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Abstract: Considerable progress has been made recently in understanding the complex pathogenesis
and treatment of spondyloarthropathies (SpA). Currently, along with traditional disease modifying
anti-rheumatic drugs (DMARDs), TNF-α, IL-12/23 and IL-17 are available for treatment of such
diseases as ankylosing spondylitis (AS) and psoriatic arthritis (PsA). Although they adequately
control inflammatory symptoms, they do not affect the abnormal bone formation processes associated
with SpA. However, the traditional therapeutic approach does not cover the regenerative treatment
of damaged tissues. In this regards, stem cells may offer a promising, safe and effective therapeutic
option. The aim of this paper is to present the role of mesenchymal stromal cells (MSC) in pathogenesis
of SpA and to highlight the opportunities for using stem cells in regenerative processes and in the
treatment of inflammatory changes in articular structures.
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1. Introduction

Spondyloarthropathies (SpA) are a group of inflammatory rheumatoid diseases which
traditionally include ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis
(ReA), arthritis associated with Crohn’s disease and ulcerative colitis as well as undifferentiated
spondyloarthropathies. Apart from typical symptoms within the locomotor system, such as chronic
inflammation of spinal joints, inflammation of entheses and inflammation of peripheral joints, the very
complex clinical picture of SpA includes numerous non-articular manifestations, including the skin,
intestines and eyes [1]. Local inflammatory changes in the skeletal system in the course of SpA result
in local loss of bone tissue and the formation of erosions with simultaneous bone formation, which
leads to profound destruction and impairment of the affected joints. Considerable progress has been
made in recent years in the treatment of SpA thanks to the introduction of the tumor necrosis factor-α
(TNF-α) inhibitors as well as interleukin 17 (IL-17) and interleukin 12/23 (IL-12/23) inhibitors [2–4].
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Although non-articular symptoms can be well-controlled thanks to modern biological therapies, which
considerably slow down the progression of destructive processes in the locomotory system, they do
not affect changes in the osteo-articular system already present, nor do they inhibit the SpA-related
bone-formation processes. Therefore, mesenchymal stromal cells, mesenchymal stromal cells (MSC),
with their immunomodulatory and regenerative potential [5] (Figure 1), may represent a promising
tool in long-term treatment of SpA, changing the present therapeutic approach.
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round, small, self-regenerating cells are observed less frequently [7]; in later phases, MSC can be 
bigger and flatter (MSC type II) [8]. Unexpectedly, MSC are not immortal—they age and die after 
several passages [9]. Since MSC are present in many embryonic tissues (embryonic stem cells, ESC) 
and in adult individuals (adult stem cells, ASC), there are many methods of acquiring them. 
Embryonic stem cells can be collected after delivery from the umbilical cord blood, from Wharton’s 
jelly, from the placenta, amniotic fluid and as well as from subamniotic membrane and perivascular 
area of the umbilical cord. MSC has been identified in the following tissues in adult individuals: In 
marrow, in adipose tissue, in the skin, lungs, dental pulp, periosteum, skeletal muscles, tendons and 
synovial membrane [10], but clinical application of “adult” MSC is limited mainly to bone marrow-
derived mesenchymal stromal cells (BM-MSC) and adipose-derived stem cells (ADSC, ASC) [11]. The 
International Society for Cellular Therapy (ISCT) has developed the minimum criteria to be used in 
identifying mesenchymal cells. By these assumptions, characteristic features of mesenchymal cells 
include the ability to adhere to a plastic base, the presence of three surface antigens: CD105 
(endoglin), CD90 (Thy-1), CD73 (ecto-5′-nucleotidase) and concomitant absence of antigens CD45, 

Figure 1. Immunomodulatory effect of MSC on elements of the innate and adaptive immunity
systems in spondyloarthropathies. IFN-γ, interferon γ; TNF-α, tumor necrosis factor α; TLR, Toll-like
receptor; MSC, mesenchymal stem cell; IL, interleukin; PGE2, prostaglandin E2; M-CSF, macrophage
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2. The Role of Mesenchymal Stromal Cells in the Inflammatory Process and in the Pathogenesis
of Spondyloarthropathies

