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Abstract: Sarcopenia, the degenerative and systemic loss of skeletal muscle mass, indicates patient frailty
and impaired physical function. Sarcopenia can be caused by multiple factors, including advanced age,
lack of exercise, poor nutritional status, inflammatory diseases, endocrine diseases, and malignancies.
In patients with cancer cachexia, anorexia, poor nutrition and systemic inflammation make the metabolic
state more catabolic, resulting in sarcopenia. Thus, sarcopenia is considered as one of manifestations
of cancer cachexia. Recently, growing evidence has indicated the importance of sarcopenia in the
management of patients with various cancers. Sarcopenia is associated with not only higher rates of
treatment-related complications but also worse prognosis in cancer-bearing patients. In this article,
we summarized metabolic backgrounds of cancer cachexia and sarcopenia and definitions of sarcopenia
based on computed tomography (CT) images. We conducted a systematic literature review regarding
the significance of sarcopenia as a prognostic biomarker of bladder cancer. We also reviewed recent
studies focusing on the prognostic role of changes in skeletal muscle mass during the course of treatment
in bladder cancer patients. Lastly, we discussed the impact of nutritional support, medication, and
exercise on sarcopenia in cancer-bearing patients.
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1. Introduction

Bladder cancer is the most common malignancy of the urinary tract in the world, with approximately
430,000 new cases and 165,000 deaths each year [1]. The major histology of bladder cancer is urothelial
carcinoma. Based on the pathological depth of tumor invasion, bladder cancer is classified into two
groups: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC).
NMIBC is treated with bladder-preserving treatments, including transurethral resection of the bladder
tumor and intravesical instillation therapy [2]. Patients with MIBC generally require total cystectomy and
urinary diversion as a curative treatment [3]. However, approximately half of MIBC patients undergoing
total cystectomy die within five years because MIBC is potentially an aggressive disease and frequently
progresses to a metastatic disease postoperatively [4]. Once MIBC patients develop distant metastasis,
their prognoses are poor despite receiving systemic chemotherapy with a median overall survival (OS) of
approximately 15 months [5]. Thus, bladder cancer is still a challenging disease, although the recent advent
of immuno-oncology drugs is shifting the paradigm of the management of bladder cancer patients [6].
Pre-therapeutic risk assessment based on prognostic biomarkers can help clinicians to predict their
outcomes and counsel patients about treatment options. Therefore, identifying prognostic biomarkers
contributes to better management for bladder cancer patients.

Sarcopenia is a syndrome representing the degenerative and systemic loss of skeletal muscle mass [7].
According to recent surveys, the prevalence of sarcopenia is relatively high, ranging from 15% at 65 years
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to 50% at 80 years [8]. Variations in genes, such as MSTN, VDR, and ACE, determine the variability in
skeletal muscle phenotype and the prevalence of sarcopenia in an elderly population [9]. Sarcopenia is
associated with lower physical activity, morbidity, and mortality [10,11]. Sarcopenic patients tend to
have higher morbidity from infectious diseases [12], metabolic syndrome [13], insulin resistance [14],
and cardiovascular diseases [15]. Sarcopenia is pathophysiologically associated with various etiologies,
including advanced age, lack of exercise, poor nutritional status, inflammatory diseases, and endocrine
diseases [7]. Malignant diseases can also cause sarcopenia [16]. In patients with cancer cachexia,
anorexia, poor nutrition, and systemic inflammation make the metabolic state more catabolic, resulting in
sarcopenia [17]. Therefore, sarcopenia is considered as one of manifestations of cancer cachexia.

Recent studies have shown the prognostic impact of sarcopenia in various cancers. Sarcopenic patients
show significantly worse survival than non-sarcopenic counterparts with lung or gastrointestinal
cancer [18,19], hepatic cell carcinoma [20], esophageal cancer [21], lymphoma [22], melanoma [23], or renal
cell carcinoma [24,25]. In bladder cancer, the role of sarcopenia in predicting survival has been clarified.
In this article, we summarized metabolic backgrounds of cancer cachexia and sarcopenia and definitions of
sarcopenia based on computed tomography (CT) images. Moreover, we conducted a systematic literature
review on published studies to summarize comprehensively the current clinical evidence on the prognostic
role of sarcopenia in bladder cancer patients. We also reviewed recent studies focusing on the prognostic
importance of changes in skeletal muscle mass during the course of treatment in bladder cancer patients.
Finally, we discussed the impact of nutritional support, medications, and exercise on cancer cachexia and
sarcopenia in cancer-bearing patients.

