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Abstract: Premature leaf senescence negatively impacts the grain yield in the important monocot
rice (Oryza sativa L.); to understand the molecular mechanism we carried out a screen for mutants
with premature senescence leaves in a mutant bank generated by ethyl methane sulfonate (EMS)
mutagenesis of elite indica rice ZhongJian100. Five premature senescence leaf (psl15, psl50, psl89,
psl117 and psl270) mutants were identified with distinct yellowish phenotypes on leaves starting
from the tillering stage to final maturation. Moreover, these mutants exhibited significantly
increased malonaldehyde content, decreased chlorophyll content, reduced numbers of chloroplast
and grana thylakoid, altered photosynthetic ability and expression of photosynthesis-related genes.
Furthermore, the expression of senescence-related indicator OsI57 was significantly up-regulated
in four mutants. Histochemical analysis indicated that cell death and reactive oxygen species
(ROS) accumulation occurred in the mutants with altered activities of ROS scavenging enzymes.
Both darkness and abscisic acid (ABA) treatments could induce leaf senescence and resulted in up-
or down-regulation of ABA metabolism-related genes in the mutants. Genetic analysis indicated
that all the premature senescence leaf mutants were controlled by single non-allelic recessive genes.
The data suggested that mechanisms underlying premature leaf senescence are likely different among
the mutants. The present study would facilitate us to further fine mapping, cloning and functional
characterization of the corresponding genes mediating the premature leaf senescence in rice.

Keywords: premature senescence; chlorophyll; abscisic acid; reactive oxygen species; ultrastructure;
rice (Oryza sativa L.)

1. Introduction

Leaf senescence is the final stage of leaf development, in which intracellular organelles and
macromolecules are actively destabilized to relocate nutrients into developing tissues or storage
organs [1]. The timing of leaf senescence generates ultimately a great impact on the total biomass
production. Understanding the process of leaf senescence caused either by environmental stresses or
internal genetic factors is extremely important for the breeding of higher-yielding crops with optimized
nutritional qualities [2].

Chlorophyll plays a central role in photosynthesis by forming complexes with thylakoid-membrane
proteins such as Photosystem I (PSI), Photosystem II (PSII), and the cytochrome b6f complex [3].
The most striking feature of premature senescence leaf mutants is the leaf yellowish phenotype due
to the breakdown of chlorophyll during chloroplast degeneration and hydrolysis of macromolecules
such as proteins and nucleic acids, which finally results in mitochondria and nuclei dissociation and
cell death [4,5]. For example, rice pse(t) mutant displays brown spots and yellowish color on the
upper leaves which ultimately wilt [6]. Similarly, psd128 exhibits yellowish with brown spot leaves at
the 6-leaf stage and the plants die at the heading stage [7]. It has been shown that chlorophylls and
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proteins in leaves are largely degraded during the process of rice plant senescence [7–9]. Structurally,
the thylakoid membranes are damaged, the number of grana decreases in chloroplasts while the
number of osmiophilic granules of chloroplast increases during the senescence process, leading to the
damage and degradation of chloroplasts as well as the final decline and loss of photosynthesis [7,10].

Reactive oxygen species (ROS) either from extracellular or intracellular sources plays a
fundamental role during leaf senescence. Over accumulation of ROS, including O2

− and H2O2,
causes leaf senescence, even cell death resulting from the impaired structure and function
of chloroplasts and mitochondria [11]. ROS scavenging systems such as peroxidase (POD),
superoxide dismutase (SOD) and catalase (CAT) are largely disturbed in senescence rice plants [12].
In addition, senescence plants also exhibit a high level of malonaldehyde (MDA), an indicator of cellular
membrane damage due to lipid peroxidation [7,13]. External stimuli like darkness and endogenous
signals such as abscisic acid (ABA) can promote leaf senescence of rice in advance [14,15]. ABA is
a typical plant hormone with a variety of functions during biotic stresses, abiotic stresses and leaf
senescence [16]. It has been revealed that ROS signals, especially H2O2, are involved in ABA-induced
rice leaf senescence [17].

To date, as many as 132 rice senescence-associated genes (SAGs) distributing on all the
12 chromosomes have been annotated in the Leaf Senescence Database (http://psd.cbi.pku.edu.cn/).
These SAGs are divided into the following five groups: (I) natural senescence, (II) dark induced
senescence, (III) nutrition deficiency induced senescence, (IV) stress induced senescence and (V)
others [18]. Leaf senescence is a highly coordinated process regulated by a large number of SAGs,
which are upregulated during senescence [19]. The corresponding mutants of SAGs generally can
be grouped into two major categories according to their phenotypes: premature senescence mutants
and delayed senescence mutants [20]. Natural variants or mutants that exhibit delayed senescence
are generally called “stay-green” [21], such as nyc1 [10], nyc3 [3] sgr [22] and nol [23] mutants of rice.
There are much more premature senescence mutants reported so far compared with the delayed
senescence mutants in rice, for instance, the ospse1 [20], psd128 [7], es1-1 [24], lts [25], rls1 [9], ps1-D [5]
and noe1 [26] mutants, which are involved in different complex regulatory networks of senescence.