2.1. Origin of Stromal Cells

MSC are able to form clones, to differentiate in multiple directions and to self-regenerate [6].
In early cultures, MSC resemble fibroblast (MSC type I) in their appearance and in the way they grow;
round, small, self-regenerating cells are observed less frequently [7]; in later phases, MSC can be bigger
and flatter (MSC type II) [8]. Unexpectedly, MSC are not immortal—they age and die after several
passages [9]. Since MSC are present in many embryonic tissues (embryonic stem cells, ESC) and in adult
individuals (adult stem cells, ASC), there are many methods of acquiring them. Embryonic stem cells
can be collected after delivery from the umbilical cord blood, from Wharton’s jelly, from the placenta,
amniotic fluid and as well as from subamniotic membrane and perivascular area of the umbilical cord.
MSC has been identified in the following tissues in adult individuals: In marrow, in adipose tissue,
in the skin, lungs, dental pulp, periosteum, skeletal muscles, tendons and synovial membrane [10],
but clinical application of “adult” MSC is limited mainly to bone marrow-derived mesenchymal
stromal cells (BM-MSC) and adipose-derived stem cells (ADSC, ASC) [11]. The International Society
for Cellular Therapy (ISCT) has developed the minimum criteria to be used in identifying mesenchymal
cells. By these assumptions, characteristic features of mesenchymal cells include the ability to adhere
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to a plastic base, the presence of three surface antigens: CD105 (endoglin), CD90 (Thy-1), CD73
(ecto-5′-nucleotidase) and concomitant absence of antigens CD45, CD34, CD14 or CD11a, CD79a,
or CD19 and class II HLA, and the capability of in vitro differentiation towards three cellular lines:
osteoblasts, chondroblasts and adipocytes [12]. A detailed description of stem cells includes additional
information, such as the cell origin (tissue, organ, systemic), culture conditions, medium composition,
presence of other antigens of positive identification and absence of negative markers, potential for
differentiation, cloning, proteomes, secretomes and transcriptone data [13]. In vivo, MSC probably
constitute a significant element of a niche of hematopoietic stem cells (HSC) [14], they take part
in angiogenesis and regulation of blood vessel function [15] as well in controlling inflammatory
processes [16].

2.2. The Role of Toll-Like Receptors in Activity of Stem Cells

Signal transfer in the inflammatory response of the innate immune system is effected, inter alia,
by means of Toll-like receptors (TLR), which activate phagocytes. In cell culture studies, expression
of various Toll-like receptors has been observed, including TLR3 (virus dsRNA receptor) and TLR4
(lipopolysaccharide receptor, LPS) [17]. In in vitro studies, under hypoxic conditions, short-term
stimulation of human MSC by pro-inflammatory cytokines, such as interferon-γ (INF-γ), TNF-α, INF-α,
IL-1β, increased expression of TLR1, TLR2, TLR3, TLR4, TLR5 [18], whereas prolonged stimulation
resulted in a decreasing the number of TLR2 and TLR4 [19] and decreasing the inflammatory response.
An increase in the expression of TLR3 and TLR4 on MSC observed in a study by Raicevic et al. boosted
the response to LPS and poly(I:C) (polyinosinic-polycytidylic acid), which resulted in a decrease in
the immunosuppressive properties of MSC [18]. It has also been suggested that MSC can acquire
a pro-inflammatory phenotype (MSC1) when stimulated by TLR4 and undergo anti-inflammatory
polarization (MSC2) when activated by TLR3 [20], which could partly explain the apparently conflicting
roles of MSC in the inflammatory process. There is data which indicates the importance of TLR
dysregulation in intensifying the inflammatory condition in spondyloarthropathy. Heuschen et al.
examined patients with ulcerative colitis and described an increase in expression of TLR5 in patients
with intensified inflammation of the intestinal mucosal membrane and a decrease in the number
of TLR3 receptors in a healthy mucosal membrane with local suppression of the inflammatory
condition [21]. An increase in TLR4 expression on peripheral blood mononuclear cells (PBMCs) in AS
patients has been reported by de Rycke et al. [22] and by Yang et al. [23]. An increase in expression of
TLR2 and TLR4 has also been observed in the synovial membrane collected from patients with other
SpAs, including with PsA and undifferentiated SpA, compared to patients with rheumatoid arthritis
(RA) and osteoarthritis (OA) [22]. Treatment with TNF-α inhibitors decreased the number of TLR2
and TLR4 receptors, both on peripheral mononuclear cells and on synoviocytes [22]. A small study
by Candia et al. on PsA patients showed a temporary increase in the number of TLR2 on immature
dendritic cells in vitro [24], whereas Myles et al. examined patients with juvenile chronic arthritis
associated with enthesitis, and observed an increased expression of TLR2 and TLR4 on monocytes in
peripheral blood and in articular fluid, which was associated with increased production of IL-6 and
metalloproteinase 3 (MMP-3) following stimulation with LPS [25]. These studies indicate that there is
a link between high expression of TLR in SpA, but they do not confirm a causal relationship between
them. Expression of TLR in SpA may intensify the inflammatory response or be a specific indicator of
chronic inflammation.