2. Metabolic Background of Cancer Cachexia and Sarcopenia

Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss, which is
due to the depletion of adipose tissue and skeletal muscle mass. In the early phase of cancer cachexia,
adipose tissue is depleted [26]. Skeletal muscle wasting is promoted after the progression of cancer
cachexia [27]. Anorexia, which is caused by cancer itself or treatment for cancer, is frequently
observed in patients with cancer cachexia. Moreover, resting energy expenditure increases in patients
with cancer cachexia, leading to the progressive loss of body weight [28]. In the process of the
progression of cancer cachexia, lipolysis and fatty acid oxidation are activated in skeletal muscle,
whereas glycolysis is suppressed [29,30]. Increased oxidative stress caused by up-regulated fatty acid
oxidation can contribute to skeletal muscle wasting [30]. Several mechanisms, including epinephrine
stimulation and increased secretion of cytokines, are involved in these metabolic changes [31].
Moreover, skeletal muscle depletion is caused by increased protein degradation mainly by the
activated ubiquitin-proteasome pathway, in which multiple receptor-mediated signaling pathways
are involved [27]. In this section, we summarize the metabolic changes and the mechanisms of the
depletion of adipose tissue and skeletal muscle mass during cancer cachexia.

2.1. Adipose Tissue Depletion in Cancer Cachexia

Adipose tissue volume decreases in the early process of cancer cachexia [26]. The breakdown of
adipose tissue is caused by lipolysis of triglyceride, which is mediated by adipose triglyceride lipase
(ATGL) and hormonal-sensitive lipase (HSL) [32]. In a previous study of ATGL- or HSL-deficient
animal models, the absence of ATGL and, to lesser degree, HSL reduces fatty acid mobilization and
adipose tissue loss, leading to maintained skeletal muscle mass, suggesting that excessive depletion
of adipose tissue may be involved in the progression of skeletal muscle atrophy [29]. Up-regulation
of lipolysis is induced by various factors, including enhanced stimulation of β-adrenergic receptor,
increased secretion of cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-8,
and increased expression of lipid-mobilizing factors, such as zinc-α2 glycoprotein-1 (AZGP1) [32].
White adipose tissue browning, which is associated with increased expression of uncoupling protein 1
(UCP1), increases thermogenesis and energy expenditure during cancer cachexia [28]. This process is
also affected by β-adrenergic receptor stimulation and cytokines such as TNF-α and IL-6 [28].
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2.2. Skeletal Muscle Depletion in Cancer Cachexia

Skeletal muscle depletion occurs as a consequence of reduced protein synthesis and increased
degradation of proteins in the late phase of cancer cachexia [27]. Reduced protein synthesis can be caused
by low nutritional status as a result of anorexia and decreased food intake [27,32]. Skeletal muscle protein
degradation is promoted mainly by the ubiquitin-proteasome pathway, which is induced by myostatin,
activin A, cytokines such as TNF-α and IL-6, and proteolysis-inducing factor [31,32]. Myostatin and
activin A, members of the transforming-growth factor β (TGF-β) family, bind activin type 2 receptor B
(ActR2B) and activate Smad2/3 and p38 mitogen-activated protein kinase (MAPK) signaling, resulting in
the up-regulation of Atrogin-1 and the muscle ring finger protein 1 (MuRF-1), which are muscle-specific
E3 ligases and play roles as key regulators of ubiquitin-driven protein degradation in the skeletal
muscle [27,31]. Moreover, the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin
(mTOR) pathway and forkhead box O (FOXO), which are general regulators of skeletal muscle mass
homeostasis, are affected in cancer cachexia [31–33]. TNF-α up-regulates Atrogin-1 by increasing nuclear
FOXO4 protein in skeletal muscle [34]. Glucocorticoid receptor regulates the expression of Atrogin-1 and
MuRF-1 [27,31]. The binding of insulin-like growth factor-1 (IGF-1) to its receptor causes the activation
of PI3K/Akt/mTOR pathway, which down-regulates FOXO3 and results in decreased expression of
Atrogin-1 and MuRF-1 [27,31]. Taken together, various signaling pathways are related to the regulation of
skeletal muscle protein degradation. Their inhibition may contribute to the prevention of cancer cachexia
and sarcopenia.