In this study, we identified five premature leaf senescence mutants (psl15, psl50, psl89, psl117 and
psl270) from an ethyl methane sulfonate (EMS) mutant bank of rice cultivar ZhongJian100. We further
characterized their performance on agronomic traits, their physio-biochemical properties including
chlorophyll contents, chloroplast structure, photosynthetic ability, response to darkness and ABA,
expression profile of ABA and senescence-related genes and the genetic controls of their premature
senescence phenotypes. Our results would provide the basis for the isolation of these premature
senescence genes and the elucidation of the senescence mechanism in rice.

2. Results

2.1. Phenotype of Premature Senescence Leaf Mutants

Under field and greenhouse conditions in Hangzhou, China, psl89 and psl117 displayed distinct
yellowish leaf phenotypes around 45 days after sowing. Moreover, obvious retarded growth occurred
both in psl89 and psl117 mutants compared with wild type (WT) (Figure 1D,E). On the other hand,
both psl15 and psl270 showed only a slightly yellowing leaf phenotype on the older leaves about
60 days after sowing till to the end of tillering stage (Figure 1B,F). Approximately 65 days after sowing,
psl50 exhibited a brown and wilted phenotype on the bottom older leaves, which become more severe
at the maximum tillering stage (Figure 1C). With the development of the plants, the mutants displayed
a very significant premature senescence phenotype with deep-yellowing and wilted leaves at the
heading and grain-filling stage compared with WT (Figure 1G–L). It was worth noting that psl50
exhibited a rapid leaf aging and death at the grain-filling stage (Figure 1I), and consequently led to a
significant loss of grain yield (Figure S1B,C). Performance of agronomic traits including the number of
panicles per plant, length of panicle, seed-setting rate and 1000-grain weight were remarkably reduced
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in the mutants (Table 1). The differences of plant height between psl89, psl117, psl270, and WT were
attributed to the differences of their internode lengths as well as the panicle lengths (Table 1 and
Figure S1A). Furthermore, the heading dates of psl89 and psl117 mutants were approximately 10 days
longer than those of the other three mutants and WT.
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Table 1. Agronomic traits of the mutants and wild type. 
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ZJ100 101.66 ± 2.89a 26.60 ± 0.53a 14.67 ± 0.58b 22.01 ± 0.10a 85.99 ± 0.86a 
M15 97.50 ± 1.82ab 24.00 ± 0.50bc 11.00 ± 1.00de 21.48 ± 0.12b 76.33 ± 0.75c 
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M270 93.67 ± 4.62b 24.73 ± 1.46b 12.33 ± 1.15cd 21.74 ± 0.32ab 86.32 ± 2.41a 

Different letters after each number indicate a statistical difference at p ≤ 0.05 by Duncan’s test. 
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photosynthetic parameter, net photosynthetic rate (Pn) affects accumulation of dry matter of crops to 
some extent. We found that the value of Pn was similar between psl117 and WT, and Pn values of 
psl15, psl50 and psl89 were significantly lower than that of WT, in contrast, Pn value of psl270 was 
significantly higher than that of WT (Figure 2A). The lower level of Pn could cause the accumulation 
of intercellular CO2, thus the intercellular CO2 concentration (Ci) in psl15 mutant was significantly 
higher than those of WT and the other four mutants (Figure 2C). In contrast, the higher level of Pn in 
psl270 might consume more CO2, leading to a significant decrease of Ci in psl270 (Figure 2A,C). There 
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Figure 1. Phenotypes of psl mutants and wild type (WT). (A) WT at the tillering stage; (B) psl15 at the
tillering stage; (C) psl50 at the tillering stage; (D) psl89 at the tillering stage; (E) psl117 at the tillering
stage; (F) psl270 at the tillering stage; (G) WT at the grain-filling stage; (H) psl15 at the grain-filling
stage; (I) psl50 at the grain-filling stage; (J) psl89 at the grain-filling stage; (K) psl117 at the grain-filling
stage; (L) psl270 at the grain-filling stage. Insets show magnified views of bottom second leaves.
Scale bar = 20 cm.

Table 1. Agronomic traits of the mutants and wild type.

Material Plant Height (cm) Panicle Length (cm) No. Panicle 1000-Grain Weight (g) Seed-Setting Rate (%)

ZJ100 101.66 ± 2.89a 26.60 ± 0.53a 14.67 ± 0.58b 22.01 ± 0.10a 85.99 ± 0.86a
M15 97.50 ± 1.82ab 24.00 ± 0.50bc 11.00 ± 1.00de 21.48 ± 0.12b 76.33 ± 0.75c
M50 97.83 ± 1.76ab 23.73 ± 0.72bc 10.33 ± 0.58e 19.53 ± 0.09d 74.88 ± 0.46c
M89 95.17 ± 2.25b 19.63 ± 1.23d 13.33 ± 1.15bc 18.80 ± 0.07e 81.14 ± 2.08b

M117 83.33 ± 4.72c 22.33 ± 0.86c 16.67 ± 1.15a 20.84 ± 0.20c 74.27 ± 1.63c
M270 93.67 ± 4.62b 24.73 ± 1.46b 12.33 ± 1.15cd 21.74 ± 0.32ab 86.32 ± 2.41a

Different letters after each number indicate a statistical difference at p ≤ 0.05 by Duncan’s test.

