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Abstract: Although the genetics and preliminary mapping of the cabbage yellow-green-leaf mutant
YL-1 has been extensively studied, transcriptome profiling associated with the yellow-green-leaf
mutant of YL-1 has not been discovered. Positional mapping with two populations showed that
the yellow-green-leaf gene ygl-1 is located in a recombination-suppressed genomic region. Then,
a bulk segregant RNA-seq (BSR) was applied to identify differentially expressed genes (DEGs) using
an F3 population (YL-1 × 11-192) and a BC2 population (YL-1 × 01-20). Among the 37,286 unique
genes, 5730 and 4118 DEGs were detected between the yellow-leaf and normal-leaf pools from the F3

and BC2 populations. BSR analysis with four pools greatly reduced the number of common DEGs
from 4924 to 1112. In the ygl-1 gene mapping region with suppressed recombination, 43 common
DEGs were identified. Five of the DEGs were related to chloroplasts, including the down-regulated
Bo1g087310, Bo1g094360, and Bo1g098630 and the up-regulated Bo1g059170 and Bo1g098440. The
Bo1g098440 and Bo1g098630 genes were excluded by qRT-PCR. Hence, we inferred that these three
DEGs (Bo1g094360, Bo1g087310, and Bo1g059170) in the mapping interval may be tightly associated
with the development of the yellow-green-leaf mutant phenotype.

Keywords: cabbage; yellow-green-leaf mutant; recombination-suppressed region; bulk segregant
RNA-seq; differentially expressed genes

1. Introduction

Yellow-green-leaf mutants have been extensively studied in many species, including
Arabidopsis thaliana [1], barley [2], Brassica napus [3], rice [4–6], cabbage [7], and muskmelon [8]. Leaf
color mutants are an ideal model for studying mechanisms of photosynthesis and light morphogenesis,
since yellow-green-leaf mutants are commonly related to chlorophyll synthesis or degradation [9,10].

Chlorophyll is the most important pigment related to photosynthesis. In Arabidopsis, 27 genes
involved in 15 steps in the pathway from glutamyl-tRNA to chlorophylls a and b have been identified.
Leaf color mutants commonly result from blocking a portion of the chlorophyll synthesis pathway,
such as the synthesis of 5-aminolevulinic acid (ALA) [11]. Runge et al. [12] isolated and classified some
chlorophyll-deficient xantha mutants of Arabidopsis thaliana and found that some of the mutants were
blocked at various steps of the chlorophyll pathway between ALA and protochlorophyllide (Pchlide),
and the latter did not accumulate in the dark.
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Bulked segregant analysis (BSA) is a powerful strategy that is commonly used in gene
mapping [13]. Futschik and Schlötterer showed that sequencing of pools of samples from individuals
are often more effective for Single Nucleotide Polymorphisms (SNP) discovery and provide more
accurate allele frequency estimates [14]. Typically, two populations are used for BSA: a backcross (BC)
population [15,16] and an F2 population [17,18]. Mackay and Caligari [19] found that quantitative trait
loci (QTLs) are more easily detected in BC populations than in F2 populations.

In recent years, transcriptome analysis based on deep RNA sequencing (RNA-seq) has been
used for the estimation of genome-wide gene expression levels [20,21]. Transcriptome sequencing
encompasses mRNA transcript expression analysis. Combined RNA-seq analysis can be used for
purposes such as novel transcript prediction, gene structure refinement, alternative splicing analysis,
and SNP/InDel analysis [22]. Bulk segregant RNA-seq (BSR) has been applied to identify differentially
expressed genes (DEGs) and trait-associated SNPs [23,24].

A yellow-green-leaf mutant (YL-1) was discovered in cabbage [10], and measurements of
photosynthetic pigment contents, chloroplast ultrastructure, and chlorophyll fluorescence parameters
indicated that YL-1 was deficient in its total chlorophyll content [10]. In a previous study, we
mapped ygl-1, which controls the yellow-green-leaf phenotype, to chromosome C01 [7]. The linkage
distance of the mapping interval was only 0.75 cM, but the physical distance in the reference genome
TO1000 was ~10 Mb, indicating that recombination suppression existed in this interval. In this
study, the recombination-suppressed region was identified by gene mapping. Two runs of BSR
were performed using BC and F3 populations, with the aim of obtaining DEGs associated with the
yellow-green-leaf mutant.