Oxidative stress promotes skeletal muscle wasting. Fukawa et al. revealed up-regulation of
fatty acid oxidation and down-regulation of glycolysis in the skeletal muscle using transcriptomics
of human muscle stem cell-based models and human cancer-induced cachexia models in mice [30].
Interestingly, they also showed that increased oxidative stress caused by excessive fatty acid oxidation
could impair muscle growth [30]. Therefore, increased oxidative stress can cause sarcopenia through
excessive fatty acid oxidation in the process of the progression of cancer cachexia. Inhibiting the
process of fatty acid oxidation could be efficacious in preventing cancer cachexia and sarcopenia.
In contrast, skeletal muscle mitochondrial oxidative capacities decrease without alteration of adenosine
triphosphate (ATP) production efficiency in a rat model of cancer cachexia [35], which appears to be
inconsistent with the results reported by Fukawa et al. [30], but this may contribute to lipid droplet
accumulation in skeletal muscle mass [36].

3. Evaluation of Sarcopenia Using Computed Tomography (CT) Images

According to the European Working Group of Sarcopenia in Older People (EWGSOP), sarcopenia
is determined based on three factors: lower skeletal muscle mass, lower skeletal muscle strength,
and lower physical performance [7]. Skeletal muscle strength can be evaluated by upper-limb hand-grip
dynamometry and lower-limb extension strength testing. The assessment of physical function is
generally based on walking speed. As for skeletal muscle mass, bioimpedance analysis, anthropometry,
dual energy X-ray imaging, CT, and magnetic resonance imaging (MRI) are recommended as methods
to measure skeletal muscle mass by EWGSOP [7]. In cancer-bearing patients, including bladder cancer
patients, CT images are generally used in the evaluation of sarcopenia, since abdominal CT scans are
routinely performed for diagnosis, staging, surveillance of recurrence after treatment, and assessment
of therapeutic response [37]. Therefore, most of the previous studies on sarcopenia and bladder cancer
used CT images to measure skeletal muscle mass and define sarcopenia (Figure 1). In our systematic
literature review below, all the articles used CT images.
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Figure 1. Computed tomography (CT) images of typical sarcopenic and non-sarcopenic cases.
Skeletal muscle area is shown in red.

3.1. Measurement of Skeletal Muscle Mass Using CT Images

Axial CT images at the lumbar vertebral level are used to measure skeletal muscle areas because
the total lumbar-skeletal muscle cross-sectional area is linearly correlated to the whole-body skeletal
muscle mass [38]. The total skeletal muscle area at the third lumbar vertebra, including the psoas,
paraspinal muscles (the erector spinae and quadratus lumborum), and abdominal wall muscles
(the transversus abdominus, external and internal obliques, and rectus abdominus), is measured using
software such as Slice-O-Matic (Tomovision, Montreal, QC, Canada) and OsiriX imaging software
(Pixmeo, Geneva, Switzerland). The cross-sectional areas of skeletal muscle are identified using
Hounsfield Unit thresholds of −29 to +150.

3.2. Skeletal Muscle Index (SMI)

Skeletal muscle index (SMI) is used widely in evaluating sarcopenia in cancer-bearing patients.
SMI is calculated by normalizing skeletal muscle area for height in meters squared, as is body
mass index (BMI). Two major established definitions of sarcopenia have been proposed so far.
First, the International Consensus of Cancer Cachexia (ICCC) proposed cutoff values of SMI as
55 cm2/m2 for males and 39 cm2/m2 for females [16]. Second, Martin et al., defined BMI-incorporated
cutoff values of SMI as <43 cm2/m2 for males with BMI < 25 kg/m2, <53 cm2/m2 for males with BMI
≥ 25 kg/m2, and <41 cm2/m2 for females [18]. Both of the two definitions were the best cutoffs to
predict overall mortality using a cohort of patients with lung or gastrointestinal cancer, and either of
them has been used to define sarcopenia in most previous studies on bladder cancer [37].