2.2. Alterations of Photosynthetic and Senescence-related Parameters

To investigate the influences of premature senescence leaves on photosynthesis efficiency,
we examined the photosynthetic parameters of the flag leaves at the heading stage. As an important
photosynthetic parameter, net photosynthetic rate (Pn) affects accumulation of dry matter of crops to
some extent. We found that the value of Pn was similar between psl117 and WT, and Pn values of psl15,
psl50 and psl89 were significantly lower than that of WT, in contrast, Pn value of psl270 was significantly
higher than that of WT (Figure 2A). The lower level of Pn could cause the accumulation of intercellular
CO2, thus the intercellular CO2 concentration (Ci) in psl15 mutant was significantly higher than those
of WT and the other four mutants (Figure 2C). In contrast, the higher level of Pn in psl270 might
consume more CO2, leading to a significant decrease of Ci in psl270 (Figure 2A,C). There were general
positive correlation between the values of stomatal conductance (Gs) and transpiration rate (Tr) [27].
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Hence, it is reasonable that psl270 exhibited the highest levels of Gs and Tr while psl89 and psl117
showed the lowest level of Gs and Tr (Figure 2B,D).
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Figure 2. Photosynthetic and senescence-related parameters of WT and mutants. (A) Net photosynthetic
rate (Pn); (B) stomatal conductance (Gs); (C) transpiration rate (Tr); (D) intercellular CO2 concentration
(Ci); (E) soluble proteins (SP) content; (F) malonaldehyde (MDA) content. (G) Catalase (CAT) activity;
(H) superoxide dismutase (SOD) activity; (I) peroxidase (POD) activity; (J) Contents of photosynthetic
pigments. Chl a, chlorophyll a; Chl b, chlorophyll b; Chl T, total chlorophyll; Car, carotenoid.
All experiments were carried out using flag leaves at the heading stage. Error bars indicate Mean ± SD
(n = 3). Different letters indicate a statistical difference at p ≤ 0.05 by Duncan’s test.

At the heading stage, we also examined the senescence-related parameters, including the content
of soluble protein (SP) and malonaldehyde (MDA), and the enzymatic activities of ROS scavenging
systems including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). Our results
showed that the level of SP in psl270 was significantly higher than that of WT, while the contents of
SP in the other mutants were apparently lower than that of WT (Figure 2E). This might also explain
why psl270 has the highest level of Pn among the mutants. In comparison with WT, the MDA contents
of all five mutants were significantly increased at the heading stage (Figure 2F), consistent with the
presence of early senescence phenotype in the mutants. The activities of CAT were significantly lower
in psl89 and psl117 than that of WT, while CAT activities were similar to WT in psl15, psl50 and psl270
(Figure 2G). The activities of SOD in psl15, psl117, and psl270 were apparently higher than that of WT
while the SOD activity was much lower in psl89 than that of WT (Figure 2H). The activities of POD in
all the mutants were significantly lower than that of WT (Figure 2I). In terms of mutants, the activities
of all three enzymes were significantly decreased in psl89, indicating that psl89 might have lost the
ability for detoxification of ROS. Besides the role in detoxification of ROS, POD is also closely related
to the lignification of plant tissues and has a lower activity in the aging plant tissues [28]. This may
explain why all five mutants displayed the lower level of POD activities.

To explore the direct cause for the yellowish leaf phenotype of the mutants, we examined
photosynthesis-related pigment contents at the heading stage. The results indicated that the pigment
contents in the flag-leaves of the mutants including chlorophyll b (Chl b), total chlorophyll (Chl T) and
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carotenoid (Car) were significantly lower than those of WT (Figure 2J). In fact, significant differences
of chlorophyll contents in five mutants had appeared at the seedling stage (Figure S1D), even though
there were no visual differences in phenotype among these five mutants and WT at this stage.
Taken together, all the results above indicated that the five mutants did possess typical premature
senescence characteristics mainly with yellowish leaves, elevated MDA contents, and decreased
photosynthetic pigment levels and ability.

