and YFL018C is detected as an attachment to the core. In another case, the RNA polymerase I
complex is a larger complex comprised of 14 proteins, and CFOCM could also completely identify
all the proteins in this complex with 100% precision, in which all proteins except YHR143W-A are
detected as members of the core having more dense connections with each other and sharing more
functional relevance as well.

Table 4. Results of CFOCM and CFOCM without using Gene Ontology (GO) (unCFOCM) on DIP data.

Algorithms + Benchmark # Complexes Np Nb Precision Recall F-Measure

CFOCM + MIPS 748 205 126 0.2741 0.6207 0.3802
unCFOCM + MIPS 862 213 130 0.2471 0.6404 0.3566

CFOCM + SGD 748 285 168 0.381 0.5201 0.4398
unCFOCM + SGD 862 297 175 0.3445 0.5418 0.4212

CFOCM + CYC2008 748 351 196 0.4693 0.4804 0.4748
unCFOCM + CYC2008 862 363 201 0.4211 0.4926 0.4541

Table 5. Results of CFOCM and CFOCM without using Gene Ontology (GO) (unCFOCM) on Gavin data.

Algorithms + Benchmark # Complexes Np Nb Precision Recall F-Measure

CFOCM + MIPS 453 191 91 0.4216 0.4483 0.4345
unCFOCM + MIPS 551 197 92 0.3575 0.4532 0.3997

CFOCM + SGD 453 250 119 0.5519 0.3684 0.4419
unCFOCM + SGD 551 262 124 0.4755 0.3839 0.4248

CFOCM + CYC2008 453 305 131 0.6733 0.3211 0.4348
unCFOCM + CYC2008 551 321 138 0.5826 0.3382 0.4280

Figure 5. The Glycine decarboxylase complex and the RNA polymerase I complex as detected by
CFOCM. The yellow nodes represent proteins within the complex core, while the blue node proteins
represent proteins that are attachments.

4. Materials and Methods

4.1. Terminologies

A PPI Network typically can be represented as an undirected graph G = (V, E), where V and
E = {(u, v)|u, v ∈ V) represent proteins and protein–protein interactions, respectively. A graph
G′ = (V′, E′) is regarded as a subgraph of G if V′ ⊆ V and E′ ⊆ E. v’s direct interacting neighbors in
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graph G is denoted as Nv = {u|(u, v) ∈ E, u ∈ V}, and NG′
v = {u|(u, v) ∈ E, u ∈ V′} is v’s neighbors

in subgraph G′. Subgraph G′ external boundary nodes are defined as Vob(G′) = {v| < v, w >∈ E(G),
v ∈ V(G)\V(G′) , w ∈ V(G′)}.

A neighborhood affinity score metric [25], denoted as NS(G′, G′′), is imported to measure the
similarity between two overlapping graphs G′ = (V′, E′) and G′′ = (V′′, E′′),

NS(G′, G′′) =
|VG′ ∩VG′′ |2
|VG′ | × |VG′′ |

,

where, if NS(G′, G′′) >= t (t is a predefined threshold), we may declare cluster G′ = (V′, E′) and
cluster G′′ = (V′′, E′′) can be further merged as a result of their high topological similarity.

As is well known, GO is composed of three orthogonal ontologies capturing knowledge about
biological process, molecular function and cellular component, and each ontology consists of controlled
and structured biological terms that can be used to annotate genes and proteins. Some GO item pairs
are highly functionally related—for example, sharing a common parent node, or one is just a near
ancestor of the other, while other GO item pairs may possess much weaker relationships or even be
functionally independent. Therefore, the urgent need is to design a metric to quantify the functional
interdependence between two GO items. Fortunately, Ref. [18] has done what we want (see the
formula below):

f ri,j =
rei,j − eei,j√

eei,j(1− ( ∑
k∈GI

eei,k/|E|))(1− ( ∑
k∈GI

eek,j/|E|))
,

where rei,j represents the real number of edges in G connecting one protein annotated with GO item i
and the other annotated with item j, eei,j represents the expected number of edges that one protein
is annotated with item i and the other annotated with item j in G, hence it equals (Number of edges
in G with one protein annotated with i)*(Number of edges in G with one protein annotated with j
to the others)/|E|, and GI represents the whole GO items set. Ref. [18] also indicates that item i and
j are functionally interdependent if f ri,j > 1.96; otherwise, they are considered to be functionally
independent.

