
 International Journal of 

Molecular Sciences

Review

Multi-Target Approach for Drug Discovery
against Schizophrenia
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magda.kondej@onet.pl (M.K.); piotr.stepnicki93@gmail.com (P.S.)

2 School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627,
Kuopio FI-70211, Finland

* Correspondence: agnieszka.kaczor@umlub.pl; Tel.: +48-81-448-7273

Received: 3 September 2018; Accepted: 6 October 2018; Published: 10 October 2018
����������
�������

Abstract: Polypharmacology is nowadays considered an increasingly crucial aspect in discovering
new drugs as a number of original single-target drugs have been performing far behind expectations
during the last ten years. In this scenario, multi-target drugs are a promising approach against
polygenic diseases with complex pathomechanisms such as schizophrenia. Indeed, second generation
or atypical antipsychotics target a number of aminergic G protein-coupled receptors (GPCRs)
simultaneously. Novel strategies in drug design and discovery against schizophrenia focus on
targets beyond the dopaminergic hypothesis of the disease and even beyond the monoamine
GPCRs. In particular these approaches concern proteins involved in glutamatergic and cholinergic
neurotransmission, challenging the concept of antipsychotic activity without dopamine D2 receptor
involvement. Potentially interesting compounds include ligands interacting with glycine modulatory
binding pocket on N-methyl-D-aspartate (NMDA) receptors, positive allosteric modulators of
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, positive allosteric
modulators of metabotropic glutamatergic receptors, agonists and positive allosteric modulators of
α7 nicotinic receptors, as well as muscarinic receptor agonists. In this review we discuss classical and
novel drug targets for schizophrenia, cover benefits and limitations of current strategies to design
multi-target drugs and show examples of multi-target ligands as antipsychotics, including marketed
drugs, substances in clinical trials, and other investigational compounds.
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1. Introduction

Schizophrenia is a severe mental illness, affecting up to 1% of the population, with major public
health implications. The causes of schizophrenia might be genetic or environmental or both but
the complex pathomechanism of this disease is not sufficiently understood. The clinical picture of
schizophrenia involves three groups of symptoms, i.e., positive, such as hallucinations, delusions and
other thought disorders, negative, including social withdrawal, apathy and anhedonia, and cognitive
deficits like memory and learning impairments or attention deficiencies [1]. It is generally agreed that
the symptoms of schizophrenia result from disturbances in neurotransmission involving a significant
number of receptors and enzymes, mainly within the dopaminergic, glutamatergic, serotoninergic,
and adrenergic systems. In this regard, the dopaminergic hypothesis is still the main concept of the
disease and all marketed antipsychotics target dopamine D2 receptor. The dopaminergic hypothesis of
schizophrenia evolved from the simple idea of excessive dopamine through the hypothesis combining
prefrontal hypodopaminergia and striatal hyperdopaminergia and then to the current aberrant salience
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hypothesis [2]. However, novel findings in the field of neuroscience link schizophrenia with factors
beyond the dopaminergic hypothesis and emphasize in particular the role of glutamatergic system in
the development of the disease [3].

In order to treat efficiently complex neuropsychiatric diseases such as schizophrenia it is necessary
to go beyond the “magic bullet” concept. This approach in drug discovery was based on the assumption
that single-target drugs are safer as they have fewer side effects due to their selectivity. It turned
out, however, that this is only true for single-gene diseases and the number of original single-target
drugs were performing far behind expectations in the last ten years. Thus, “one-drug-one-target”
paradigm has been gradually replaced by the concept of multi-target drugs (MTDs), sometimes termed
“magic shotgun”. From the historical perspective, MTDs, in contrast to clean single-target drugs,
were sometimes referred to as dirty or promiscuous drugs. In the case of diseases with complex
pathomechanisms, such as neuropsychiatric diseases or cancer, single-targets medications have been
demonstrated to a great extent a failure. Most potent antipsychotics, in particular second generation
or atypical antipsychotics, target simultaneously a number of aminergic G protein-coupled receptors
(GPCRs). Clozapine, which is used to treat drug-resistant schizophrenia, has nanomolar affinity to
several aminergic GPCRs.

In this scenario drug design and discovery today has moved from the molecular and cellular
level to the systems-biology-oriented level [4] to reflect subtle events occurring on the biological
networks which lead to the disease [5]. Network pharmacology involves important aspects such as
connectivity, redundancy and pleiotropy of biological networks [6] which clearly shows that most
drug interact with more than one target. MTDs have a number of advantages over single-target drugs,
including improved efficacy due to synergistic or additive effects, better distribution in the target tissue,
accelerated therapeutic efficacy in terms of clinical onset and achievement of full effect, predictable
pharmacokinetic profile and fewer drug-drug interactions, lower risk of toxicity, improved patient
compliance and tolerance and lower risk of target-based drug resistance due to modulation of a few
targets [7]. However, it is not easy to design potent MTDs and problems arise starting from a proper
target selection through affinity balancing to avoiding affinity to related off-targets.