3.3. Psoas Muscle Index (PMI)

In some previous studies, only the psoas muscle area was measured on axial CT images at the
lumbar vertebral level. The psoas muscle index (PMI) is calculated by normalizing the psoas muscle
area for height in meters squared. Although a correlation between PMI and whole-body skeletal
muscle mass has not yet been evaluated, the strong correlation between PMI and SMI suggests that
PMI also represents whole-body skeletal muscle mass [39]. Hamaguchi et al. proposed the cutoff
values of PMI to define sarcopenia as 6.36 cm2/m2 for males and 3.92 cm2/m2 for females, using a
cohort of adult donors for living donor liver transplantation [39]. However, because their cohort
included only Japanese patients, the use of their values may be limited to Asian populations.

3.4. Skeletal Muscle Density

In addition to the volume of the skeletal muscle, the quality of the skeletal muscle can be evaluated
on CT scan. Skeletal muscle density is determined based on the CT density (Hounsfield unit) of the
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skeletal muscle [40]. Lower skeletal muscle density reflects more fat infiltration in skeletal muscle
mass, which is related to lower function of the skeletal muscle and lower physical performance.
Moreover, increased fat infiltration in skeletal muscle mass is involved in insulin resistance [41],
which decreases glucose uptake in skeletal muscles and can eventually contribute to skeletal muscle
atrophy. Because increased fat infiltration in the skeletal muscle is one of the characteristics of cancer
cachexia, lower skeletal muscle density is considered as an indicator of the progression of cancer
cachexia [40].

4. Hybrid Nature of Sarcopenia as a Prognostic Biomarker

Prognostic tumor biomarkers generally reflect tumor aggressiveness, including tumor stage,
histological grade, lymphovascular invasion, and patient survival. Several prognostic biomarkers
are related to the general condition of the host; e.g., age, sex, performance status, BMI, anemia, etc.
Notably, sarcopenia reflects both tumor and host factors (Figure 2). Because sarcopenia develops as a
consequence of tumor progression, tumor-induced systemic inflammation, or metabolic aberration,
its presence indicates tumor aggressiveness. In addition, sarcopenic patients are characterized by poor
general health and physical performance, which can contribute to worse prognosis of cancer-bearing
patients. High prognostic performance of sarcopenia could be explained by its hybrid nature, which is
a unique feature as a prognostic biomarker.
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5. Systematic Literature Review

A systematic literature review was performed to search for studies investigating the prognostic
role of sarcopenia in bladder cancer patients according to the PRISMA guidelines [42]. The search was
restricted to articles written in English and performed using PubMed, Medline, and Cochrane Libraries
by entering the terms “sarcopenia and urothelial carcinoma” and “sarcopenia and bladder cancer”.
Twenty-nine articles published from June 2014 to April 2018 were identified on 1 April 2018. There was
no literature before June 2014 according to our literature search. Two independent investigators
(H.F. and K.T.) conducted the literature search and selection of articles. Potential discrepancies
were resolved by open discussion. Details of the search and article selection are summarized in
the flow diagram (Figure 3). Studies were included if they were published as original articles
investigating the prognostic role of sarcopenia in bladder cancer patients. Review articles, case reports,
editorial comments, letters, meeting abstracts, and studies not meeting our inclusion criteria in their
content were excluded. Our systematic literature review has several limitations. First, 12 articles were
included in our systematic review, all of which were retrospective, and no study of level 1 evidence
was included, indicating possible high risks of bias. Second, several different methods and definitions
were used to evaluate sarcopenia using CT images in included studies.
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6. Prognostic Role of Sarcopenia in Bladder Cancer

Table 1 lists published studies on the prognostic role of sarcopenia in bladder cancer patients.
Most studies reported that sarcopenia was associated with worse prognosis. A systematic literature
review identified six studies involving patients undergoing a radical cystectomy (due to high-risk
NMIBC or MIBC) and four studies involving patients with inoperable locoregionally advanced and/or
metastatic diseases. No studies investigated the association between sarcopenia and survival in low- or
intermediate-risk NMIBC patients. Nine of the 10 studies used either SMI or PMI to define sarcopenia.