2. Materials and Methods

2.1. Plant Materials

Group I: The F2, BC1P1, and F3 populations were constructed using as parents the
yellow-green-leaf cabbage mutant YL-1 (P1) and the normal green leaf cabbage inbred line 01-20
(P2). The F2, BC1P1 population was employed for ygl-1 mapping.

Group II: The BC1P1 and BC2P1 populations were constructed using as parents the mutant YL-1
(P1) and the normal green leaf Chinese kale inbred line 11–192 (P3) (Supplementary Figure S1). The
BC2P1 population was employed for ygl-1 mapping.

The F3 population in group I and the BC2 population in group II were used for RNA-seq analysis.
All plant materials came from the Cabbage and Broccoli Research Group, the Institute of Vegetables
and Flowers (IVF), and the Chinese Academy of Agricultural Sciences (CAAS).

2.2. Identification of Recombination Suppression in the ygl-1 Gene-Mapping Interval

The sequences of 24 markers from the 02-12 reference genome (Supplementary Table S1) were
aligned to chromosome C01 and the scaffold of the TO1000 reference genome [25] (Figure 1). Based on
this alignment, we propose that possible assembly errors might exist in the 02-12 reference genome.
Hence, InDel primers designed based on the TO1000 reference genome were applied for further
mapping. The rates of recombination in the two populations were compared with the normal level in
the cabbage genome (~600 kb/cM) to analyze the recombination-suppressed region.



Int. J. Mol. Sci. 2018, 19, 2936 3 of 14

Int. J. Mol. Sci. 2018, 19, x 3 of 13 

 

 

Figure 1. The physical distances of 24 InDel markers in the two reference genomes (02-12 and 
TO1000). 

2.3. BSA, RNA Isolation, and Library Construction 

Before RNA isolation, leaf samples from the two populations (the F3 population in group I and 
the BC2 population in group II) were harvested to prepare four bulk groups: Bulk F_yellow 
(consisting of equal amounts of leaf tissues from 20 yellow-green-leaf F3 individuals), Bulk F_normal 
(20 normal-green-leaf F3 individuals), BC_yellow (20 yellow-green-leaf BC2 individuals), and 
BC_normal (20 normal-green-leaf BC2 individuals). 

Total RNA extraction was performed according to instructions of the manufacturer of the 
TIANGEN kit employed for extraction (Invitrogen, Carlsbad, CA, USA). RNA purity was determined 
using a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA), 1% 
formaldehyde gel electrophoresis, and a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA).  

A total amount of 1 μg of RNA per sample was employed for RNA sample preparation. 
Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® 
(Illumina, CA, USA) following the manufacturer’s recommendations. The cDNA library products 
were sequenced in a paired-end flow cell using an Illumina HiSeqTM 2000 system. 
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2.3. BSA, RNA Isolation, and Library Construction

Before RNA isolation, leaf samples from the two populations (the F3 population in group I
and the BC2 population in group II) were harvested to prepare four bulk groups: Bulk F_yellow
(consisting of equal amounts of leaf tissues from 20 yellow-green-leaf F3 individuals), Bulk F_normal
(20 normal-green-leaf F3 individuals), BC_yellow (20 yellow-green-leaf BC2 individuals), and
BC_normal (20 normal-green-leaf BC2 individuals).

Total RNA extraction was performed according to instructions of the manufacturer of the
TIANGEN kit employed for extraction (Invitrogen, Carlsbad, CA, USA). RNA purity was determined
using a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA), 1%
formaldehyde gel electrophoresis, and a 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA).

A total amount of 1 µg of RNA per sample was employed for RNA sample preparation.
Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep Kit for Illumina®
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(Illumina, CA, USA) following the manufacturer’s recommendations. The cDNA library products
were sequenced in a paired-end flow cell using an Illumina HiSeqTM 2000 system.