In this review we present classical and novel drug targets for the treatment of schizophrenia,
discuss benefits and limitations of MTDs and their design, as well as present multi-target antipsychotics
including marketed compounds, compounds in clinical studies, and other investigational compounds.
The literature search for this review was mainly based on searching PubMed database with the
search terms: schizophrenia, schizophrenia drug targets, antipsychotics, multi-target antipsychotics,
multi-target ligands, multi-target drugs with the focus on the references from the last five years, in
particular regarding novel investigational compounds.

2. Drug Targets for the Treatment of Schizophrenia

2.1. Dopamine and Serotonin Receptors

Most of currently available antipsychotic drugs (excluding third generation drugs) act by blocking
dopamine receptors in central nervous system, as seen in Table 1. This is the classical way to
treat schizophrenia. The original dopamine hypothesis of schizophrenia was proposed by Carlsson
(awarded a Nobel Prize in 2000) on the basis of indirect pharmacological evidence in humans and
experimental animals. In humans, amphetamine causes the release of dopamine in the brain and can
produce a behavioral syndrome that resembles an acute schizophrenic episode. Hallucinations are also
a side effect of levodopa and dopamine agonists used in Parkinson’s disease. In animals, dopamine
release causes a specific pattern of stereotyped behavior that is reminiscent of the repetitive behaviors
sometimes observed in patients suffering from schizophrenia. Potent D2 receptor agonists, such as
bromocriptine, lead to similar effects in animals, and these drugs, like amphetamine, aggravate the
symptoms of schizophrenic patients. Moreover, dopamine antagonists and drugs blocking neuronal
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dopamine storage (e.g., reserpine) are effective in controlling the positive symptoms of schizophrenia
and in preventing amphetamine-induced behavioral changes [8].

It is now thought that positive symptoms are the result of overactivity in the mesolimbic
dopaminergic pathway (the neuronal projection from the ventral tegmental area (VTA) to the nucleus
accumbens, amygdala and hippocampus) activating D2 receptors, whereas negative symptoms may
result from a lowered activity in the mesocortical dopaminergic pathway (the projection from the VTA
to areas of the prefrontal cortex) where D1 receptors predominate. Other dopaminergic pathways in
the central nervous system (i.e., nigrostriatal and tuberoinfundibular) seem to function normally in
schizophrenia. Thus, in terms of treatment it would be desirable to inhibit dopaminergic transmission
in the limbic system but enhance this transmission in the area of prefrontal cortex [9].

Table 1. Potential clinical benefits and side effects related to the mechanisms of action of
antipsychotics [10–12].

Mechanism of Action Clinical Efficacy Possible Side Effects

D2 antagonism ↓Positive symptoms

Extrapyramidal symptoms (EPS)
↓Negative symptoms
↑Cognitive symptoms
↑Drowsiness

D2 partial agonism
↓Positive symptoms
↓Negative symptoms
↓Cognitive symptoms

Little or no EPS
Behavioral activation

D3 antagonism
↑Endocrine dysfunction

↑Weight gain
↑Sexual dysfunction

5-HT2A antagonism ↓Negative symptoms ↓EPS
↓Hyperprolactinemia

5-HT1A partial agonism

↓Negative symptoms
↓Cognitive symptoms
↓Anxiety symptoms
↓Depressive symptoms

↓EPS
↓Hyperprolactinemia

5-HT2C antagonism ↑Weight gain
↑Appetite

M1 antagonism ↓EPS

↑Anticholinergic symptoms,
e.g., dry mouth, constipation, tachycardia

↑Drowsiness
↑Cognitive impairment

M1 agonism ↓Psychotic symptoms
↓Cognitive symptoms

M3 antagonism
↑Type 2 diabetes mellitus

↑Hyperglycemic hyperosmolar syndrome
↑Diabetic ketoacidosis

H1 antagonism
↑Weight gain
↑Drowsiness
↑Hypotension

α1-antagonism

↑Dizziness
↑Drowsiness
↑Tachycardia
↓Blood pressure

↑Orthostatic hypotension

α2-antagonism ↓Depressive symptoms

↑Anxiety
↑Tachycardia
↑Tremor

↑Dilated pupils
↑Sweating

β-antagonism
↑Orthostatic hypotension

↑Sedation
↑Sexual dysfunction

Glutamate modulation

↓Positive symptoms
↓Negative symptoms
↓Cognitive symptoms
↓Illness progression

Legend: ↓ Decreasing ↑ Increasing.
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Besides antagonism to the dopamine D2 receptor, majority of antipsychotic drugs, especially
those classified as second generation antipsychotics also block a wide range of other receptors, such
as other dopamine receptors (D1, D3 or D4), serotonin (especially 5-HT2A and 5-HT2C), histamine
(especially H1) and α1-adrenergic. Interaction of antipsychotics with those receptors is associated
mainly with occurrence of side effects, such as sedation and drowsiness (H1 receptors), weight gain
(H1 and 5-HT2C), sexual dysfunction (5-HT2), or orthostatic hypotension (α1-adrenergic receptors).
On the other hand, there are also hypotheses that antagonism to serotonin 5-HT2A receptor may have
beneficial effects when it comes to occurrence of extrapyramidal side effects, as well as to reducing
negative and cognitive symptoms of schizophrenia. Basis of schizophrenia is still poorly understood
and there are several hypotheses, which involve different neurotransmitters and receptors and try to
explain their role in the pathogenesis of the disorder [12].