6.1. Survival after a Radical Cystectomy

Although a radical cystectomy with pelvic lymph node dissection is the standard of care for
high-risk NMIBC and MIBC patients, its main problems include high incidences of perioperative
complications [3]. In the contemporary radical cystectomy series, the incidence of major complications
of Clavien–Dindo classification grade 3 or greater ranges from 5 to 26%, with a mortality rate of
0–3.9% [43]. Several studies showed that sarcopenia is significantly associated with higher rates of
perioperative complications of a radical cystectomy [44,45].
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Table 1. Reported series of the prognostic role of sarcopenia in bladder cancer cancers.

Study (Year) Country No. of Total
Patients

No. of Sarcopenic
Patients Cancer Type Therapeutic

Interventions Definition of Sarcopenia Main Findings Ref.

Smith et al. (2014) United States 200 77 (39%) Bladder cancer Radical cystectomy TPA † < 653 cm2/m2 for males and
<523 cm2/m2 for females

The Kaplan–Meier curves showed no
significant association between OS and
sarcopenia (p = 0.36).

[45]

Psutka et al. (2014) United States 205 141 (69%) Bladder cancer Radical cystectomy SMI < 55 cm2/m2 for males and
<39 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 2.14 for CSS
(p = 0.007) and 1.93 for OS (p = 0.004).

[46]

Hirasawa et al. (2016) Japan 136 65 (48%) Bladder cancer Radical cystectomy

SMI < 43 cm2/m2 for males with
BMI < 25 cm2/m2, <53 cm2/m2 for
males with BMI ≥ 25 cm2/m2,
and <41 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 2.3 for CSS
(p = 0.015).

[47]

Miyake et al. (2017) Japan 89 22 (25%) Bladder cancer Radical cystectomy

SMI < 43 cm2/m2 for males with
BMI < 25 cm2/m2, <53 cm2/m2 for
males with BMI ≥ 25 cm2/m2,
and <41 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 2.2 for OS (p = 0.03). [48]

Saitoh-Maeda et al. (2018) Japan 63 (male only) 141 (69%) Bladder cancer Radical cystectomy PMI < 400 cm2/m2
In male patients, non-sarcopenic patients had
a significantly better OS than sarcopenic
counterparts (2,889 vs. 2,009 days; p = 0.023).

[49]

Mayr et al. (2018) Germany 500 189 (38%) Bladder cancer Radical cystectomy

SMI < 43 cm2/m2 for males with
BMI < 25 cm2/m2, <53 cm2/m2 for
males with BMI ≥ 25 cm2/m2,
and <41 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 1.42 for CSS
(p = 0.048) and 1.43 for OS (p = 0.01).

[50]

Fukushima et al. (2015) Japan 88 67 (76%) Advanced urothelial
carcinoma Miscellaneous

SMI < 43 cm2/m2 for males with
BMI < 25 cm2/m2, <53 cm2/m2 for
males with BMI ≥ 25 cm2/m2, and
<41 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 3.36 for OS
(p < 0.001).

[51]

Taguchi et al. (2015) Japan 100 Not reported Metastatic urothelial
carcinoma Systemic chemotherapy SMI < 55 cm2/m2 for males and

<39 cm2/m2 for females

Sarcopenia was an independent poor
prognostic factor with HR 2.07 for CSS
(p = 0.045).

[52]

Kasahara et al. (2017) Japan 27 14 (52%) Advanced bladder
cancer Systemic chemotherapy PMI < 2.49 cm2/m2 for males and

<2.07 cm2/m2 for females

The OS of the non-sarcopenic group was
significantly better than that of the sarcopenic
group (561 vs. 223 days; p = 0.0150).

[53]

Abe et al. (2018) Japan 87 Not reported Metastatic urothelial
carcinoma Systemic chemotherapy SMI < 55 cm2/m2 for males and

<39 cm2/m2 for females

Sarcopenia was not significantly associated
with OS (p = 0.11). SMI stratified by BMI was
an independent predictor for shorter OS
(p = 0.026).