3. Data Analysis

Reads containing adaptor sequences, low-quality reads (bases with more than 50% of quality
scores ≤5), and unknown bases (>5% N bases) were removed from each dataset to obtain more reliable
results, because such data negatively affect bioinformatics analyses. The sequencing reads were
then aligned to the reference database for the B. oleracea genome (TO1000) (http://plants.ensembl.
org/Brassica_oleracea/Info/Index) (accessed on 5 May 2017) [25] using HISAT [26]. Differential
expression analysis to identify DEGs was performed using DESeq [27], with a threshold q value
(or false discovery rate [FDR]) < 0.01 & |log2(fold change)| > 1 for significant differential expression.
DEGs were displayed using Circos v0.66 [28]. GO (http://www.geneontology.org/) (accessed on
7 May 2017) [29] enrichment analysis of the DEGs was implemented using GOseq, in which gene length
bias was corrected. GO functional analysis provides GO functional classifications and annotations
for DEGs. Various genes usually cooperate with each other to exercise their biological functions.
A pathway-related database was therefore obtained based on Kyoto Encyclopedia of Genes and
Genome (KEGG) results (http://www.genome.jp/kegg/) (accessed on 11 May 2017) [30].

Gene Expression Validation

DEGs associated with the yellow-green-leaf mutant were subjected to quantitative real-time
RT-PCR (qRT-PCR) analysis. The primers designed according to the gene CDS sequences using
DNAMAN are listed in Supplementary Table S6. Three technical replicates were performed for each
gene. First-strand cDNA was synthesized using the PrimeScriptTM RT reagent Kit (TAKARA BIO, Inc.,
Shiga, Japan). qRT-PCR was performed with the SYBR Premix Ex Taq™ Kit (Takara, Dalian, China)
with the following cycling parameters: 95 ◦C for five min, followed by 40 cycles of 95 ◦C for 10 s and
55 ◦C for 30 s, with a final cycle of 95 ◦C for 15 s, 55 ◦C for 60 s, and 95 ◦C for 15 s. Relative transcription
levels were analyzed using the 2−∆∆Ct method [31]. qRT-PCR was performed in a BIO-RAD CFX96
system (Bio-Rad, Hercules, CA, USA), and the actin gene was employed as the internal control [32].

4. Results

4.1. Identification of the Recombination-Suppressed Region

In a previous study [7], we mapped ygl-1, which controls the yellow-green-leaf phenotype,
to chromosome C01 using a population derived from YL-1 and 01-20. The ygl-1 gene is flanked
by the InDel markers ID2 and M8, and the interval between these two markers is 167 kb
(C01: 25,357,762–25,524,704 bp) in the 02-12 reference genome.

However, these two markers are anchored to the TO1000 reference genome, in which the interval
between ID2 (C01: 18,126,217 bp) and M8 (C01: 29,537,261 bp) is 11.41 Mb, which is approximately
680 times greater than the distance (167 kb) in the 02-12 reference genome. Then, 24 markers from the
02-12 reference genome (Supplementary Table S1) were aligned to chromosome C01 and the scaffold
of the TO1000 reference genome (Figure 1). In the 02-12 reference genome, the physical interval
between BCYM475 (11,563,641 bp) and BCYM941 (29,620,770 bp) could be divided into four parts
[Part I: BCYM475 (11,563,641 bp) to BCYM577 (14,228,547 bp); Part II: BCYM593 (15,700,975 bp) to
BCYM804 (23,353,865 bp); Part III: YL135 (24,372,012 bp) to ID2 (25,357,762 bp); and Part IV: BCYM873
(25,706,570 bp) to BCYM941 (29,620,770 bp)]. The physical locations of Part I and Part IV in the two
reference genomes were parallel. However, the physical locations of Part II and Part III were opposite.
The makers’ order of linkage map was consistent with the physical map order of TO1000 reference
genome but not 02-12 reference genome. Therefore, we proposed that an assembly error might exist in
the 02-12 reference genome.