The serotonin hypothesis of schizophrenia is based on the studies of interactions between the
hallucinogenic drug, LSD, and serotonin. Observations of the antipsychotic effects of drugs which
are serotonin and dopamine antagonists (e.g., risperidone, clozapine) have resulted in the increased
interest in serotonin receptors as a possible target for drugs used in the treatment of schizophrenia.

There are evidences that the efficacy and tolerability of the atypical antipsychotic drugs, such as
clozapine, olanzapine, quetiapine, risperidone, and ziprasidone in the treatment of schizophrenia may
result, in part, from their interaction with various serotonin receptors, in particular 5-HT2A and 5-HT1A

receptors, what is the reason of growing interest in the role, which serotonin plays in the mechanism of
action of antipsychotics. The antagonism to 5-HT2A receptors, which is relatively potent, is connected
with weaker antagonistic properties to dopamine D2 receptors and is the only common pharmacologic
feature of atypical antipsychotic drugs. The subtypes of serotonin 5-HT receptors, that are involved
in the pharmacological action of second generation antipsychotics, such as clozapine, or that may
potentially serve as targets for better tolerated and more effective new antipsychotic agents, include:
5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptors [13].

The distribution of serotonin 5-HT2A receptor in the central nervous system is wide, but the
highest concentrations occur in the cortex. 5-HT2A as well as 5-HT1A receptors are located on the
neurons that play significant role in schizophrenia. Those are cortical and hippocampal pyramidal
glutamatergic neurons and γ-aminobutyric acid (GABA) interneurons. Serotonin 5-HT2A receptors
localized on GABAergic interneurons stimulate the release of γ-aminobutyric acid and in that
way play an important role in the regulation of the neuronal inhibition. 5-HT2A receptors are
distributed also in the substantia nigra and ventral tegmentum from which arise the nigrostriatal and
mesocorticolimbic dopaminergic neurons. 5-HT2A receptors modulate the activity of dopaminergic
neurons. Antipsychotics that act by blocking serotonin 5-HT2A receptor (e.g., clozapine, risperidone)
lead to the increased release of dopamine in the striatum by decreasing the inhibitory effect of serotonin,
what manifests clinically in reducing extrapyramidal effects. It is also suggested that combined effects
of antagonism at dopamine D2 and serotonin 5-HT2A receptors in the mesolimbic circuit counteract the
excessive dopamine transmission, which leads to occurrence of positive symptoms of schizophrenia.
Moreover, improvement of the negative symptoms is associated with antagonism at 5-HT2A receptor,
due to enhanced release of both dopamine and glutamate in the mesocortical pathway [9,13].

The behavioral evidence of interactions between serotonin 5-HT2A receptor and dopamine rests on
the effect of 5-HT2A receptor antagonists on locomotor activity stimulated by amphetamine. Namely,
giving low doses of amphetamine to rodents results in producing in them locomotor hyperactivity,
which is mediated by the release of dopamine from the dopaminergic neurons in the mesolimbic
circuit. This amphetamine stimulated hyperactivity is observed to be inhibited by first and second
generation antipsychotic drugs and is thought to be an effect of antagonism to dopamine D2 receptor,
which all of those drugs share as a mechanism of action. However, some observations proved that
compounds, such as amperozide, which are antagonists selective to serotonin 5-HT2A receptor and
do not exhibit any affinity for dopamine D2 receptor, also lead to lowering of hyperactivity in mice
stimulated by administration of amphetamine [14]. These results support the concept that compounds
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that are antagonists to 5-HT2A receptor may improve behavioral states associated with excessive
activity of dopaminergic neurons and may serve as effective antipsychotic medications.

Typical antipsychotic drugs, beside blocking dopamine D2 receptors in the mesolimbic circuit,
act also antagonistic to D2 receptors localized in the nigrostriatal pathway, what is thought to result
in occurrence of extrapyramidal side effects. Low doses of amphetamine administered to rodents
lead to producing exploratory locomotor activity, whereas high doses of amphetamine causes the
occurrence of repetitive, stereotyped behaviors, which are similar to those produced by the direct
agonist of dopamine D2 receptor, apomorphine. Those stereotyped behaviors are inhibited by first
generation antipsychotics, what suggests that their antagonist properties are the cause of producing
extrapyramidal side effects. Contrarily, amperozide and other antagonists of the serotonin 5-HT2A

receptor do not reduce repetitive behaviors induced by apomorphine or high doses of amphetamine.
These findings suggest that antipsychotic drugs which are antagonists to 5-HT2A receptor do not
cause extrapyramidal side effects, in contrast to first generation drugs, which are devoid of activity to
serotonin receptors.