2.3. Stem Cells at an Early Phase of Inflammation

The immunomodulatory activity of MSC in an early phase of the inflammatory process seems
to favor the development of an effective immune response. In a study on mice, a MSC response
associated with recognition of bacterial proteins resulted in an increased secretion of IL-6, IL-8, GM-CSF
(granulocyte-macrophage colony-stimulating factor) and MIF (macrophage migration inhibitory
factor)—which are factors stimulating influx and activity of neutrocytes [26]. In a study conducted



Int. J. Mol. Sci. 2018, 19, 80 4 of 18

by Mantovani et al., BM-MSC activated through the TLR3 receptor extended the survival period of
neutrophils—inactive and activated by IL-6, INF-γ and GM-CSF [27]. In addition, MSC can produce
chemokines (CXCL-9, CXCL-10 and CXCL-11) by stimulating recruitment of lymphocytes to the
inflammation sites [28]. Such an effect has been observed in in vitro studies in mouse and human MSC
cultures at low concentrations of TNF-α and INF-γ, where human MSC reduced secretion of IDO
in these conditions, and mouse MSC produced decreased amounts of iNOS, which was associated
with decreased inhibition of T cell proliferation [29,30]. The findings of these studies may suggest an
effect of concentrations of IDO and iNOS on the pro- and anti-inflammatory activity of human and
murine MSC, respectively. Through expression of ligands (C-C motif) of chemokines CCL2, CCL3,
CCL12, human and murine BM-MSC can boost influx of monocytes to the inflammation sites, thereby
supporting local regenerative processes [31].

2.4. Monocytes and Macrophages

Apart from recruiting circulating monocytes, MSC can affect the function of macrophages at
inflammation sites. It seems that polarization of macrophages towards a pro-inflammatory M1
phenotype and an anti-inflammatory M2 phenotype can depend on the immunomodulatory properties
of MSC [32,33]. MSC polarize M0 macrophages to the M1 phenotype at low concentrations of IL-6.
Increased production and secretion of pro-inflammatory cytokines by M1 macrophages and activated
T cells stimulate MSC to produce mediators, including immunosuppressive agents, such as iNOS
(inducible NO synthase) in cultures of murine MSC and IDO (indolamines) [34] (Figure 2). In studies
of joint cultures of monocytes and human or murine BM-MSC, polarization of macrophages to the
anti-inflammatory M2 phenotype depended on the cellular interactions and on E2 prostaglandin
(PGE2) concentrations and on products of IDO activity, including kynurenine (a product of tryptophan
degradation) and other catabolites [35]. Activation of MSC by TNF-α and IFN-γ as well as LPS
boosts expression of cyclooxygenase 2 (COX2) and IDO in BM-MSC, additionally stimulating
macrophage activation to the M2 phenotype [36]. M2 macrophages produce mainly anti-inflammatory
cytokines IL-10 and TGF-β and small amounts of pro-inflammatory cytokines IL-1, IL-6, TNF-α and
IFN-γ, thereby inhibiting the inflammatory process and helping to regenerate damaged tissues [27].
Polarization of monocytes and macrophages to the pro- or anti-inflammatory phenotype in SpA may
be responsible for an active inflammatory process, regeneration processes and rebuilding the affected
tissues. Zhao et al. examined peripheral blood in patients with advanced AS and detected significant
polarization of monocytes to the M2 type, with the M2/M1 ratio being correlated positively with
the damage to the affected structures, and negatively with inflammation indicators (ESR, CRP) and
BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) [37]. Other researchers have also
described polarization of histiocytes to the M2 type at sites affected by inflammation in AS [38] and
PsA [39]. Interestingly, a therapy with TNF-α inhibitors in SpA is linked with an increase in the
M2/M1 ratio, which could be attributed to a decrease in the number of M1 monocytes [37], but it
does not prevent progressive bone formation, typical of SpA [40]. Guihard et al. found stimulation of
MSC differentiation towards osteoblasts by activated monocytes is effected in the presence of OSM
(oncostatin M), an IL-6 cytokine, and is mediated through a type II receptor on MSC, which activates
the transcriptive agent STA3 [41].
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2.5. Dendritic Cells