2.3. Impaired Chloroplast Development in the Mutants

Chloroplast degradation is one of the cellular characteristics of leaf senescence in rice. To explore
the chloroplast development in the mutants, we compared the ultrastructure of chloroplast in WT
and the mutants at the tillering stage by transmission electron microscopy (TEM). The results showed
that the number of chloroplast and grana thylakoid were lower in all mutants than those of WT
(Figure 3A–R). Among them, the chloroplast structure was degraded most seriously in psl50 mutant
(Figure 3G–I). As for psl89 mutant, the number of starch granules was increased and the size of starch
granules was much larger compared with WT (Figure 3J–O). Furthermore, the number of osmiophilic
granules increased in the chloroplasts of psl15, psl117, and psl270 mutants compared with WT. All these
results demonstrated that the EMS-induced mutations resulted in chloroplast dysplasia in all mutants.
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Figure 3. Ultrastructure of chloroplast in the mutants and WT at the tillering stage. (A–C) WT.
(D–F) psl15. (G–I) psl50. (J–L) psl89. (M–O) psl117. (P–R) psl270 mutant. C, chloroplast; N, nucleus; O,
osmiophilic granule; S, starch granule; G, grana thylakoid.

2.4. Premature Senescence Leaf phenotypes Are Controlled by Single Recessive Genes

All F1 plants from the crosses of psl15/ZJ100, psl50/ZJ100, psl89/IR64, psl117/ZJ100 and
psl270/80A90YR72 showed a normal green phenotype similar to WT. The number of WT plants
and the mutant-type F2 individual plants fitted to the expected 3:1 ratio in the corresponding five F2

populations (Table 2). These results indicated that the premature senescence leaf phenotypes in all five
mutants were controlled by single recessive genes.

To determine whether these five mutants are allelic to each other, we further intercrossed the
five mutants with each other and investigated the phenotypes of F1 plants. The results showed that
each of the mutant displayed a distinct phenotype and is non-allelic to each other except the allelism
between psl15 × psl89 and psl50 × psl117 could not be determined because their F1 plants from these
two crosses failed to survive (Table 3 and Figure S2).

Table 2. Genetic analysis of premature senescence leaf mutants.

Cross F1
No. F2 Individual

χ2
(3:1)

Wild-Type Mutant-Type

psl15/ZJ100 Normal 292 88 0.69
psl50/ZJ100 Normal 495 170 0.11
psl89/IR64 Normal 457 137 1.19

psl117/ZJ100 Normal 501 154 0.77
psl270/80A90YR72 Normal 225 63 1.50

Table 3. Allelism test of premature senescence leaf mutants.

Cross (Female Parent × Male Parent) Phenotype of F1 Plants Allelism

psl15 × psl50 Wild-type Non-allelic
psl89 × psl15 Non-survival Not determined

psl117 × psl15 Wild-type Non-allelic
psl270 × psl15 Wild-type Non-allelic
psl50 × psl89 Wild-type Non-allelic

psl117 × psl50 Non-survival Not determined
psl270 × psl50 Wild-type Non-allelic
psl89 × psl117 Wild-type Non-allelic
psl89 × psl270 Wild-type Non-allelic

psl117 × psl270 Wild-type Non-allelic
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2.5. Darkness and ABA Induce Leaf Senescence

Darkness is one of the most powerful known external stimuli of leaf senescence [4]. Consequently,
it is used frequently as an effective method to induce synchronous senescence [29,30]. To confirm
whether leaf senescence progress could be accelerated in darkness, the detached flag leaves from the
mutants were incubated in darkness and control light conditions for five days. The results showed
that psl15, psl89, psl117 and psl270 had lower chlorophyll contents than that of WT while psl50 had a
similar level of chlorophyll to WT before treatment (Figure 4A–F,Y). The chlorophyll levels in detached
leaves changed in a similar pattern after 5 d treatment in continuous light although psl270 showed the
most rapid decline in chlorophyll level with the most prominent yellowish phenotype (Figure 4G–L,Y).
Under darkness conditions, although all the mutants and WT displayed darkness-induced yellowing
phenotype, and the detached leaves of psl89 and psl117 exhibited relatively delayed senescence
with greener leaves and higher chlorophyll contents compared with the other mutants and WT
(Figure 4M–R,Y). Again, psl270 displayed apparently accelerated senescence and significantly reduced
chlorophyll content compared with the remaining mutants and WT in darkness (Figure 4M–R,Y).
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Figure 4. Darkness- and abscisic acid (ABA)-induced leaf senescence. (A–X) Detached top second
leaves from the WT and five mutants at the tillering stage were incubated with continuous light (H2O),
darkness (H2O), and 200 µM ABA (continuous light) at 28 ◦C for 5 d. PT, Pretreatment. Scale bar = 2 cm.
(Y) Chlorophyll content of the detached top second leaves at tillering stage. Error bars indicate
means ± SD (n = 3). Different letters indicate a statistical difference at p ≤ 0.05 by Duncan’s test.

Leaf senescence is a genetically controlled developmental process that can be modulated by a
variety of phytohormones, especially ABA, that plays a critical role in leaf senescence [31,32]. We thus
further examined the senescence symptoms of detached leaves after 5 d ABA treatment. The results
indicated that significantly accelerated senescence under ABA treatment was observed in all materials
tested compared with that under light conditions (Figure 4G–L,S–X). Interestingly, only psl270 showed
significantly reduced chlorophyll content under ABA treatment (Figure 4Y). Taken together, our results
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revealed that psl270 was likely more sensitive both to the stimuli of darkness and ABA than WT and
the other mutants.