The majority of clinical studies of serotonin 5-HT2A receptor antagonists have been carried
out using ritanserin, the compound that exhibits antagonist properties to both 5-HT2A and 5-HT2C

receptors. Its effectiveness has been studied in monotherapy, as well as an adjunct to existing treatment
with antipsychotics. The studies have led to conclusions that ritanserin improves in particular
negative symptoms of schizophrenia, which were poorly ameliorated in case of treatment with typical
antipsychotic drugs [15].

To sum up, due to ability of antagonists of serotonin 5-HT2A receptor to interfere with elevated
activity of dopamine, the antagonism of this receptor is believed to contribute to improvement of both
positive and negative symptoms of schizophrenia and to causing less extrapyramidal side effects than
older antipsychotics [16].

The 5-HT1A receptor is the subtype of serotonin receptors that is probably the best characterized
in terms of functioning. It plays a significant role in modulating the activity of monoaminergic, inter
alia dopaminergic, neurons. The functioning of 5-HT1A receptor may be described as antagonistic to
the serotonin 5-HT2A receptor, when it comes to both presynaptic and postsynaptic its localization.
Activation of serotonin 5-HT1A inhibitory autoreceptors located in the cells of raphe nucleus leads
to inhibition of those neurons. In contrast, 5-HT2A receptors while activated in general cause the
activation of serotonergic neurons by several mechanisms, which include a direct or indirect inhibition
of GABAergic inhibitory interneurons, and a direct mechanism of excitation of other neurons, inter
alia glutamatergic neurons. Both postsynaptical 5-HT1A and 5-HT2A receptors are located in the cortex
on the pyramidal neurons. Activation of this 5-HT1A receptor results in neuronal inhibition through
activation of potassium current, what leads to hyperpolarization. Contrary, 5-HT2A receptor while
activated, facilitates neuronal output in the mechanism of activation of phospholipase C. Serotonin
5-HT1A receptors are suggested to be localized also presynaptically on GABA neurons terminals and
pre- or postsynaptically on the GABAergic interneurons in the dentate gyrus in the hippocampus.
Basing on the opposition between those two serotonin receptors, it is thought that agents acting as
5-HT1A receptor agonists are able to modulate dopaminergic transmission in the central nervous
system in a similar way to antagonists to serotonin 5-HT2A receptor. Agonists to 5-HT1A receptor
may both induce the dopamine release in the prefrontal cortex and potentiate the inhibiting effect on
dopamine release of dopamine D2 receptor antagonists [17].

In the brains of patients suffering from chronic schizophrenia, the density of serotonin 5-HT1A

receptors is increased, what suggests a close correlation between pathogenesis of the disease and
serotonin 5-HT1A receptors. These receptors are now considered as preferable target to treat
schizophrenia, since there are evidences that stimulation of serotonin 5-HT1A receptors may contribute
to decreasing of extrapyramidal side effects induced by antipsychotics [18] and ameliorating affective
disorders such as depression or anxiety [19]. Moreover, blockade of 5-HT1A receptors may result in
improvement of cognitive symptoms of schizophrenia [20].
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It has been proved in different studies that agents which are selective agonists of serotonin 5-HT1A

receptor, such as tandospirone or buspirone, reduced extrapyramidal side effects (e.g., bradykinesia,
catalepsy) induced by antipsychotics from first generation [21]. Agonists of 5-HT1A receptor are
thought to reduce extrapyramidal side effects induced by neuroleptics in the way of stimulating
serotonin 5-HT1A receptors localized postsynaptically, since the inactivation of serotonergic neurons
by p-chlorophenylalanine had no impact on the actions of 5-HT1A receptor agonists, when it comes to
alleviating extrapyramidal side effects [22].

Reducing cognitive symptoms of schizophrenia is another significant role of serotonin 5-HT1A

receptors. Cognitive dysfunction belongs to those symptoms of schizophrenia, whose treating with
currently available drugs is still not very effective. Some of recently carried clinical studies have proved
that the partial agonist properties of tandospirone regarding 5-HT1A receptor relevantly improved the
deficits in cognition in schizophrenic patients. Studies carried on animals also showed that 5-HT1A

receptor antagonists improved the cognitive deficits induced by antagonists to mACh receptor, such
as scopolamine, or antagonists of N-methyl-D-aspartate (NMDA) receptor [23]. Although further
studies are required, there are findings which suggest that serotonin 5-HT1A receptor antagonists may
contribute to managing schizophrenia on account of ameliorating cognitive impairments [24].