Studies of animal models and human dendritic cells (DC) in SpA provide data which indicates a
contribution of DC in the development of SpA. DC HLA-B27+ are capable of synthesis of IL-23, which
is one of the main pro-inflammatory cytokines in SpA [42,43]. IL-23 exerts a systemic effect through
induction of differentiation of naive T cells in lymph nodes to pro-inflammatory Th17 [44] and through
stimulation of lymphocytes IL-23R+ residing in entheses to secrete IL-22 and to stimulate osteoblasts,
leading to local bone formation [45]. MSC inhibit differentiation of CD14+CD1a precursors originating
in peripheral and umbilical blood to dendritic cells [46]. Zhang et al. found the presence of MSC to
be associated with reduced expression of presenting and co-stimulating cells, including CD1a, CD40,
CD80, CD86 and HLA-DR during the process of DC differentiation and limited expression of CD40,
CD86 and CD83 during DC maturation [47]. Similar findings have been presented by Jiang et al.,
where the presence of MSC additionally decreased expression of CD83 on already-matured DC, which
suggested the loss of maturity features by dendritic cells [48]. Through secreted PGE2, MSC can also
inhibit maturation of DC stimulated by CSF and IL-4 without disrupting the process of DC maturation
stimulated by LPS [49]. An effect has been described of MSC resulting in a decrease in DC activity in
antigen transformation and presentation to T cells, related to inhibiting of MAPKs (mitogen-activated
protein kinases) activity following stimulation of by TLR4 [50]. In a recently published study, MSC in a
cell culture polarized DC to a regulatory phenotype with expression of IL-6 and IL-10 [51].

2.6. Neutrophils

Neutrophils are a valuable source of IL-17, which is another pro-inflammatory cytokine of key
importance in the pathogenesis of SpA. Appel et al. examined facet joints in patients with axial
SpA and noted that it was mainly neutrophils that were responsible for local synthesis of IL-17 [52].
It seems that neutrophils are stimulated by MSC, which may maintain the inflammation. Maqbool et al.
presented the findings of a study in which MSC extended the survival period of neutrophils deprived
of nutrients or plasma [53]. In a study conducted by Raffaghello et al., MSC secreted IL-6, whereby
they were able to inhibit apoptosis of resting neutrophils and those activated with IL-8 [54]. In another
study, MSC activated by TLR3 significantly boosted the vitality and activity of neutrophils through
IL-6, IFN-γ and GM-CSF [28].
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2.7. NK Cells

Natural killer cells are one of the main parts of the innate immune system. The discovery that
the HLA-B27 antigen is specifically recognized by the inhibitory KIR3DL1 receptor of NK cells and
identifying the link between the expression of KIR activating and inhibitory receptors with the activity
of AS indicates that NK may play a significant role in pathogenesis of SpA [55]. MSC can change the
NK phenotype and inhibit their proliferation, as well as the secretion of cytokines and cytotoxicity
against T cells with expression of class I HLA. This activity is exerted through intercellular interactions
or soluble mediators, such as TGF-β1 and PGE2 [56]. MSC can inhibit IL-2-stimulated proliferation of
inactive NK [57]. Through HLA-G5, MSC have an inhibitory effect on NK-dependent cytolysis and on
INF-γ secretion [58]. In a study by Prigione et al., MSC inhibited INF-γ production through activated
NK with no effect on their cytotoxic activity [59].