[54]

Abbreviations: BMI = body mass index; CSS = cancer-specific survival; HR = hazard ratio; OS = overall survival; PMI = psoas muscle index; SMI = skeletal muscle index; TPA = total psoas
area. † TPA was calculated by measuring the cross-sectional area of the right and left psoas muscles on CT using 3-dimensional computerized image analysis.
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As shown in Table 1, six studies reported the prognostic role of sarcopenia in bladder cancer
patients undergoing a radical cystectomy [45–50]. Five of them revealed that sarcopenia is a significant
predictor of cancer-specific survival (CSS) and OS [46–50]. Psutka et al., for the first time demonstrated
that sarcopenia is an independent predictor for both poorer CSS and OS [46]. The 5-year CSS and OS
rates were lower for sarcopenic patients than for non-sarcopenic counterparts (49% vs. 72% for CSS
and 39% vs. 70% for OS, respectively). Three studies from Japan reported similar results to those of
Psutka et al. [47–49]. Recently, a multi-center retrospective study from Germany demonstrated that
sarcopenia is an independent predictor for both poorer CSS and OS in 500 bladder cancer patients
undergoing a radical cystectomy [50]. Only one study, reported by Smith et al., showed no association
between sarcopenia and OS [45]. This discrepant result may be due to the different methods for
estimating skeletal muscle volume. Four studies calculated SMI, and three of them used the definition
of sarcopenia proposed by Martin et al. However, Smith et al. calculated cross-sectional psoas muscle
area using 3-dimensional computerized image analysis and defined sarcopenia using their own criteria.

Taken together, most previous studies demonstrated that sarcopenia is a significant poor
prognostic factor in bladder cancer patients undergoing a radical cystectomy.

6.2. Survival in Inoperable Advanced Disease

Four studies evaluated the prognostic role of sarcopenia in patients with inoperable advanced
bladder cancer (Table 1) [51–54]. Because upper tract urothelial carcinoma is histologically and
biologically similar to bladder cancer, three of them included advanced upper tract urothelial
carcinoma in their cohorts [51,52,54]. Fukushima et al. showed for the first time that sarcopenia
is an independent predictor for shorter OS in patients with advanced urothelial carcinoma (inoperable
locoregionally advanced disease and/or metastatic diseases to lymph nodes or distant organs) [51].
The median OS of sarcopenic patients was significantly shorter than that of non-sarcopenic counterparts
(11 vs. 31 months). Taguchi et al. reported that sarcopenia is an independent predictor for shorter
CSS in metastatic urothelial carcinoma patients receiving systemic chemotherapy as the first-line
therapy [52]. Kasahara et al. showed the prognostic significance of sarcopenia in advanced bladder
cancer patients receiving gemcitabine and nedaplatin therapy [53]. In addition, Abe et al. could not
confirm the significance of sarcopenia in predicting OS, but they showed that SMI stratified by BMI
was an independent predictor for shorter OS [54].

Thus, previous studies indicated that sarcopenia is a significant poor prognostic factor in
inoperable advanced bladder cancer patients.

7. Prognostic Role of Changes in Skeletal Muscle Mass in Bladder Cancer

Because disease status and patient conditions can affect skeletal muscle mass in cancer-bearing
patients, changes in skeletal muscle mass during and after treatment may represent post-therapeutic
prognosis. As shown in Table 2, three studies investigated the prognostic role of changes in skeletal
muscle mass during treatment in bladder cancer patients [48,55,56]. Miyake et al. reported that a 10%
loss in psoas muscle volume before and after a radical cystectomy was an independent predictor for
shorter OS [48]. Fukushima et al. reported that post-therapeutic skeletal muscle mass recovery was an
independent predictor for both better recurrence-free survival and OS in advanced urothelial carcinoma
treated with platinum-based chemotherapy as the first-line therapy [56]. Meanwhile, Zargar et al.
showed that decline in psoas muscle volume during neoadjuvant chemotherapy was not predictive of
OS in bladder cancer patients treated with neoadjuvant chemotherapy and a radical cystectomy [55].
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Table 2. Reported series of the prognostic role of changes in skeletal muscle mass in bladder cancer cancers.

Study (Year) Country No. of Total
Patients Cancer Type Therapeutic Interventions Evaluation of Skeletal Muscle Mass Main Findings Ref.

Miyake et al. (2017) Japan 89 Bladder cancer Radical cystectomy
Postoperative changes in psoas major
muscle volume were calculated after
a radical cystectomy.

A 10% loss in the volume of the psoas
muscle was an independent poor
prognostic factor with HR 2.4 for OS
(p = 0.02).

[48]

Zargar et al. (2017) United States 60 Bladder cancer NAC and a radical cystectomy Changes in PMV were calculated
from pre- and post-NAC CT images.

The proportion of PMV decline during
NAC was not a predictor of OS after a
radical cystectomy (p = 0.85).