Many compounds that bind to serotonin 5-HT2A receptors also exhibit an affinity to the
structurally related serotonin 5-HT2C receptor. There are evidences that support the idea
of an antipsychotic potential for antagonists of 5-HT2C receptor. One of them concerns
meta-chlorophenylpiperazine (mCPP), which act as an agonist of serotonin 5-HT2C receptor [25].
The main action of mCPP in humans may be described as a selective activation of serotonin 5-HT2C

receptors [26]. mCPP causes the worsening of positive symptoms in schizophrenic patients but
pretreatment with mesulergine, which is an antagonist to 5-HT2 receptor, results in decreased level of
psychotic episodes, induced by the drug [27]. It is suspected that 5-HT2C receptor antagonists inhibit
dopaminergic activity in mesolimbic and nigrostriatal pathways and thus contribute to reducing
symptoms of schizophrenia and alleviating extrapyramidal side effects. Nonetheless, the role of this
subtype of serotonin receptor in the pathogenesis of schizophrenia is still poorly understood and
requires further studies [28].

Although dopamine and serotonin receptors are classical drug targets for the treatment of
schizophrenia, novel drugs acting through these receptors can be developed based on novel signaling
mechanisms typical for the family of GPCRs. These include allosteric modulators [29], biased
ligands [30], compounds acting on receptor dimers, oligomers and mosaics [31–34] and last but
not least intentionally promiscuous multi-target ligands [35].

2.2. Adrenergic and Histaminergic Receptors

Noradrenaline has a key role in the pathomechanism of schizophrenia although the specific
role of α adrenergic receptors has been not well elucidated yet [36]. It has been hypothesized that
interactions of atypical antipsychotics with α-adrenergic receptors contributes to their atypicality [37].
It was shown that antagonism at α1 adrenergic receptors is beneficial to treat positive symptoms,
in particular in acute schizophrenia while antagonism at α2 adrenergic receptor, characteristic for
clozapine and to some extent risperidone might be important to relieve negative symptoms and
cognitive impairments [37]. Blockade of α adrenergic receptors may have a stabilizing effect on the
dopaminergic neurotransmission in schizophrenia. In contrast, it was also reported that activation
of α2A adrenergic receptors in prefrontal cortex may improve cognitive functions [38]. Moreover,
adjunctive α2 adrenergic receptors antagonism increases the antipsychotic activity of risperidone and
promotes cortical dopaminergic and glutamatergic, NMDA receptor-mediated neurotransmission [39].
It was also shown that blockade of α2C adrenergic receptors alone or in combination with dopamine
D2 receptor blockade could be also beneficial in schizophrenia [38].

The histamine H1 receptor is a classical off-target for antipsychotics as its blockade causes sedation
and may be involved in weight gain. Although weight gain and metabolic disorders can also be



Int. J. Mol. Sci. 2018, 19, 3105 7 of 30

attributed to blockade of adrenergic or cholinergic receptors, antagonism of histamine H1 receptors is
described as a key reason for second generation antipsychotics-induced obesity [40]. In contrast, the
histamine H3 receptor is an emerging target for novel antipsychotics [41] as selective antagonists or
inverse agonists of this histamine receptor subtype are efficient in treatment cognitive deficiencies in
schizophrenia [42].

2.3. Muscarinic and Nicotinic Receptors

Muscarinic receptors have a pivotal role in modulating synaptic plasticity in the prefrontal cortex
and stimulation of these receptors results in long-term depression at the hippocampo-prefrontal
cortex synapse [43]. A growing body of evidence indicates central role of disturbances in cholinergic
neurotransmission in schizophrenia [44]. Postmortem studies indicate a reduced number of cholinergic
interneurons in the ventral striatum in schizophrenia patients [45]. Furthermore, neuroimaging
studies indicated that muscarinic receptors availability was significantly less in schizophrenia
patients and positive symptoms of schizophrenia are negatively correlated with muscarinic receptors
availability [46]. It should be emphasized that muscarinic receptor antagonists worsen cognitive
and negative symptoms in schizophrenia patients and xanomeline, a muscarinic receptor agonist,
ameliorates all symptoms in schizophrenia patients and corresponding animal models [43]. Based on
these and other findings muscarinic hypothesis of schizophrenia has been suggested [47].

Involvement of nicotinic cholinergic receptors in the pathomechanism of schizophrenia can
explain why schizophrenia patients are often heavy smokers [48,49]. It is assumed that smoking
relieves particularly negative symptoms of schizophrenia. More and more evidence indicates that
activation of α7 nicotinic receptors [50] by agonists or positive allosteric modulators can be a promising
strategy for the treatment of schizophrenia [51,52].