2.8. T Cells

MSC have a modulatory effect on proliferation of T cells by the production and secretion of
TGF-β, hepatocyte growth factor (HGF), PGE2, IDO and HO (hemoxygenase) [60]. Human MSC
inhibit the proliferation of T cells, both CD4+ and CD8+ also with IDO, while at the same time inducing
proliferation of regulatory T cells (Treg) [61]. The inhibitory effect of MSC on T cells decreases when
there are no monocytes present, which indicates not only an effect of soluble factors secreted by
MSC, but it also suggests cellular interdependence of MSC and monocytes in inhibiting lymphocyte
proliferation [62]. It appears that MSC inhibit differentiation of effector Th17 [63], although the
mechanisms affecting it are not clear [64,65]. Huang et al. described an inhibitory effect of human
umbilical cord derived MSC (hUCMSC) on T cells in SpA patients. In a culture with mononuclear
cells from peripheral blood, hUCMSC considerably reduced IL-17 production, which may suggest
a therapeutic potential of MSC [66]. Th17 cells play a key role in development of an inflammatory
condition which accompany SpA, they recruit circulating monocytes and neutrophils to the sites
affected by the disease, stimulate maturation of osteoclasts, and, in consequence, resorption of bone
tissue [67,68]. The ability of MSC to convert mature Th17 into Treg is very important in the context
of chronic inflammation in SpA [69,70]. Treg cells are mediators of immune tolerance which exert
their effect through suppression of effector T cells and inhibition of tissue destruction induced by an
immune process. Examination of peripheral blood and articular fluid of patients reveals a relative
reduction in the number of Treg cells [71,72] and recent studies have shown a link between functional
defects of CD4+CD25highFoxP3+ [73] and the Treg/Th17 balance being disturbed with the development
of SpA [74]. An ability to induce proliferation of Treg, which has been confirmed in numerous studies,
is one of the key mechanisms of limiting inflammation by MSC. Joint culturing of MSC and peripheral
blood mononuclear cells (PBMC) stimulated differentiation of CD4+ cells towards Treg cells with
the expression of CD25highFoxP3+ [75]. In cultures of MSC and washed CD4+ cells or PBMC with
monocyte depletion did not show any differentiation of lymphocytes towards Treg cells, whereas
proliferation of CD4+CD25highFoxP3+ cells in cultures took place after monocytes were added [76].
Induction of Treg cells dependent on MSC may be linked to the secretion by MSC of the soluble human
leukocyte antigen G5 (sHLA-G5). The HLA-G5 molecule inhibits the proliferation of alloreactive T
cells and stimulates differentiation of immature T cells towards suppressor Treg cells [77] and is linked
to the induction of proliferation of CD4+CD25highFox P3+ cells [78]. In a study conducted by Wu et al.,
BM MSC in AS patients had decreased immunomodulatory potential; in addition, an increased amount
of Treg and Fox P3+ cells was found, as well as an increased amount of T cells with CCR4+CCR6+

receptors compared to healthy people. This may suggest a decreased immunomodulatory potential of
MSC as a factor which plays a role in the development of AS [74].
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2.9. B Cells

There is currently no proof of the participation of specific antibodies in the pathogenesis of
spondyloarthropathy, but one must bear in mind that B cells have chemotactic properties, they produce
cytokines and can be very effective antigen-presenting cells [79]. With their immunomodulatory
potential, regulatory B cells (Breg) can also inhibit Th1 response and differentiation of Th17 cells [80].
An increased number of circulating Breg cells in SpA has been reported [81] and, although no link has
been found with disease activity, the number of Breg cells has been reported to decrease in patients
treated with anti-TNF-α [82]. MCS regulate a number of functions of B-cells. In a study conducted
by Corcione et al., MSC inhibited proliferation of B-cells by arresting the cellular cycle at the G0/G1
phase and secretion of immunoglobulins (Ig) IgM, IgG and IgA, which was reflected by inhibited
differentiation of lymphocytes. In the same study, expression of chemokine receptors (C-X-C motif)
CXCR4 and CXCR5 as well as CCR7 on B-cells decreased considerably in the presence of MSC, which
may suggest an effect of MSC on the chemotactic properties of B cells [83]. Lee et al. described
inhibition of IgG production by a C3 component of the complement secreted by MSC following
infection by a strain of Mycoplasma arginini [84]. In a different study, MSC, following stimulation
by TLR4, exhibited increased expression of the B-cell activating factor (BAFF), thereby affecting
immunoglobin production [85]. In another study, excitation of MSC by INF-γ stimulated cells to
secrete galectin 9 (Gal-9), an inhibitor of T- and B-cell proliferation and production and secretion
of antigen-specific antibodies [86]. However, different findings were reported by Rosado et al. and
by Ji et al., who described increased proliferation and differentiation of B cells in the presence of
BM-MSC and umbilical cord MSC (UC-MSC), respectively [87,88]. These discrepancies can probably
be attributed to an indirect effect of other factors present in the cultures, which were not covered by
those studies.