2.6. ROS Accumulation, Cell Death and DNA Fragmentation Occur in the Mutants

To detect whether accumulation of hydrogen peroxide (H2O2) and cell death occur in the
mutants, the leaf samples at the tillering stage from WT and the mutants were stained with
3,3′-diaminobenzidine (DAB) and Trypan Blue, respectively. The results showed that increased
level of brown precipitations were observed in the mutants compared with WT, indicating that the
presence of H2O2 accumulation did occur in the mutants (Figure 5A). Similarly, more number of
blue spots was detected in the mutant leaves especially in psl50, psl89, psl117 and psl270 after Trypan
Blue staining, indicating that the presence of cell death also occurred in these four mutants on the
progression of premature leaf senescence (Figure 5B).
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Figure 5. Histochemical analysis and terminal deoxyribonucleotidyl transferase-mediated dUTP
nick-end labeling (TUNEL) assays in WT and the mutants. (A) 3,3-diaminobenzidine (DAB) assay at
the tillering stage; (B) Trypan Blue staining at the tillering stage; (C) TUNEL assay at the tillering stage.
Blue signal represents 4′,6-diamino-phenylindole (DAPI) staining; green color represents positive
result. a–f are negative controls for g–l, respectively. The scale bars indicate 100 µM.
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To confirm the cell death in the mutants at cellular and molecular levels, we further performed
a terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay on
the bottom second leaves at the tillering stage. The same leaf sections of bottom second leaves were
simultaneously stained with 4′,6-diamino-phenylindole (DAPI) to reveal the nuclei (blue). The results
showed that a few number of nucleus (green) were TUNEL positive in WT, whereas numerous
nuclei were TUNEL positive in leaf sections of psl50, psl89, psl117 and psl270 mutants (Figure 5C).
These results indicated that the mutations induced DNA damage especially in psl50, psl89, psl117 and
psl270, corresponding to cell death detected in Trypan blue staining (Figure 5B).

2.7. Alterations of ABA Contents and ABA-Related Gene Expression

We have shown that external ABA treatment causes senescence in all the mutants as well as
WT (Figure 4Y). To further investigate whether the premature leaf senescence was associated with
the internal ABA levels in the mutants, we measured the ABA contents of flag leaves at the heading
stage. The results showed that the contents of ABA in psl15 and psl117 were apparently lower than
that of WT while the ABA contents in psl50, psl89 and psl270 were significantly higher than that of
WT (Figure 6A). Further examination revealed that the transcription level of the ABA biosynthetic
gene OsNCED1 was significantly down-regulated and the ABA-inactivation gene OsABA8ox2 was
significantly up-regulated in psl15 mutant (Figure 6B). The expressions of six genes including four
ABA biosynthetic genes OsNCED1, OsNCED3, OsNCED4, and OsZEP as well as two ABA-inactivation
genes OsABA8ox2 and OsABA8ox3, were significantly down-regulated in psl89 mutant (Figure 6D).
The expression patterns of ABA-related genes were similar in psl50 and psl117 with a couple of
genes (OsNCED4 and OsABA8ox1) were upregulated and 4–5 genes (OsNCED1, OsNCED3, OsZEP,
OsABAox2 and/or OsABAox3) were down-regulated (Figure 6C,E) although the ABA contents of these
two mutants displayed hugely different from each other compared with WT (Figure 6A). In contrast to
psl89, the expression levels of five ABA-related genes (OsNECD3, OsNECD4, OsABAox1, and OsABAox2
and OsABAox3) were all significantly upregulated in psl270 compared with WT (Figure 6F). Our results
demonstrated that ABA participated in the mediation of premature leaf senescence probably in
different manners in the mutants.
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Figure 6. ABA contents and expression of ABA-related genes at the heading stage. (A) ABA
contents in the flag leaves; (B–F) expression of ABA-related genes including biosynthetic genes
OsNCED1 (LOC_Os02g47510), OsNCED3 (LOC_Os03g44380), OsNCED4 (LOC_Os07g05940) and
OsZEP (LOC_Os04g37619) and inactivation genes OsABA8ox1 (LOC_Os02g47470), OsABA8ox2
(LOC_Os08g36860) and OsABA8ox3 (LOC_Os09g28390). Error bars indicate means ± SD (n = 3).
* p ≤ 0.05, ** p ≤ 0.01; Student t test. Different letters indicate a statistical difference at p ≤ 0.05 by
Duncan’s test.
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2.8. Differential Expression of Genes Associated with Senescence, Chlorophyll Metabolism and Photosynthesis