2.4. Metabotropic and Ionotropic Glutamatergic Receptors

Glutamate is one of the main excitatory neurotransmitters in the mammalian central nervous
system [53]. Glutamatergic pathways linking to the cortex, the limbic system, and the thalamus
regions are crucial in schizophrenia [54,55]. Abnormalities in the glutamatergic neurotransmission may
influence synaptic plasticity and cortical microcircuitry, particularly NMDA receptor functioning [56].
NMDA receptors are ligand-gated ion channels, and are pivotal for excitatory neurotransmission,
excitotoxicity and plasticity [57,58].

Glutamatergic hypothesis of schizophrenia is based on the observation that antagonists
of N-methyl-D-aspartate (NMDA) receptors, such as phencyclidine or ketamine produce
schizophrenia-like positive, negative, and cognitive symptoms in animal models and healthy
individuals [59,60]. Glutamatergic hypothesis of schizophrenia is mainly a concept of
hypofunction of NMDA receptors in this disease, however other ionotropic glutamate receptors
(α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid, AMPA and kainate receptors) as well as
metabotropic glutamate receptors are also involved.

In therapeutic trials compounds which promote NMDA receptor signaling were found relieve
certain symptoms in patients with schizophrenia [61]. Moreover, in postmortem studies abnormalities
in glutamatergic receptor density and subunit composition in the prefrontal cortex, thalamus, and
temporal lobe were reported [62–64], and these are brain parts with altered stimulation during cognitive
actions performed by schizophrenia patients [65]. NMDA receptor hypofunction may result in
morphological and structural brain changes leading to the onset of psychosis [66,67]. It was suggested
that levels of glutamate decrease with age in healthy people, but it was not found if they are influenced
in case of chronic schizophrenia [68].

Antipsychotics may interfere with glutamatergic neurotransmission by influencing the release of
glutamate, by modulation glutamatergic receptors, or by changing the density or subunit composition
of glutamatergic receptors [55]. It was shown that antipsychotics blocking dopamine D2 receptor
increase the phosphorylation of the NR1 subunit of the NMDA receptor, thus promote its activation and
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consequent gene expression [69]. In this regard dopamine–glutamate interactions occur intraneuronally
and intrasynaptically. There are also findings that certain second generation antipsychotics act on
NMDA receptors in a distinct way than the first generation antipsychotics [70].

Abnormalities in glutamatergic neurotransmission constitute a possible drug target for
schizophrenia, in particular for the treatment of cognitive impairment and negative symptoms [54,55].
Reports about hypoactivity of NMDA receptors in schizophrenia led to clinical trials with ligands
stimulating this receptor [55]. Classical NMDA receptor agonists are not considered here due to
excitotoxicity and neuron damage resulting from excessive NMDA receptor stimulation. In this
regard, the glycine modulatory binding pocket on the NMDA receptor might be an attractive drug
target [71]. Next, positive allosteric modulators of AMPA receptors [72,73] as well as orthosteric
ligands and modulators of metabotropic glutamatergic receptors [74], in particular ligands acting on
mGluR2/3 receptors [75] might be considered promising potential medications against schizophrenia
in agreement with the glutamatergic hypothesis of this disease.

2.5. Other Drug Targets in Schizophrenia

There are also potential drug targets for the treatment of schizophrenia beyond transmembrane
receptors. Most important enzymes with implications in schizophrenia include the serine/threonine
kinase glycogen synthase kinase-3 (GSK-3) involved in cognitive-related processes such
as neurogenesis, synaptic plasticity and neural cell survival [76], cyclic nucleotide (cNT)
phosphodiestereases (PDEs)-intracellular enzymes which governs the activity of key second
messenger signaling pathways in the brain [77] and acetylcholinesterase for treatment of cognitive
impairments [78].

3. Multi-Target Compounds: Strategies of Design, Benefits, and Limitations

As has already been mentioned, during last twenty years most efforts in drug design and
discovery followed the paradigm “one disease, one gene, one molecular target, one drug”. However,
novel findings in the field of systems biology and discoveries of molecular complexity of illnesses
considerably moved current drug discovery efforts towards multi-target drugs [79,80]. Such
compounds are able to exert numerous pharmacological actions and have emerged as magic shotguns
in the treatment of multifactorial diseases in contrast to classical magic bullet approach [81].

3.1. Design of Multi-Target Compounds

Classical approaches to design multi-target ligands involve three different ways of combination
of two pharmacophores, leading to a cleavable conjugate where two pharmacophores are connected
by a linker (a modern form of combination therapy), a compound with overlapping pharmacophores
or a highly integrated multi-target drug, as seen in Figure 1 [5]. Multi-target drugs, in particular those
obtained by pharmacophore integration strategy are referred to as “master key compounds” [82,83].
Thus, MTDs are designed broadly as hybrid or conjugated drugs or as chimeric drugs from two or
more pharmacophores/drugs having specific pharmacological activities [84].