http://plants.ensembl.org/Brassica_oleracea/Info/Index
http://plants.ensembl.org/Brassica_oleracea/Info/Index
http://www.geneontology.org/
http://www.genome.jp/kegg/
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InDel primers designed based on the TO1000 reference genome were then applied for further
mapping of the ygl-1 gene. A total of 43 of the 62 pairs of InDel primers designed based on the TO1000
reference genome exhibited polymorphisms according to the F3 population. The genetic distances
of the 16 InDel markers are shown in Table 1 (the sequences of these 16 markers are provided in
Supplementary Table S2). The ygl-1 gene was flanked by the InDel markers T1-36 (18,069,792 kb) and
T1-58 (29,537,314 kb), with genetic distances of 0.42 cM and 0.42 cM, respectively. The interval distance
between the two markers was 11.47 Mb based on the TO1000 reference genome. In the mapping region,
spanning a physical distance of 11.47 Mb with a genetic difference of only 0.84 cM, the recombination
rate was almost twenty times lower than the normal level for the cabbage genome (~600 kb/cM),
suggesting that recombination suppression existed in this region.

Table 1. Genetic distances of the InDel primers to the ygl-1 in the two mapping populations.

YL-1 × 01-20 YL-1 × 11-192
Primers Genetic Distance (cM) Primers Genetic Distance (cM)

T2-3 9.21 T2-3 13.3
T2-5 6.90 - -
T1-1 6.28 - -

T1-14 4.39 T1-14 6.5
T1-18 3.97 T1-18 4.4
T1-26 2.51 T1-26 2.3
T1-28 1.46 T1-28 1.5
T1-30 1.05 T1-30 1.3
T1-34 0.63 T1-34 0.3
T1-36 0.42 T1-36 0.00
T1-58 0.42 T1-58 0.7
T2-6 0.42 T2-6 1.04

T2-10 0.63 T2-10 1.04
T2-14 0.63 T2-14 1.04
T2-16 3.14 T2-16 2.61
T2-18 5.02 T2-18 6.02

Another BC2P1 population, constructed with YL-1 and 11–192, was used to further identify
recombination suppression. The ygl-1 gene was flanked by InDel markers T1-34 (17,301,717 kb) and
T1-58 (29,537,314 kb), with genetic distances of 0.3 cM and 0.7 cM, respectively. This result further
demonstrated the existence of a recombination-suppressed region in the ygl-1 mapping interval.

In a previous study [7], we showed that the region between markers the BCYM585 (14,547,932 bp)
and BCYM825 (24,060,605 bp) exhibits recombination suppression. In Figure 1, the sequence of
BCYM585 was aligned to an unanchored scaffold (Scaffold00751), and the sequence of BCYM825 was
aligned to a physical distance of 19,230,187 bp based on the TO1000 reference genome. Part II was
aligned between 21,177,688 bp and 29,307,981 bp based on the TO1000 reference genome. These results
showed that the recombination-suppressed region observed between the markers T1-36 (18,069,792 kb)
and T1-58 (29,537,314 kb) in this study was consistent with the recombination-suppressed region
between the markers BCYM585 and BCYM825 identified in our previous study [7].

4.2. BSR Analysis, DEGs between the Yellow-Green-Leaf and Normal-Leaf Pools

BSR was applied to obtain DEGs using the F3 segregated population constructed with YL-1
and 01-20 and the BC2 population constructed with YL-1 and 11-192. A total of 339,481,468 reads
were generated from the four cDNA libraries. Among these reads, 82,143,852 were obtained from
BC_normal, 91,405,984 from BC_yellow, 86,447,180 from F_normal, and 79,484,452 from F_yellow. The
GC contents of the sequences of the four libraries were all approximately 47%, and all Q30% scores
(reads with average quality scores >30) were >90%, indicating that the accuracy and quality of the
sequencing data were sufficient for further analysis. The sequenced reads were aligned to the B. oleracea
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genome reference (TO1000) (http://plants.ensembl.org/Brassica_oleracea/Info/Index) (accessed on
5 May 2017). An overview of the sequencing process is shown in Supplementary Table S3. The density
distribution and boxplot of all the genes exhibited similar patterns among the four samples, indicating
that no bias occurred in the construction of the cDNA libraries (Supplementary Figure S2).