Besides ABA-related genes, a large number of genes, including senescence-associated
genes (SAGs), chlorophyll metabolism-related genes, and photosynthesis-related genes are well
known in participation of leaf senescing process. To examine their performance in the mutants,
we determined the expression of two SAGs, Osh36 and OsI57 [33], two chlorophyll degradation-related
genes, stay-green (SGR) and red chlorophyll catabolite reductase 1 (RCCR1) [22,34], and a set of
photosynthesis-related genes [31] in the flag leaves at the heading stage. The results showed that
Osh36, OsI57, SGR and RCCR1 were all highly expressed (p ≤ 0.05) in psl15, psl50 and psl117 compared
with WT (Figure 7A,B,D) while only OsI57 was highly expressed (p ≤ 0.05) in psl270 at the heading
stage (Figure 7E). Unexpectedly, the expression levels of Osh36 and SGR were significantly decreased
in psl89 compared with WT (Figure 7C). Nevertheless, the senescence indicator OsI57 was significantly
upregulated in four out of five mutants. Overall, our results confirmed that the expression of senescence
and chlorophyll metabolism-related genes have been altered in the premature senescence leaf mutants.
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For the expression of photosynthesis-related genes, a set of 12 genes including psbA, CAO, HEMA1,
rbcS, rbcL, CHLD, CHLH, psbS, CHLI, NPH1a, porA and cab2R were chosen for analysis. We found
that the expression levels of CAO and rbcL were significantly increased while psbS was significantly
decreased in psl15 compared with WT (Figure 7F). The expression levels of psbA, CAO, HEMA1,
rcbL and CHLD were apparently increased while the expression levels of psbS, porA and cab2R were
greatly decreased in psl50 compared with WT (Figure 7G). Interestingly, the expression profile of these
genes were similar in psl89 and psl117 with a significant down-regulation of 11/12 and 12/12 genes,
respectively (Figure 7H,I). Whereas in case of psl270 mutant, eight out twelve photosynthesis-associated
genes were up-regulated, and only one gene NPH1a was down regulated in comparison with WT
(Figure 7J), consistent with its stronger photosynthetic capacity (Figure 2A). Taken together, the results
indicated that altered expression of photosynthesis-associated genes might have contributed to the
premature leaf senescence in the mutants.

3. Discussion

Senescence process is complicated and still poorly understood although many SAGs have been
identified. In this study, we isolated five premature senescence leaf mutants from an EMS-induced
mutant library of ZhongJian100. The premature senescence leaf mutants were characterized by
yellowish leaves, high MDA levels, and low chlorophyll contents at the heading stage, and this
consequently led to the poor performance of their major agronomic traits at maturity. Each mutant
shows a distinct phenotype and is genetically controlled by a single recessive gene. psl15 is non-allelic
to psl50, psl117 and psl270; psl50 is non-allelic to psl15, psl89 and psl270; psl89 is non-allelic to psl50,
psl117 and psl270; psl117 is non-allelic to psl15, psl89 and psl270 while psl270 is non-allelic to the other
four mutants. The allelism between psl15 and psl89, psl50 and psl117 could not be determined because
their F1 plants were not viable. The reason for lethality of F1 plants from these two crosses is unknown
and requires to be further characterized.

The yellowish phenotype is directly associated with loss of chlorophyll contents and impaired
development of chloroplasts. This has been well demonstrated in chlorophyll-deficient mutants
such as OscpSRP43 [35]. In the present study, the contents of chlorophyll are significantly decreased
in all five mutants at the seedling stage as well as the tillering stage and the heading stage as
expected. Decreased chlorophyll contents are associated with impaired development or degradation of
chloroplasts in these mutants. Additionally, the mutations in psl15, psl50, psl89 and psl117 mutants also
caused negative effects on their photosynthetic capacity, respectively. However, it is worth noting that
psl270 exhibits a better performance on photosynthetic capacity which could be related to its higher
content of SP and up-regulation of multiple photosynthesis-related genes compared with WT. It has
been shown in a simulation study that lower chlorophyll level is not necessarily a bad trait for plant
biomass production [36]. Therefore, even though the elevated photosynthetic capacity and the SP level
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in psl270 is rare in premature senescence mutants, while it could be useful in rice breeding for higher
yield and better grain quality.

At the molecular level, the senescence process is accompanied with alterations of the expression
of photosynthesis-associated genes, SGRs and CDGs. Osh36 and OsI57 are two senescence indicators
that usually up-regulated in senescence plants. SGR encodes a chloroplast protein required to
trigger chlorophyll degradation during natural and darkness-induced leaf senescence [22]. RCCR1 is
participated in the breakdown of chlorophyll [37]. In the present study, the up-regulation of Osh36
and OsI57 are observed in psl15, psl50, and psl117 as expected. A slightly different pattern from these
three mutants is that only the expression of OsI57 is up-regulated in psl270, probably indicating
that up-regulation of OsI57 is enough to cause premature senescence phenotype. Unexpectedly,
the expression of Osh36 is in contrast down regulated while OsI57 expression is not changed in
psl89, reflecting that the premature senescence of psl89 might be controlled by a different mechanism.
In fact, the expression of SGR and RCCR1 is also up-regulated in psl15, psl50, and psl117, while it is
down-regulated in psl89, further indicating that a likely different mechanism of premature senescence
might have involved in psl89. Like rice, the mutation of Arabidopsis STAY-GREEN (SGR) which encodes
Mg-dechelatase would also cause a strong stay-green phenotype because it catalyzes the first step
of the chlorophyll degradation pathway [38]. It might indicate that the enzymatic properties of SGR
remain similar in both of monocots and dicots. Most of the mutants of chlorophyll degradation
enzymes, such as PPH [39], PaO [40], and CBR [41], exhibit a stay-green phenotype. Whereas in our
study, all the mutants showed premature yellow aging, hence we could conclude that there are not
dysfunctions of the chlorophyll degradation enzymes in all five mutants. In addition, both SGR and
RCCR1 expressions in psl270 are similar to WT, thus the decreased chlorophyll level in the mutant
might be not associated with the break-down of chlorophyll, and whether it is purely associated with
the up-regulation of OsI57 is yet to be characterized.