Morphy and Rankovic [85] described two approaches for designing multi-target drugs:
knowledge-based strategies and screening strategies. Knowledge-based techniques are based on
available biological data from old drugs or other bioactive compounds, from either literature or
proprietary company sources. Other methods include the screening of either diverse or focused
compound libraries. Classical diversity based screening is the high-throughput screening (HTS) of
large and differentiated compound collections versus one protein, and hits found are then triaged
on the basis of activity at the other protein. In focused screening, compounds known to have robust
activity at one protein are screened for activity at the other one. Even if only moderate activity is found
for the second protein, it can supply a useful baseline for increasing that activity by incorporating
structural elements from more potent selective ligands for this target [85].
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Modern in silico approaches can be also used to design multi-target ligands and can be classified
into ligand-based and structure-based strategies [4]. Ligand-based target fishing strategies rely
either on similarity-based screening or machine learning methods [4]. Moreover, ligand-based
pharmacophores can be used. The advantage of this approach is independence from available structural
information on the protein. These methods involve 2D or 3D similarity searches. Polyphramacological
profiling of the compounds may also be based on three-dimensional structure-activity relationship
(3D-QSAR) techniques [7]. Structure-based methods involve molecular docking (e.g., docking-based
virtual screening [86] and inverse docking) or structure-based pharmacophores. The advantage of
structure-based approaches in comparison to ligand-based approaches is that they do not rely on
available activity data [4].

The main principle in designing multi-target compounds is the achievement of superior
therapeutic efficacy and safety by targeting multiple players in pathogenic cascade simultaneously [4].

3.2. Advantages and Disadvantages of Multi-Target Ligands

Multifunctional ligands are particularly interesting as their molecules have common parts
responsible for activity, and their structure is formed as a result use of pharmacophore fragments.
Receiving such hybrid compounds allows not only to improve their activity, but also to positively
affect pharmacokinetic parameters, similar to those shown by drugs used in therapy [81].

The main advantages of multi-target-drugs compared to single-target drugs and combination
therapy include: (i) reflecting the complex pathomechanism of the disease and better therapeutic
efficacy and (ii) better therapeutic safety avoidance of different bioavailabilities, pharmacokinetics,
and metabolism of a combination regimen and avoidance of drug–drug interactions [87]. Multi-target
mode of action is beneficial to combat drug resistance and development of tolerance and can be also
a base of drug repurposing. The disadvantage of MTDs is the difficulty in designing compounds
with balanced activity to multiple targets, sometimes resulting in a need to compromise activity at
some targets. Moreover, compounds obtained in particular by pharmacophore linkage are often not
drug-like due to high molecular mass.

4. Multi-Target Compounds to Treat Schizophrenia

4.1. Marketed Drugs—Second and Third Generation Antipsychotics

The second generation antipsychotics, which are nowadays the treatment of choice in cases
of schizophrenia and also bipolar disorder, are essentially multi-target compounds. It should be
emphasized, however, that many first generation antipsychotics have a complex pharmacological
profile, including haloperidol, fluphenazine and even chlorpromazine, as seen in Table 2 [88].
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Table 2. Relative neurotransmitter receptor affinities for first, second and third generation antipsychotics and involved side effects.

Drugs
Generation

Examples Receptors
Potential Side Effect

D1 D2 D3 D4 5-HT2A α1 H1 M1

First

Chloropromazine + ++ +++ + +++ ++ ++ ++

extrapyramidal symptoms such as dyskinesia, dystonias, akathisia, unwanted
movements, muscle breakdown, tremors, rigidity and elevated prolactin

Haloperidol + +++ + + 0 + 0 0

Benperidol 0 +++ ++ ++ + 0 0

Fluspirilene + +++ +++ + 0 0 0

Thioridazine + ++ ++ + ++ ++ + +

Second

Clozapine ++ + ++ +++ ++ + +++ hypotension, tachycardia, agranulocytosis

Olanzapine ++ +++ + ++ +++ ++ ++ ++ sedation, weight gain

Risperidone + ++ + + +++ ++ +++ 0

orthostatic hypotension, insomnia, restlessness, anxiety, headaches, agitation,
extrapyramidal symptoms (EPS), rhinitis, sedation, fatigue, ocular
disturbances, dizziness, palpitations, weight gain, diminished sexual desire,
erectile and ejaculatory dysfunction, orthostatic dysregulation, reflex
tachycardia, gastrointestinal complaints, nausea, rash, galactorrhea and
amenorrhea

Quetiapine + ++ +++ ++ +++ +++ +++ 0 drowsiness, dizziness, headache, withdrawal symptoms, increased
triglycerides, increased total cholesterol

Ziprasidone ++ +++ +++ +++ +++ ++ + 0 parkinsonism, headaches, rhinitis, orthostatic hypotension, tachykardia

Third Aripiprazole 0 +++ ++ + +++ + + 0 hyperglycaemia, headache, extrapyramidal symptoms