The number of DEGs identified between the yellow-green-leaf and normal-leaf samples is shown
in Table 2 (Supplementary Figure S3). In the yellow-green-leaf pools, there were approximately 20%
fewer down-regulated genes than up-regulated genes. In total, 5730 and 4118 (4924 on average) DEGs
were detected between the yellow-green-leaf and normal-leaf pools for the F3 and BC2 populations.
As shown in the Venn diagram presented in Figure 2, 1884 common DEGs were shared between the
DEGs identified in BC_normal vs. BC_yellow and the DEGs identified in F_normal vs. F_yellow,
representing approximately half of the total number of DEGs in either population. Cross-comparison
showed that only 1112 DEGs (Supplementary Table S4) were common between yellow-leaf and
normal-leaf bulks. Thus, BSR analysis using four pools greatly reduced the number of DEGs from 4924
to 1112.

Table 2. Numbers of DEGs between the yellow-leaf and normal-leaf samples.

No. of
DEGs

No. of Up-Regulated
DEGs

Percentage
(%)

No. of
Down-Regulated DEGs

Percentage
(%)

BC_normal vs.
BC_yellow 4118 2384 58 1734 42

BC_normal vs.
F_yellow 8009 4894 60 3315 40

F_normal vs.
F_yellow 5730 3226 56 2504 44

F_normal vs.
BC_yellow 5405 2844 53 2561 47
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These 1112 DEGs were assigned into three Gene Ontology (GO) classes: biological process, cellular
component, and molecular function. Thirty of the most significantly enriched of GO terms are shown
in Figure 3, including “carbohydrate binding”, “sequence-specific DNA binding transcription factor
activity”, “receptor activity”, “brassinosteroid sulfotransferase activity”, “unfolded protein binding”
and “protein phosphatase inhibitor activity” under GO molecular functions and “endoplasmic
reticulum lumen”, “plant-type cell wall”, “cytoplasm”, “vacuolar membrane”, “apoplast”, and
“nucleus” under GO cellular components. Seventeen biological function or functional groups were
enriched in the GO biological process category. In certain biological functions, genes play roles by
interacting with each other, and KEGG pathway analysis helps provide an in-depth understanding of
the biological functions of genes. A total of 1112 DEGs were annotated in the KEGG database, and
117 KEGG pathways were assigned. These 117 pathways were divided into three levels. Level one
included “genetic information processing”, “metabolism”, “cellular processes”, “organismal systems”,
and “environmental information processing.” The nineteen terms in level two are shown in Figure 4.
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4.3. DEGs Involved in B. oleracea Chlorophyll Synthesis

The chlorophyll a, chlorophyll b, and total chlorophyll contents of the yellow-green-leaf mutant
YL-1 were significantly lower than those of wild-type plants over the entire growth period [10].
Among the 1112 identified DEGs, 18 DEGs related to chlorophyll were clustered, which are shown
in Supplementary Figure S4, including nine down- and nine up-regulated DEGs. These 18 DEGs
were distributed among different chromosomes. Among the nine chromosomes, there were more
DEGs on C01, C03, and C06 than on the other chromosomes (Supplementary Figure S5). In the
11.47 Mb recombination suppression region, two genes Bo1g088040 (homologous gene AT1G58290,
HEMA1) and Bo1g098190 (homologous gene AT1G61520, LCA3) were related to chlorophyll according
to the annotations, but there were not DEGs among these four pools by transcriptomics analysis and
semi-quantitative PCR. Besides, no sequence variation was detected in the CDS region of these two
genes of YL-1, compared with the sequences of 01-20, 11-192, and reference genome TO1000.