ABA might act as an original inducer in initiative of senescence and plays an important role in
triggering leaf senescence [42]. ABA anabolic enzyme 9-cis-epoxycarotenoid dioxygenase (NCED)
is the key enzyme that controls the synthesis of ABA in rice while the oxidation of ABA to phaseic
acid (PA) is catalyzed by ABA catabolic enzyme 8′-hydroxylase which is possibly encoded by three
genes (OsABA8ox1, OsABA8-2 and OsABA8-3) in rice [43,44]. In the present study, ABA treatment
causes senescence in the mutants as well as WT, although the internal ABA levels are significantly
different among them. Decreased ABA level in psl15 can be well explained by the down regulation of
ABA biosynthetic gene OsNECD1 and up-regulation of ABA catabolic gene OsABAox-2. Like psl15,
psl117 also shows a decreased internal ABA level but more ABA-related genes have been affected
including down regulation of five genes (OsNECD1, OsNECD3, OsZEP, OsABAox-2, and OsABAox-3)
and up-regulation of two genes (OsNECD4 and OsABAox-1). It needs to be characterized whether
the biosynthetic genes or the catabolic genes contribute more to the lowered internal ABA level.
The mutant psl50 has a similar expression pattern of these genes to psl117, but the overall internal ABA
level is significantly increased in psl50. We figure that unknown genetic factors might have contributed
to this difference between the two mutants. It would be necessary to clone the mutation genes and
characterize their function in order to explain the differential gene expression patterns. The mutant
psl89 exhibits a significantly increased internal ABA level, but six of these genes except OsABAox-1 are
down regulated. Similar to psl50, we assume that genes rather than those studied in the present are
likely involved in the control of ABA level in psl89. In contrast to psl89, five genes are all up-regulated
in psl270 that shows a significant increased internal ABA level, a possible explanation is that the rate
of ABA synthesis exceeded the rate of ABA catabolism. Overall, ABA level may affect premature
senescence of these mutants, but through different mechanisms.

ROS act both as important toxic substances and signaling molecules that play an important role in
lipid peroxidation, membrane damage, and consequently in leaf senescence [45]. ROS can be generated
by various sources of cellular components [46–49]. The disturbance in balance between the production
and scavenging of ROS may stimulate the formation of membrane lipid peroxidation by regulating
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the redox status of relevant cellular organelles [50]. In the present study, the activities of three ROS
scavenging enzymes SOD, CAT, and POD, are significantly decreased in psl89, indicating that this
mutant is unable to detoxify ROS which consequently lead to the premature senescence. Similarly,
the activities of POD are all apparently decreased in all the mutants, thus POD may contribute to
the senescing phenotype. Based on the metal co-factor used by the enzyme, SOD can be classified
into three groups of isozyme: copper-zinc SOD (Cu-Zn SOD), manganese SOD (Mn SOD), and iron
SOD (Fe SOD), furthermore, the roles of them differ in oxidative stress conditions [51]. An Arabidopsis
mutant in absence of Fe-SOD gene could not produce Fe SOD isozyme but with an increase level of
Cu-Zn SOD isozyme, however, the enhanced Cu-Zn SOD activity cannot completely compensate for
the deficiency in Fe SOD function [52]. Thus, we speculate that the synergetic balance among these
three SOD isozymes might be broken, resulting in changes of activity for each SOD group in psl15,
psl117 and psl270 mutants. Finally, psl15, psl117, and psl270 mutants display higher levels of total
SOD activities than that of WT. Quantitative determination of internal ROS levels in the mutants and
functional analysis of respective genes responsible for the mutations would further help us to clarify
the variation and roles of these enzymes. Furthermore, classification of sources of ROS production in
each of these mutants would facilitate our understanding of ROS-mediated leaf senescence.

Overall, the results obtained in this study have provided foundations for further studies on the
fine mapping, isolation, and functional analysis of corresponding genes governing the premature
senescence leaf phenotype.