A protein complex is pervasively modeled as an induced subgraph of PPI network G, the proteins
in which have dense intra-connections and are sparely connected to the rest of the network, thus we
introduce a new and effective closeness function to quantify the probability that G′ is complex based
on network topology:

cf(G′) = density(G′)× (
1
|G′| ∗ ∑

v∈G′

|NG′
v |
|Nv|

),

where density(G′)= 2×|E′ |
|V′ |×(|V′ |−1) is the density of graph G′, depicted to quantify the richness of edges in

G′, and |N
G′
v |
|Nv | corresponds to the percentage of v’s direct neighbors located within G′. If |N

G′
v |
|Nv | equals 1,

all the neighbors of v are in G′, so there is a high tendency that v should be a member of G′. If equals 0,
v has little chance to be a member of G′. Consequently, the expression in the bracket represents the
mean possibility of each node being retained in G′. Compared with previous closeness function based
on the density of G′, cf not only assesses the inner denseness of G′, but also takes the ratio of G′ inner
edges and outer edges into consideration, hence manifesting superiority in appraising the likelihood
of G′ to be a real complex.

4.2. Description of CFOCM Algorithm

Most of the protein complexes contain core–attachment structure, and the proteins in the core share
similar topology and are highly functionally related, while the attach proteins are usually located in
the periphery of the core [14]. As the differences between core proteins and attach proteins, therefore,
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our core–attachment based algorithm CFOCM for protein complexes identification, comprised of
two necessary phases, which first detects the protein complexes’ cores and then selects attach proteins
to the discovered cores.

4.2.1. The Complex Cores Detection

Protein-complex core plays a key role for complex performing biological function, and determines
the cellular role and significance of the complex in the context to a large extent [14]. The results of
biological analysis also indicate that most protein complex cores own some significant distinguishing
features: including a small group of proteins which are densely intra-connected and sparsely to
outsides, allowing overlaps between cores, possession of some common functions, showing an
altitudinal mRNA co-expression patterns. In this paper, however, only the former three features
are used to portray the cores discovered by CFOCM, and our detected cores satisfy the following
assumption.

Assumption 1. A subgraph G′ = (V′, E′) is a protein-complex core unless if satisfying the followed conditions:

1. The topology of G′ meets: |G′| >= 3, G′ reaches the local optimum that there does not exist any neighbor
node v that satisfies cf(G′+ {v}) > cf(G′) or cf(G′−{v}) > cf(G′), and no such G′′ exists if G′ ⊆ G′′

and G′′ is a complex core.
2. If G′ has overlaps with G′′, then NS(G′, G′′) < t must be satisfied; otherwise, G′ and G′′ could

combine together.
3. G′ needs to be biologically significant: mx is defined as the the maximum common GO item annotating a

maximum number of nodes in G′, ∀v ∈ V′, v is either annotated by mx or annotated by a GO item gi
interdependent with mx, which satisfies fr(gi, mx) > 1.96.

Different from traditional methods exploring each core protein separately, our above complex-core
assumption is more plausible for considering all proteins in the core as a whole. Benefiting from
this renovation ensures that each protein in the core owns similar topology and contributes to the
enforcement of core’s biological functions. Conditions 1, 2, and 3 guarantees the maximizes closeness
function value of core, the nearest distance can be retained between different cores, and participation
of at least one common biological functions, respectively. Specifically, most traditional literature is
mainly focused on the assurance of highly functional similarity between each protein pair in the core,
which will result in neglecting that the core as a whole should perform some common functions, while
this flaw is certainly renovated by our integrated global view of the core.