[55]

Fukushima et al. (2018) Japan 72 Advanced urothelial carcinoma Systemic chemotherapy
Changes in SMI were calculated from
pretherapeutic and posttherapeutic
CT images.

Post-therapeutic skeletal muscle mass
recovery was an independent favorable
prognostic factor with HR 0.24 for RFS
(p < 0.001) and 0.21 for OS (p < 0.001).

[56]

Abbreviations: CT = computed tomography; HR = hazard ratio; NAC = neoadjuvant chemotherapy; OS = overall survival; PMV = psoas muscle volume; RFS = recurrence-free survival;
SMI = skeletal muscle index.
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Although limited data suggest the prognostic significance of changes in skeletal muscle mass
during treatments among bladder cancer patients, further studies are needed to confirm this finding.
Therapeutic interventions for cancer might improve cancer cachexia and sarcopenia by eradicating
cancer cells. Because adipose tissue depletion precedes skeletal muscle wasting in animal models with
cancer cachexia [26], changes in fat and skeletal muscle mass and their patterns might be associated
with survival of cancer-bearing patients. Indeed, patterns of fat and skeletal muscle wasting can be
associated with survival of patients with pancreatic cancer [57].

8. Therapeutic Interventions for Sarcopenia

Given the prognostic significance of sarcopenia and changes in skeletal muscle mass in bladder
cancer patients, prevention of or recovery from sarcopenia and cancer cachexia may contribute to
improving their prognosis. There are several studies to investigate nutritional support, medication,
and exercise as therapeutic interventions for cancer cachexia and sarcopenia in cancer-bearing patients.
However, these current therapies, such as protein supplementation, are limited due to their inefficient
efficacy for improving sarcopenia, suggesting the possibility of irreversible damage to skeletal
muscles [32].

8.1. Nutritional Support

Several previous studies show the effect of nutritional support on sarcopenia in non-cancer
patients. Because sarcopenia results from a decrease in protein synthesis and increase in protein
degradation, protein supplementation can play a key role in nutritional support [58]. The effects of
protein supplementation on skeletal muscle mass can be increased by adding anabolic agents such as
growth hormones and testosterone [58]. However, accumulating evidence suggested that sarcopenia is
not fully reversed by conventional nutrition in patients with cancer cachexia [32].

8.2. Medications

8.2.1. n-3 Fatty Acids

n-3 Fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, can recover a
cancer-induced hyper-catabolic state and improve sarcopenia and cachexia by its anti-inflammatory
effects, involving the attenuation of NF-kB signaling, deceleration of the ubiquitin proteasome
pathway, and antagonization of superoxide dismutase [59–61]. n-3 Fatty acids also reduce the
expression of AZGP1 by interfering glucocorticoid receptor [32]. 4-Hydroxyhexenal (HHE) and
4-hydroxynonenal (HNE), lipid peroxidation products of n-3 fatty acids, can prevent the blocking of
myosin expression and myotube formation caused by tumor cells [62]. n-3 Fatty acids can mediate
the induction of apoptosis and the reduced proliferation of tumor cells [63]. Moreover, n-3 fatty acids
have some effects on improving protein anabolism by activating the PI3K/Akt/mTOR pathway [64].
Recently, a randomized controlled study revealed that eicosapentaenoic acid improved postoperative
survival in patients undergoing metastasectomy for liver metastases from colorectal cancer [65].

8.2.2. ActR2B Antagonist

ActR2B, a receptor for myostatin and activin A, mediate skeletal muscle protein degradation [31].
Expression of a dominant negative ActR2B in transgenic mice leads to skeletal muscle hypertrophy,
which indicates that the ActR2B pathway mediates skeletal muscle growth [66]. In mice models with
cancer cachexia, blockage of the ActR2B pathway suppressed skeletal muscle wasting by abolishing
activated ubiquitin-proteasome system and inducing atrophy-specific ubiquitin ligases in skeletal
muscles, in which tumor growth and fat loss were not inhibited [67]. Therefore, ActR2B antagonism
has therapeutic potential for treating cancer cachexia and sarcopenia.
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8.2.3. Medications for Insulin Resistance

Insulin resistance is basically enhanced in patients with cancer cachexia, despite the significant loss of
adipose tissue [31]. Insulin resistance is related to the reduction of muscle glucose uptake and suppression
of protein anabolism. Several medications for diabetes mellitus can be effective for cancer cachexia
and sarcopenia. Metformin increases food intake and prolongs survival in cachectic tumor-bearing rat
models [68]. Peroxisome proliferator activated receptor γ (PPAR-γ) agonists, including rosiglitazone,
troglitazone, and pioglitazone, improve body weight and reduce skeletal muscle protein degradation by
enhancing insulin sensitivity [69].