3. The Role of Stem Cells of Irregular Ossification in Spondyloarthropathy

It appears that MSC in SpA are involved in processes of irregular ossification. MSC can affect
the process of bone mineralization by regulating the activity of TNAP (tissue-nonspecific alkaline
phosphatase). In a study which sought to provide a probable explanation of the differences between
changes in bones observed in RA and SpA, Ding et al., treated cultured human MSC (hMSC) with
TNF-α and IL-1β. The action of these cytokines resulted in decreased expression of collagen and
increased activity of TNAP. Differences in the effect of TNF-α and IL-1β on expression of collagen
and the activity of TNAP can partially explain why bone changes in SpA are linked to bone loss and
accompanying bone formation, whereas they are linked to the formation of corrosions in RA [89].
In another study, stimulation of osteoblast activity with Wnt5a was observed in response to the
action of TNF-α. The concentration of Wnt5a was significantly increased by TNF-α and it was linked
to an increase in the activity of TNAP and intensified mineralization. The findings of this study
indicate a connection between inflammation in SpA and bone formation by activation of the cannonical
Wnt/β-catenin pathway by Wnt5a. Stimulation of ossification by MSC could explain the lack of,
or weak, effect of an anti-TNF-α therapy in inhibiting bone formation in SpA [90]. Characteristic
features of all SpAs include inflammatory changes in entheses, which are independent of inflammation
of synovial membrane in joints. MSC in places where ligaments, tendons and articular capsules are
attached to bones can be a reservoir of cells responsible for the repair of articular cartilage—which is
a tissue of a low regenerative potential—damaged by inflammation [91]. In a study on a rat model
of the degenerative joint disease, regeneration of articular cartilage was faster and of a better quality
following intra-articular injections of MSC compared to the administration of mature chondrocytes [92].
Differentiation of MSC in entheses towards tenocytes, chondrocytes or osteoblasts depends, inter alia,
on the tensile force [93]. Under the influence of mechanical stimulae, mechanosensitive calcium
permeable channels become involved in changes in intracellular calcium concentrations [94,95].
Stimulation of these channels in the MSC membrane, which results in MSC activation, can trigger
inflammatory processes and ossification in entheses, which confirms the hypothesis of the role of
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physical damage in the development of SpA [96,97]. Apart from the mechanical load of the structures of
entheses, osteogenic differentiation of MSC is stimulated by fibronectin, whereas a high concentration
of type I collagen inhibits osteoblastogenesis and promotes differentiation towards tenocytes [93].
In a recently published study by Xie et al., differentiation of MSC towards osteoblasts in AS patients
was linked to disturbed balance between bone morphogenic protein-2 (BMP-2) and Noggin protein.
The discovery of this mechanism, which leads to intensified osteogenesis in entheses, suggests that
restoring the BMP-2/Noggin balance or local suppression of MSC could inhibit excessive bone
formation in SpA [98].

Numerous publications have confirmed the immunomodulatory effect of MSC on elements
of the inflammatory process. There is plenty of data which may indicate the role of MSC in
spondyloarthropathies (Table 1), which encourages further studies on applications of MSC in the
treatment of SpA.

Table 1. An analysis of a potential role of stem cells in the development of spondyloarthropathy.

Elements of Pathogenesis of Spondyloarthropathy Results of Stem Cell Action

Dysregulation of TLR. Increase in expression of TLR2
and TLR 4 on mononuclear cells of peripheral blood

and in articular synovial membrane [21–24].

Acquisition of the pro-inflammatory phenotype by
MSC following stimulation by TLR4 and the

anti-inflammatory phenotype following stimulation
by TLR3 [18–20].

Increased production of pro-inflammatory TNF-α
and IFN-γ by activated monocytes and macrophages.

Activation of MSC with TNF-α and IFN-γ boosts
expression of iNOS, COX2 and IDO and favours

polarisation of monocytes and macrophages to the
anti-inflammatory M2 phenotype M2 [34–36].

Increase in production of inflammatory cytokines,
e.g., IL-12, IL-23, IL-6 by dendritic cells [42,43].

Inhibition of differentiation of precursors of
CD40CD1a into DC, inhibition of the ability to
present antigen by DC, induction of the loss of

maturity features by DC [46,48,49].

Increase in local production of IL-17 in joints by
neutrophils [52].

Inhibition of apoptosis and stimulation of activity of
activity of neutrophils by IL-6, IL-8 IFN-β and

GM-CSF [28,54].

A link between expression of activating KIR receptors
on NK cells with the disease activity.

Recognising of HLA B27 antigen by the KIR3DL1
receptor [55].

Inhibition of proliferation, cytokine secretion and
cytotoxicity of NK cells [56–59].

The key role of Th17 cells in development of
SpA [67,68] Ability of mature Th17 to convert into Treg [69,70].

Decrease in the amount of Treg.
Upsetting the Treg/Th17 balance.

Functional defects of CD4+CD25+FOXP3 [71–74].

Induction of Treg proliferation.
Stimulation of differentiation of CD4 towards

CD4+CD25+FOXP3 [75].

Ossification of entheses, formation of new bone tissue
on marginal surfaces of joints [1].