4. Materials and Methods

4.1. Plant Materials

Five premature senescence leaf mutants (psl15, psl50, psl 89, psl117 and psl270) with yellowing
leaves were obtained from an ethane methyl sulfonate (EMS)-induced indica rice ZJ100 mutant bank.
These mutants have been selfed for more than 10 generations and the target trait has been stably
expressed under the field and greenhouse conditions in Fuyang, Hangzhou, Zhejiang, China, and
Lingshui, Hainan, China.

4.2. Genetic Analysis and Allelism Tests

Mutants psl15, psl50 and psl117 were crossed to the wild type ZJ100 (WT), psl89 was crossed to
the parental rice IR64, and psl270 was crossed to the parental line 80A90YR72, respectively. All F1

plants and the F2 populations were grown in the paddy field at China National Rice Research Institute
(CNRRI) for genetic segregation analysis while the mutants and WT were used for the evaluation
of main agronomic traits including plant height, tiller number/plant, panicle length, and 1000-grain
weight during the rice growing season in 2016. Means from three replications were used for data
analysis. For allelism tests, the mutants were intercrossed among themselves, and the F1 plants were
grown and phenotyped in the paddy field at CNRRI.

4.3. Histochemical Analysis

The premature senescence leaves from the five mutants and WT at the tillering stage were
collected for detecting the H2O2 accumulation by 3,3-diaminobenzidine (DAB) staining and cell death
by Trypan blue staining [53], respectively. The pictures were recorded using a HP ScanJet G4010scanner
(HP, Shanghai, China).

4.4. Measurement of Physio-Biochemical Parameters

Chlorophyll was extracted from 50 mg of fresh flag-leaves. The contents of chlorophyll a (Chl a),
chlorophyll b (Chl b), total chlorophyll (Chl T) and carotenoid (Car) were determined according to
Wellburn [54]. The enzymatic activities of peroxidase (POD), superoxide dismutase (SOD) and catalase
(CAT), the contents of malonaldehyde (MDA) and soluble proteins (SP) were measured following
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the manufacturer’s instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) at the
heading stage. Photosynthetic parameters including net photosynthetic rate (Pn, µmol·m−2·s−1),
stomatal conductance (Gs, mmol·m−2·s−1), intercellular CO2 concentration (Ci, µmol·mol−1) and
transpiration rate (Tr, mmol·m−2·s−1) were determined at 9:00–10:00 a.m. under field conditions with
a portable L-6400XT (LI-COR, Lincoln, NB, USA). All the measurements were taken at the saturation
irradiance with an incident photosynthetic photo flux density (PPFD) of 1200 µmol·m−2·s−1 and an
airflow rate at 500 µmol·s−1. Means from three replicates were used for analysis.

4.5. TUNEL Assays

The TUNEL assays for DNA fragmentation were performed by using a Fluorescein in Situ
Cell Death Detection Kit following the manufacturer’s instructions (Roche, Basel, Switzerland).
The methods used for sectioning and fluorescence labeling were described as previously reported [55].

4.6. Transmission Electron Microscopy

Leaf sections from mutants and WT at the tillering stage were used to perform transmission
electron microscopy according to the method described previously [1]. Samples were stained with
uranyl acetate and examined with a Tecnai G2F20 transmission electron microscope at the College of
Agriculture and Biotechnology, Zhejiang University.

4.7. Darkness and ABA treatment

Fully expanded top second leaves at the tillering stage were excised carefully. The detached leaves
were cut into ~2 cm pieces and floated on 20 mL of water or 200 µM ABA solution in Petri dishes.
The samples were incubated at 30 ◦C in darkness and continuous light for five days.

4.8. ABA Content Measurement

The flag leaves from WT and the mutants were respectively collected at the heading stage,
then immediately frozen in liquid nitrogen, and stored at −80 ◦C. 100 mg powdered fresh
specimen was weighed out and freeze-dried for 3 h, and then extracted with MilliQ water
at 4 ◦C in dark for 16 h. Quantitative analysis of ABA was performed using the Phytodetek ABA
enzyme-linked immunosorbent assay (ELISA) Kit (Agdia, Inc., Elkhart, IN, USA) according to the
manufacturer’s instructions.

4.9. Real-Time Fluorescent Quantitative PCR (qRT-PCR) Analysis

The total RNA was isolated from flag leaves of WT and the mutants at the heading stage using the
NucleoZOL Reagent Kit according to the manufacturer’s instructions (MACHEREY-NAGEL, Düren,
Germany). The first strand of copy DNA (cDNA) was synthesized using the ReverTra Ace qPCR RT
Master Mix with genomic DNA (gDNA) Remover Kit (Toyobo, Osaka, Japan). Real-time fluorescent
quantitative PCR was carried out using the FastStar Essential DNA Green Master Kit (Roche, Basel,
Switzerland) and performed on a Thermal Cycle Dice® Real Time System (Takara, Kusatsu, Japan).
All target genes were normalized to the rice internal control gene Ubiquitin (LOC_Os03g13170) to
detect the relative expression levels. Three biological repeats were conducted to obtain the final results.
The primers for the qRT-PCR are listed in Table S1.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/1/140/s1.
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