DEGs located in the ygl-1 mapping interval with recombination suppression were selected for
further analysis. In the BC_normal vs. BC_yellow comparison, 82 DEGs were found in the 11.47 Mb
genomic region, with 45 DEGs being down-regulated and 37 being up-regulated. In the F_normal
vs. F_yellow comparison, 105 DEGs were found in the 11.47 Mb genomic region, with 47 DEGs
being down-regulated and 58 being up-regulated. Among these four pools, 43 common DEGs were
present, with 20 DEGs being down-regulated and 23 being up-regulated (Supplementary Table S5).
According to the annotations, five of these genes were related to chloroplasts (Table 3), including
the down-regulated genes Bo1g087310, Bo1g094360, and Bo1g098630 and the up-regulated genes
Bo1g059170 and Bo1g098440. These five genes were applied in qRT-PCR and RT-PCR analyses of
the three parents (01-20, YL-1, 11-192). The relative normalized expression of these five genes is
shown in Figure 5. The primers of qRT-PCR were supplied on Supplementary Table S6. Based on
the relative normalized expression, it can be observed that the expression of Bo1g059170, Bo1g087310,
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and Bo1g094360 genes was consistent with the results of BSR, whereas the relative expression of the
Bo1g098440 and Bo1g098630 genes differed from the results of BSR. We inferred that these two genes’
transcription levels were irrelevant to the yellow-green-leaf trait. In the other three genes that related
to chloroplasts, Bo1g087310 (homologous gene AT1G56340, Calreticulins-1) plays important roles in
calciumion binding, plant growth, and plant height [33]. Bo1g059170 (homologous gene AT3G51420) is
involved in strictosidine synthase activity and plant defense [34], and Bo1g094360 (homologous gene
AT3G08840) functions in D-alanine-D-alanine ligase activity (Table 3) [35]. Hence, we inferred that
these three candidate genes (Bo1g094360, Bo1g087310, and Bo1g059170) may be responsible for the
development of the yellow-green-leaf mutant phenotype.
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Table 3. DEGs related to chloroplasts in the recombination-suppressed region.

Gene ID a
Physical
Distance
(TO1000)

F Normal
b

F_Yellow
b

BC_Normal
b

BC_Yellow
b Diff c A.T. Annotation d

Bo1g087310 C1:25381300-
25383803 1837.98 156.85 1920.64 287.42 Down

Calreticulins-1, response
to oxidative stress,

response to cadmiumion,
response to salt stress,

calciumion homeostasis;

Bo1g094360 C1:27829353-
27834745 48.65 10.53 29.70 2.04 Down D-alanine-D-alanine

ligase activity

Bo1g098630 C1:29261755-
29263303 4002.89 475.81 1119.81 125.36 Down

GPT2:
glucose-6-phosphate/

phosphate translocator 2

Bo1g059170 C1:18110687-
18112080 167.35 828.45 277.80 858.19 Up SSL4: strictosidine

synthase-like 4

Bo1g098440 C1:29037892-
29038492 129.41 285.27 120.70 427.05 Up Protein of unknown

function, DUF538
a Five B. oleracea DEGs related to chloroplasts (reference genome TO1000). b Expression levels in the four samples.
c Differential regulation: up-regulation and down-regulation. d GO annotations for seven Bo to AT best-hit genes
obtained from The Arabidopsis Information Resource (TAIR).

5. Discussion

5.1. Efficiency of BSR in DEG Detection

BSA (an efficient method for rapidly identifying markers linked to mutant phenotypes) combined
with RNA-seq has been performed to map important agronomic traits at the transcription level in some
species, such as catfish [23], onion [36] maize [37], Chinese cabbage [38], Chinese wheat cultivar [39],
polyploid wheat [40], etc. Using BSR, Kim et al. [35] identified the candidate gene, AcPMS1, which
is involved in DNA mismatch repair, for the fertility restoration of cytoplasmic male sterility in
onions. Ramirez-Gonzalez et al. [24] mapped Yr15 to a 0.77-cM interval in hexaploid wheat using a
segregated F2 population through BSR. In the present study, RNA-seq analysis of four bulks detected
only 1112 common DEGs between the four pools (4924 on average), which can reduce the number of
genes related to the phenotype. Therefore, BSR was further demonstrated to be an efficient method for
analyzing the genes associated with the yellow-green-leaf mutant phenotype.