Regulation of ossification with TNAP.
Increased bone formation by activation of

Wnt/β-catenin pathway with Wnt5a.
Ossification of entheses following stimulation

of calcium channels in MSC by mechanical
stimul [89,90,97].

TLR, Toll-like receptor; TNF-α, tumor necrosis factor-α; IFN-γ, interferon γ; iNOS, inducible NO synthase;
COX2, cyclooxygenase 2; IDO, indolamine; IL, interleukin; GM-CSF, granulocyte-macrophage colony-stimulating
factor; DC, dendritic cells; NK, natural killers; TNAP, tissue-nonspecific alkaline phosphatase.

4. The Role of MSC in the Treatment of Spondyloarthropathies

The available data on the immunomodulatory effect of MSC comes mainly from in vitro studies.
However, there has been a lot of data from in vivo studies which confirms such an effect of MSC.
Adipose-tissue-derived MSCs (AT-MSC) effectively suppressed the T1-dependent immune response
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and stimulated the proliferation of Treg in transgenic diabetic NOD/SCID mice, in effect maintaining
the function of β cells in the pancreas [99]. Monocytes incubated in the presence of AT-MSC
administered by infusion decreased the activity of chronic intestine inflammation and protected against
the development of severe sepsis by inducing immunomodulatory macrophages secreting IL-10 and
inhibiting uncontrolled production of inflammatory mediators [100]. Improvement of survival and
mitigation of the course of sepsis following IV administration of MSC and their interaction with
monocytes and macrophages was also described in the paper by Nemeth et al., which was linked
to the production of IL-10 by monocytes and macrophages and decreased serum concentrations of
pro-inflammatory TNF-α and IL-6 [36]. In other studies, MSC improved the survival of skin grafts [101],
allogenic corneal transplants [102] and alleviated symptoms of experimental encephalomyelitis in
mice [103]. Administration of human BM-MSC, UC-MSC and AT-MSC in asthma increased the pool of
macrophages in pulmonary alveoli, mitigated bronchial hyper-reactivity, reduced eosinophil counts
in bronchi and the production of Th2-dependent cytokines. Depletion of macrophages in pulmonary
alveoli resulted in intensification of bronchial hyper-reactivity [104]. The immunomodulatory effect
of MSC seems not to result from direct intercellular interactions or cells colonizing specific organs,
but from secreted soluble mediators, which affects the systemic effect of MSC. This was confirmed
in a study conducted by Zanotti et al., in which polymer encapsulated MSC (E-MSC) exerted an
immunosuppressive and anti-inflammatory effect, probably by means of secreted soluble agents [105].

The potentially regenerative and immunomodulatory properties of MSC in arthritis and in
degenerative joint disease have also been studied [106,107]. The first reports of the effectiveness of
treatment of autoimmune diseases come from a description of bone marrow transplants in patients
with comorbidities, such as proliferative diseases of the hematopoietic system and autoimmune
diseases [108]. A positive outcome of bone marrow transplant on the course of immune diseases
encouraged researchers to make numerous attempts to apply HSC and MSC in RA, systemic lupus
erythematosus (SLE), scleroderma and sclerosis multiplex [108]. Unfortunately, no studies have
been conducted of the efficacy of SpA treatment with stem cells. There have been several reports
in the literature on bone marrow transplants for hematological reasons in patients with psoriatic
arthritis and ankylosing spondylitis. Remission and even a reduction of radiographic changes has
been achieved in the patients [109–113]. In 2012, the first autologous HSC transplant was carried
out following chemotherapy in a male patient with AS and with the HLA-B27 antigen, with the
intent to treat ankylosing spondylitis. A complete remission was achieved, which lasted throughout
the two-year follow-up period [114]. In another study, Wang et al. described the effectiveness of
IV administration of allogenic MSC in 31 AS patients, following ineffective treatment with NSAIDs.
The study lasted 20 weeks, MSC infusions were carried out four times, on days 0, 7, 17 and 21. At the
end of the fourth week, a response to treatment was achieved, as assessed by ASAS 20 (Assessment
in Ankylosing Spondylitis Response Criteria 20), in approx. 75% of the patients, a reduction of
ASDAS-CRP (Ankylosing Spondylitis Disease Activity Score Containing C-Reactive Protein) from
3.6 ± 0.6 to 2.4 ± 0.5 was recorded with an increase to 3.2 ± 0.8 in the 20th week. The response to
treatment lasted 7.1 weeks on average. No adverse effects were reported in the study [115]. There are
several clinical trials currently underway to assess the efficacy and safety of stem cell transfusions in
AS [116–119] (Table 2).
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Table 2. Use of stem cells in patients with spondyloarthropathies in published literature and registered clinical trials.