Algorithm 1 illustrates that the overall framework to detect protein-complex cores, and, without
question, the discovered cores comply with definitions in Assumption 1. We first compute the
functional interdependence between each GO items pair by the definition fr in line 1. Then, in line 2,
we identify all cliques that are fully connected subgraphs by using a complete enumeration method [29],
based on the fact that a k-clique can be obtained by adding a vertex to the clique with k-1 vertices and
the 2-cliques can be initialized as the edges in the graph, but only the maximal cliques are reserved
at last, and a k-clique is regarded as a maximal k-clique only in the case that it cannot be enlarged
by adding any vertex. After that, lines 4–19 mining complex cores by a iteration process on the
basis of the two aforementioned pretreatment works. Here, a concept of candidate-core family is
presented, containing the core itself and its similar candidate-cores with the neighborhood affinity
score NS less than a predefined threshold t. For each certain candidate-core, its family set is obtained
in lines 8–13, and a more reasonable combined candidate-core comes into being through algorithm
Merge_Similar_Cores in line 14. The details of Merge_Similar_Cores algorithm are described in
Algorithm 2. Still, in lines 15–17, if the current generated candidate-core already exists in the generated
candidate-core set, we simply discard it; otherwise, we add it to the candidate-core set. After these
steps, though, there unavoidably exist some incorrect manipulations, excessive overlapping and
biological meaningless candidate cores are substantially removed, and the overwhelming majority of
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the vertexes in retained cores are densely connected internally, possess similar topology and attend to
share at least one common GO annotated function.

Algorithm 1: Complex cores detection algorithm.
Require: The PPI network G = (V, E);

Neighborhood affinity score threshold t.
Ensure: The detected complex cores set CS.

1: calculate each GO item pair functional interdependence f r;
2: find all the maximum cliques MC in G;
3: CS = MC;
4: repeat

5: MC = CS;
6: CS = {};
7: for mci in MC do

8: Fmci = {mci}; {Fmci stores the cliques similar with mci}
9: for mcj in MC do

10: if NS(mci, mcj) >= t then

11: Fmci = Fmci ∪ {mcj};
12: end if
13: end for
14: c = Merge_Similar_Cores(Fmci );
15: if c is not exists in CS then

16: CS = CS ∪ {c};
17: end if
18: end for
19: until not exists any two elements ci and cj in CS satisfying NS(ci, cj) >= t
20: return CS;

A crucial artifice, not described in Algorithm 1, is applied in the process of detecting cores. First,
for each maximal cliques set with the same number of vertexes, we generate their corresponding new
candidate cores by executing steps in lines 4–19, and then form the final detected cores via the same
steps on these different-sized generated cores. Without using this, the smaller cliques may be annexed
by the larger similar cliques so that they barely contribute to the generation of the new candidate core.
Actually, this artifice is proved to be an effective means of improving the predicting performance.

4.2.2. Similar Complex Cores Merge

Given the family Fmc of the candidate core mc, the Merge_Similar_Cores algorithm will filter the
proteins that can not help to preserve the topology of the core or are functionally independent with
other proteins in the core and return a new candidate core.

Our Merge_Similar_Cores algorithm works as follows. To begin with, we extract the proteins
PS from the input family of a candidate-core in line 1, and find the GO item m disappeared in the
GO annotations of maximal proteins in line 2. Afterwards, in lines 3–7, we remove proteins that
are neither annotated by the common item m nor have a GO item functional interdependent with
item m, and this procedure ensures that the returned candidate-core has a high probability of owning
at least one common GO function because the proteins in the returned candidate-core either have
the common GO item m or a GO item j exists that is functionally interdependent with m. Finally,
in lines 8–10, we iteratively delete a protein p from the PS until no such protein p exists, satisfying
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cf(PS− {p}) > cf(PS), and ensuring that the remaining proteins reach the local optimum, which is
relatively richly inner-connected and sparsely connected to the outside.

Algorithm 2: c = Merge_Similar_Cores (Fmc).
1: get all proteins PS contained in Fmc;
2: find the GO item m which annotating maximum number of proteins in PS;
3: for each p in PS do

4: if p is not annotated by m and exists no GO item j annotating p satisfying: f rm,j < 1.96 then

5: PS = PS− {p};
6: end if
7: end for
8: while exists max

p∈PS
cf(PS− {p}) > cf(PS) do

9: PS = PS− {arg max
p∈PS

cf(PS− {p})};
10: end while
11: return c = PS;

Each input candidate-core family goes through these steps, and a newer candidate-core has been
formed. In addition, Figure 6 also provides an example to illustrate the process of our proposed
Merge_Similar_Cores algorithm.

4.2.3. Attach-Proteins Screening

After the foregoing phase of our CFOCM method, the protein-complex cores have already been
mined from PPI network G = (V, E). In the second phase, we will form the final predicted complex
by appending reliable peripheral proteins to the discovered cores. Given a protein complex core c,
for each external boundary protein p of current core c, the following Assumption 2 presents whether p
should be an attachment to the core c or not.