8.2.4. Inhibitors for Lipolysis and Fatty Acid Oxidation

ATGL and HSL regulate lipolysis of triglyceride and their inhibition reduces adipose tissue loss,
contributing to maintained skeletal muscle mass [29]. Therefore, inhibitors for ATGL or HSL can be
candidates for medications for cancer cachexia and sarcopenia. Moreover, increased oxidative stress
caused by excessive fatty acid oxidation leads to skeletal muscle wasting [30]. Therefore, etomoxir,
an inhibitor of fatty acid oxidation, can be a new approach for treating cancer cachexia and sarcopenia.

8.2.5. Hormonal Replacement Therapy

Hormonal replacement therapy is used to relieve menopausal symptoms in females. Because estrogen
monotherapy can induce endometrial hyperplasia and cancer, progestogens are usually combined
with estrogens. Hormonal replacement therapy is also effective for sarcopenia, which is one of the
menopausal symptoms [70]. In males, testosterone is usually administered as hormonal replacement
therapy. Testosterone improves sarcopenia, especially in combination with protein supplementations [58].

8.3. Exercise

Exercise, including aerobic exercise and resistance training, can contribute to the improvement
of sarcopenia in cancer-bearing patients [71,72]. Exercise can overcome sarcopenia by abrogating
systemic inflammation and catabolism [73]. Exercise has been reported to contribute to maintaining
skeletal muscle mass and function in breast cancer patients treated with systemic chemotherapy [74].
Although the effect of exercise on metabolisms in patients with cancer cachexia is unclear, exercise may
have an influence on lipolysis and insulin sensitivity. In addition, several studies demonstrated the
anti-tumor effects of exercise. Exercise was shown to induce the secretion of interleukin-6 from muscles
and elicit anti-tumor immunity in combination with epinephrine by redistributing natural killer cells to
tumor microenvironments [75]. Because exercise enhances anti-tumor immunity, exercise might have
a favorable effect on the efficacy of immune-oncology drugs for cancer [76]. Moreover, exercise was
shown to inhibit tumor growth by activating the Hippo tumor suppressor pathway via β-adrenergic
signaling [77].

9. Future Perspectives

Future studies are expected to clarify how cancer cachexia and sarcopenia progress in bladder
cancer patients. Because the loss of adipose tissue precedes skeletal muscle wasting in animal models of
cancer cachexia [26], phenotypes of cancer cachexia manifestations can be evaluated using CT images
according to the level of fat and skeletal muscle depletion and may be useful in the management of
bladder cancer patients [57]. Metabolic and molecular backgrounds of cancer cachexia and sarcopenia
should be further elucidated to develop novel therapeutic strategies for sarcopenia. Future clinical
trials are expected to assess the efficacy of novel medications and exercise in bladder cancer patients.

10. Conclusions

In this review, we summarized reported series of the prognostic role of sarcopenia in bladder
cancer patients. Sarcopenia is significantly associated with unfavorable prognosis in bladder cancer
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patients undergoing a radical cystectomy. Moreover, sarcopenia is also a significant poor prognostic
factor in patients with inoperable advanced bladder cancer. Thus, sarcopenia can be used as a
prognostic biomarker in patients with bladder cancer at various stages. We reviewed reported
series of the prognostic role of changes in skeletal muscle mass during treatments in bladder cancer
patients. Recovery of skeletal muscle mass during treatments can be associated with the improved
prognosis of bladder cancer patients, whereas decline of skeletal muscle mass can reflect poor prognosis,
indicating its role not only as a prognostic biomarker but also as a surrogate marker for treatment
efficacy in bladder cancer patients. In addition, nutritional support, medications, and exercise may
improve sarcopenia and cancer cachexia and have a favorable influence on the management of
cancer-bearing patients. Future studies may clarify the prognostic value of these interventions in
cancer-bearing patients.
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