SpA Stem Cells Description Reference

Psoriatic arthritis Allogenic blood stem cell transplantation (myeloablative) Concomitant chronic myelogenous leukemia. Graft versus
autoimmunity effect. Slavin et al. [109]

Psoriatic arthritis Allogenic hematopoetic stem cell transplantation Concomitant aplastic anemia. Short remission with long chronic
disability-free period Woods et al. [110]

Psoriatic arthritis Autologous hematopoetic stem cell transplantation
(myeloablative)

Concomitant multiple myeloma. Complete remission of arthritis and
skin lesions Braiteh et al. [111]

Ankylosing spondylitis Autologous hematopoetic stem cell transplantation Concomitant lymphoma. The patient underwent chemotherapy.
Clinical remission for both AS and lymphoma Jantumen et al. [112]

Ankylosing spondylitis Allogenic blood stem cell transplantation
Concomitant acute myeloid leukemia. The patient underwent
chemotherapy and body irradiation. Clinical remission. Partial

radiological regression of syndesophytes
Britanova et al. [114]

Ankylosing spondylitis Autologus hematopoetic stem cell transplant
The first reported intentional stem cell transplant for AS. The patient
underwent chemotherapy. Complete remission for AS for two-year

follow up period
Yang et al. [113]

Ankylosing spondylitis Allogenic mesenchymal stem cells intravenous infusion
Trial involving 31 AS patients. No adverse effects noted. Reduction

of ASDAS-CRP from 3.6 ± 0.6 to 2.4 ± 0.5 at the 4th week.
The percentage of ASAS 20 responders reached 77.4%

Wanga et al. [115]

Ankylosing spondylitis Human umbilical cord-derived mesenchymal stem cells

Clinical trial. Phase 1.
Human umbilical cord-derived MSCs at a dose of 1.0 × 106 MSC/kg,

repeated after three months and DMARDs such as sulfasalazine,
methotrexate, thalidomide for 12 months

Clinical Trials. gov Identifier:
NCT01420432 [116]

Ankylosing spondylitis Human mesenchymal stem cells
Clinical trial.

human mesenchymal stem cells: 1.0 × 104-6 cells/kg, IV on day 1 of
each 14–60 day cycle, 1–6 times treatment, plus NSAIDs.

ClinicalTrials.gov Identifier:
NCT01709656 [117]

Ankylosing spondylitis Human bone marrow-derived MSCs

Recruiting clinical trial. Phase 2.
hBM-MSCs at a dose of 1.0 × 106 MSC/kg, receive infusion per

week in the first 4 weeks and every two weeks in the second 8 weeks.
Study Start Date: June 2016

Estimated Study Completion Date: December 2018

ClinicalTrials.gov Identifier:
NCT02809781 [118]

Ankylosing spondylitis Mesenchymal stem cells Clinical trial. Phase I/II.
To observe the safety and clinical effect of MSC transplantation in AS

Clinical trial.
Registration number:

ChiCTR-TRC-11001417 [119]

AS, ankylosing spondylitis; ASDAS-CRP, Ankylosing Spondylitis Disease Activity Score Containing C-Reactive Protein; ASAS 20, Assessment in Ankylosing Spondylitis Response Criteria
20; hBM-MSCs, human bone marrow-derived mesenchymal stem cells, DMARDs, disease-modifying anti-rheumatic drugs; NSAIDs, on steroidal anti-inflammatory drugs.
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5. Conclusions

Promising results of studies into the application of stem cells in autoimmune diseases may be
indicative of the therapeutic potential of MSC in SpAs. Depending on conditions in joints, MSC can
exhibit anti-inflammatory or pro-inflammatory activity and can speed up regeneration in entheses
or contribute to their ossification, which is typical of SpA. Local modification of MSC activity in
the anti-inflammatory direction by appropriate agents or the administration of selected MSC may
prove a highly affective option in the treatment of severe forms, especially in ankylosing spondylitis
and psoriatic arthritis. However, it is still uncertain whether MSC used in SpA therapy should be
autologous or allogenic and which tissue origin of cells is the most beneficial. It is also unclear whether
treatment should be applied in early stages of a disease or rather as a regenerative therapy and which
route of administration should be chosen, the number of cells and the therapeutic regimen. Obviously,
further studies will be needed before the use of MSC in SpA could become the treatment of choice.
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