Assumption 2. A external boundary protein p is affirmed as an attachment to the complex core c if satisfying
cf(c + {p}) > cf(c).

From the above assumption, the external boundary protein p improves the closeness function cf
of the current cluster selected as an attachment. Through appending some attachment proteins to the
current core, the topology of core can still be reserved, and thus all the proteins in each final predicted
complex are densely connected and sparsely connected to the outside. Algorithm 3 is the pseudo
code description.

Algorithm 3: Attach-proteins screening algorithm.
Require: Protein complex cores CS.
Ensure: The predicted complexes Complexes.

1: Complexes = {};
2: for each c in CS do

3: while exists max
v∈Neighbors(c)

cf(c ∪ {v}) > cf(c) do

4: c = c ∪ {arg max
v∈Neighbors(c)

cf(c ∪ {v})};
5: end while
6: Complexes = Complexes ∪ {c};
7: end for
8: return Complexes;
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Figure 6. The diagram of Merge_Similar_Cores algorithm. In the example, (A) is the family graph of
clique {A,B,C}, including cliques {{A,B,C},{A,B,D},{A,B,H},{A,C,E},{B,C,F},{B,C,G}}, and the proteins
set is {A,B,C,D,E,F,G,H}. In (B), the common Gene Ontology (GO) item is GO:02, and reserve vertex
E as f rGO:02,GO:04 > 1.96, while drop vertex F is f rGO:02,GO:05 < 1.96. In (C), drop vertex G is
arg max

p∈PS
cf(PS− {p}) = G. In (D), drop vertex H is arg max

p∈PS
cf(PS− {p}) = H, and returns the next

candidate-core A,B,C,D,E, as no remove operation can improve the cf.

4.3. Data Sources

Three publicly available yeast PPI networks, namely the Database of Interacting Proteins (DIP)
data [30], Gavin data [14] and Srihari data collected by Srihari et al. [31], are used to evaluate
the performance of our method CFOCM in protein complex prediction. DIP consists of 17,203 PPIs
involving 4930 proteins, while Gavin data contains fewer proteins but is more densely connected, which
consists of 6531 high-quality interactions among 1430 proteins. Srihiri data contains 20,000 interactions
covering 3680 proteins derived from the BioGRID, IntAct, and MINT repositories.
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Table 6. Three protein-protein interaction (PPI) networks used in the experiments.

Dataset #Proteins #Interactions Average Node Degree

DIP 4930 17203 6.98
Gavin 1430 6531 9.13
Srihari 3680 20,000 10.87

To validate our predicted complexes, three reference sets of real complexes, denoted as the Munich
Information Center for Protein Sequence (MIPS) [32], Saccharomyces Genome Database (SGD) [33],
and CYC2008 [34], are selected as benchmarks. MIPS consists of 203 protein complexes manually
curated from the literature, SGD contains 323 complexes derived from Gene Ontology-based complex
annotations, and CYC2008 consists of 408 hand-curated complexes reliably backed by small-scale
experiments.

The yeast GO annotation dataset is downloaded from the SGD database, and the submission data
is February 2014.

5. Conclusions

In this paper, we have proposed a novel algorithm CFOCM for protein complex identification
from the protein–protein interaction network. According to the fact that there some proteins involved
in more than one biological function or cellular processes, CFOCM implements allowing overlaps
between detected complexes. Meanwhile, CFOCM also takes into account the inherent core–attachment
structure in the protein complexes. Moreover, CFOCM ensures topological similarity and functional
interdependence between each pair of proteins within detected cores.

Comparison experiments between CFOCM and the other six state-of-the-art methods are carried
out in DIP networks, Gavin networks and Srihari data, and the results of all tests show that CFOCM
significantly outperforms the others. Moreover, CFOCM has been demonstrated to be capable
of filtering the low-confidence or biological insignificant protein complexes via comparing with
unCFOCM without consideration that the proteins in a complex core should occupy some common
functions. In a word, CFOCM is efficient, robust, and it is applicable for helping biologists search for
new biological meaningful protein complexes.

The follow-up works are ongoing. For instance, since some proteins still have not been functionally
annotated, and we intend to find a more suitable strategy to handle this data problem, and design a
parallel version of CFOCM to accelerate the operating speed. In addition, how to extend CFOCM to
detect protein complexes and functional modules in dynamic PPI networks, which can be constructed
by incorporating gene expression data, is also a promising direction.
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