Species	Methods of Evolution	Screened Clones	Rounds								
				Substrates	Km	kcat	kcat/Km	Specific Activity	Total Activity	Evolved Properties	Ref.
	EpPCR, in <i>vivo</i> DNA shuffling, IvAM ^b and IVOE ^c	~50,300	8	ABTS, pH 5	ND ^d	ND	ND	ND	34,000	Improved laccase activity and thermostability	[22]
Basidiomycete PM1	EpPCR, in <i>vivo</i> DNA shuffling, IvAM, StEP, ^e Site- Directed and Saturation Mutagenesis	~5,100	4	ABTS, blood buffer pH 7.4	ND	0 to 143	ND	ND	41,840	Shifted pH profile and reduced chloride inhibition	[15]
T. versicolor	EpPCR	2800	2	ABTS, pH 4.5	0.9	3.3	2.9	ND	3.5	Improved laccase activity	[16]
Myceliophthora thermophila	EpPCR, in <i>vivo</i> DNA shuffling, IvAM, StEP and Saturation	>12000	5	ABTS, pH 7 DMP, pH 7	2.1 0.5	14.4 17.6	30.9 9.2	ND ND	ND ND	Broader pH profile	[9]
Pycnoporus cinnabarinus		~7,600	6	ABTS, pH 5	1.5	12.7	18.4	ND	8,000	Improved laccase activity and shifted pH	
	DNA shuffling and IVOE			Sinapic acid, pH 5	0.6	9.2	5.1	ND	ND		[24]
Pycnoporus cinnabarinus and	Computer-aided site directed mutagenesis and IVOE	ND	1	Aniline, pH 3	0.1	2.2	1.6	ND	ND	Improved turnover rate	[12]
PM1 basidiomycete	ISM	>15000	1	Sinapic acid, pH 5	0.7	1.6	1.2	ND	ND	Shifted pH profile and enhanced turnover rate	[13]
Botrytis aclada	EpPCR, site- saturation	ND	4	ABTS, pH 3 to 6	up to 1.6	up to 1.8	up to 1.8	up to 4.8	ND	Improved laccase activity	[17]

 Table S1. Comparison of laccases evolution.

	mutagenesis, site- directed mutagenesis			DMP, pH 3 to 6	up to 4.6	up to 1.8	up to 4.8	up to 2.1	ND	at pH 3-7.5 and thermostability	
Cerrena unicolor BBP6	EpPCR and <i>in vivo</i> assembly	~3,500	2	ABTS, pH 4	2.9	9.3	27.0	29.1	37.2	Improved laccase activity and thermostability, broader pH profile	This study

^a All improvement data listed are from the best variant only.

^b In vivo assembly of mutant libraries constructed with different mutational spectra.

^c *In vivo* Overlap Extension.

^d Not determined.

-

^e *In vitro* recombination through staggered extension process.

Primers	Sequence (5' to 3')	Remarks					
OL_pYEa-F	CCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTATGAGATTTCCTTCAATTTTTACTG						
OL_lac-R	GTGAATGTAAGCGTGACATAACTAATTACATGATGCGGCCCTCTAGATGCATGC						
	CCATCAGCAA						
αF_1F	TAGGGAATATTAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCATGAGATTTC						
	CTTCAATTWTTACT						
αF 1R	TAATGCGGAGGATGCTGCGAATAAAACAGCAGTAAWAATTGAAGGAAATCTCATGAATTCCAGCACACTGGCGG						
α F_2F	CIGITITATICGCAGCATCCICCGCATTAGCIGCICCAGICAWCACTACAACA	Amplification					
αF_2R	CACAATGTGAATGTCGGTGACAGGACCAACGGCTCTTTTCTCGAGAGATACCCCTTCTTCTTAGYAGCAATGCTG	of fragment α F2					
Lac_1F	ACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGGTATCTCTCGAGAAAAGAGCCGTTGGT	Amplification					
Lac 1P	AAGACCATTGATCAAGGTGGTATCAGCGATGGCAACACCGWCGATTTGASGGGCCAAAGTATGATACCAGTCGGC						
Lac_IIX	CAAAG						
Lac_2F	ATCGCTGATACCACCTTGATCAATGGTCTT	Amplification					
Lac 2R	ACGGGGGTAGTGACCAGGGGATGGAGGTTGGRCTCCTGGAGAGGCTTGGTAGAAGTGGTCTGAKTGGTAKTAGGC						
Luc_Lit	TCAGCTACCGGTGCGCCTTTGTAGC						
Lac_3F	CAACCTCCATCCCCTGGTCACTACCCCCGT	Amplification					
Lac 3R	GACAACATCACGAACGATAGGGTCAACGTAGTTGGGASTAGTTTGACCGGCACTGCGAACAAC						
Lac_4F	CTACGTTGACCCTATCGTTCGTGATGTTGTC	Amplification					
Lac_4R	TGAATGTAAGCGTGACATAACTAATTACATGATGCGGCCCCTCTAGATGCATGC	of fragment					
	ATCAGMAAGAGCAT	Lac4					
17_promoter	TAATACGACTCACTATAGGG	DNA					
pYEsqR		sequencing					
αF54_F		Amplification					
		of evolved α -					
αF54_K		factor					
Lac_uni_F Lac_uni_R		Amplificatio					
	TGAATGTAAGCGTGACATAACTAATTACATGATGCGGCCCTCTAGATGCATGC						
	AIC	laccases					

Table S2. Primers used in the study.