5.2. DEGs Analysis Associated with the Yellow-Green-Leaf in a Recombination-Suppressed Region
via RNA-Seq

In recent years, the fine mapping of important agronomic traits in Brassica has developed
rapidly [41–43]. Some yellow leaf color genes have been mapped in Brassica crops. A mutation
responsible for chlorophyll deficiency in Brassica juncea was mapped between amplified fragment
length polymorphism (AFLP) markers EA4TG4 and EA7MC1, with genetic distances of 33.6 and
21.5 cM, respectively [44]. In B. napus, Wang et al. [45] mapped the CDE1 locus to a 0.9 cM interval
of chromosome C08, and Zhu et al. [3] mapped a chlorophyll-deficient mutant between the markers
BnY5 and CB10534, which are closely linked to the chlorophyll deficiency gene BnaC.YGL, with
genetic distances of 3.0 and 3.2 cM on C06, respectively. Gene mapping for the above leaf color
mutant was based on normal recombination in the segregated population. Recombination suppression
was reported in many species, such as tomato [46], barley [47], petunia [48], Populus [49], hexaploid
wheat [50], and buffelgrass [51]. In this study, we identified a large recombination suppression region
spanning ~11 Mb on C01. However, recombination rate of Brassica oleracea C01 in previous studies
seemed to be normal. The genetic map was constructed based on Brassica oleracea re-sequencing
data; the C01 linkage groups spanned 97.59 cM, with an average distance of 1.15 cM between
neighboring loci; and no recombination suppression was found [52]. Lv et al. (2016) [53] constructed
a high-density genetic map while describing a comprehensive QTL analysis of key agronomic traits
of cabbage. On C01, twelve markers existed between the markers Indel481 (17,365,179 bp) and
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Indel14 (28,513,070 bp), which showed recombination was observed to be normal at the 17.3–28.5 Mb.
In the present study, recombination suppression was observed at C01: 18,069,792–29,537,314 bp
in the mapping of ygl-1 gene using the population constructed from YL-1 and 01-20. Moreover,
a recombination-suppressed region was identified in the same area while mapping ygl-1 using another
population constructed from YL-1 and 11-192. These two populations have one same parent YL-1.
Therefore, we speculated that the suppression of recombination may be due to the YL-1 mutant.

In the recombination-suppressed region, it is difficult to identify candidate genes using fine
mapping. Some research has revealed genes related to the phenotype by RNA-seq, such as Fhb1 in
wheat [54] and BPH15 in rice [55]. In the ygl-1 gene-mapping interval, a total of 10478 SNPs and
Indels, with 455 genes, were identified in the recombination-suppressed region, including 78 genes
related to chloroplasts. Comparison of the two bulk RNA-seq groups showed that only 43 genes
were common DEGs, only five of which were related to chloroplasts. Furthermore, three of these
five genes’ expression by qRT-PCR were consistent with the results of BSR. Therefore, BSA combined
with RNA-seq was able to greatly reduce the number of DEGs, demonstrating that this method is an
effective alternative for identifying candidate genes in a recombination-suppressed region.

5.3. Assembly Error in the Reference Genome

Brassica oleracea reference genome sequencing was completed in 2014 [25,56]. However, the 02-12
reference genome assemblies have been woefully incomplete, and some assembly errors have been
identified in recent studies. For example, Lee et al. [47] revised 27 v-blocks, 10 s-blocks, and several
other blocks in the 02-12 reference genome assembly during the mapping of clubroot resistance QTLs
through genotyping-by-sequencing. The purple leaf gene (BoPr) in the ornamental kale was mapped
on an unanchored scaffold by Liu et al. (2017) [57]. In a previous study [7], we identified possible
assembly errors in the 02-12 reference genome. According to the comparison of marker positions
with the TO1000 reference, the physical locations of Part II and Part III in the 02-12 reference genome
likely represent assembly errors (Figure 1). The makers’ order of linkage map was consistent with the
physical map order of TO1000 reference genome. All the results showed that the TO1000 reference
genome is reliable. These results will contribute to the improvement of the cabbage genome.

6. Conclusions

In conclusion, we mapped the yellow-green-leaf gene ygl-1 on a recombination-suppressed
genomic region by two populations. Bulk segregant RNA-seq (BSR) was applied to identify
differentially expressed genes using two segregate populations. BSR analysis with four pools greatly
reduced the number of common DEGs from 4924 to 1112. Eighteen DEGs related to chlorophyll were
clustered. In the ygl-1 gene mapping region with suppressed recombination, 43 common DEGs were
identified. Five of the genes were related to chloroplasts; the Bo1g098440 and Bo1g098630 genes were
excluded by qRT-PCR. Hence, Bo1g059170, Bo1g087310, and Bo1g094360 in the mapping interval may
be tightly associated with the development of the yellow-green-leaf mutant phenotype. Further studies
on these genes may reveal the molecular mechanism of yellow-green-leaf formation in B. oleracea.
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