+++ = high, ++ = moderate, + = low, 0 = minimal to none.
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Clozapine (1), Figure 2, is a classic example of a “dirty” drug which can be still considered a
“gold standard” atypical antipsychotic due to absence of extrapyramidal syndrome (EPS), superiority
in treatment of drug resistant schizophrenia and reducing suicidality [88]. Clozapine exerts severe
side effects, in particular potentially life-threatening agranulocytosis, but also weight gain, diabetes,
and seizures [89]. Both the effectiveness and side effects of clozapine result from its complex
pharmacological profile, involving high affinity to many serotonin, dopamine, muscarinic, adrenergic,
and other aminergic receptors, as seen in Figure 3 [90].
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Some problems with side-effects of clozapine were solved with the introduction of another second
generation antipsychotic, olanzapine (2), Figure 2. Olanzapine does not cause agranulocytosis but still
has metabolic side effects leading to possible weight gain [91] which can be associated with histamine
H1 receptor signaling [92] and/or the −759C/T and −697G/C polymorphisms of the 5-HT2C receptor
gene [93]. Importantly, the side-effect profile of olanzapine can be considered beneficial, with a low
incidence of EPS and little increase in prolactin during acute-phase trials [94]. Multi-receptor binding
profile of olanzapine [95] involves a nanomolar affinity for dopaminergic, serotonergic, α1 adrenergic,
and muscarinic receptors, as seen in Figure 3. Olanzapine is also used to treat bipolar disorder.
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Similarly, quetiapine (3), Figure 2, belongs to atypical antipsychotics, which, besides schizophrenia,
are applied to treat bipolar disorder and major depressive disorder. Quetiapine is dopamine D1,
dopamine D2 and serotonin 5-HT2 receptor ligand, as seen in Figure 3. Antagonism to α1 adrenergic
and histamine H1 receptor results in side effects like sedation and orthostatic hypotension. Moreover,
there are reports about quetiapine misuse and abuse which can be linked with its high affinity for the
H1 receptor, as antihistamines agents cause rewarding action, compare Figure 3 [96].

Risperidone (4), Figure 2 was marketed as the first “non-clozapine” atypical antipsychotic and it is
also used to treat the acute manic phase of bipolar disorder. Risperidone is a benzisoxazole derivative
with nanomolar affinity for serotonin (5-HT2A and 5-HT7) and dopamine D2 receptors (its affinity for
D3 and D4 receptors is three times lower), Figure 3 with a 5-HT2A/D2 affinity ratio of about 20 [11]. It
also has a strong affinity for adrenergic (α1 and α2) receptors, and some affinity for histamine (H1)
receptors [11]. Pharmacological effect of risperidone is mainly a consequence of antagonism at D2 and
5-HT2A receptors, as seen in Figure 3. Its multi-receptor profile resembles this of olanzapine, however
risperidone causes sedation less frequent and orthostatic hypotension more often than olanzapine.
There are also reports that this drug can increase the level of prolactin and cause arrhythmia.

Molindone (5), seen in Figure 2 is a dihydroindolone neuroleptic with dopamine D2, D3 and D5

receptor antagonist activity and affects mainly dopaminergic neurotransmission in the CNS as seen
in Figure 3. It is the second generation antipsychotic with atypical pharmacological profile. Its side
effects rarely involve sedation and autonomic side effects but more often extrapyramidal side effects
(more frequently than other new antipsychotics, although still less frequently than classical drugs). The
application of molindone, in contrast to other atypical antipsychotics, does not usually lead to weight
gain. Some patients with poor tolerance or response to other drugs can benefit from the treatment with
molindone [97].

An example of modern second generation multi-target drug is ziprasidone (6), as shown in
Figure 2. This antipsychotic is an optimized hybrid of dopamine receptor ligand (D2 receptor agonist)
and a lipophilic serotonin receptor ligand in which the D2 agonist activity is transformed to D2 receptor
antagonist activity. It also exhibits desirable D2/5-HT2 ratio of 11 comparable to clozapine, as seen
in Figure 3, and has lesser propensity of orthostatic hypotension. Moreover, ziprasidone has been
reported not to cause significant weight gain and even to enable some weight loss in obese patients [98].

Some new second generation antipsychotics involve iloperidone (7), asenapine (8) and lurasidone
(9), shown in Figure 4, however they have not gained popularity in clinical practice yet. Their
pharmacological profiles are presented in Figure 5 [90]. From those three drugs lurasidone seems to be
most important. Lurasidone has high antagonist activity at serotonin 5-HT2A and 5-HT7 receptors and
weaker antagonism at dopamine D2 receptor [99]. It has also partial agonist activity at serotonin 5-HT1A

receptor, considerable affinity to adrenergic α2A and weaker affinity to muscarinic receptors [99].
Lurasidone is used for treatment of schizophrenia acute bipolar depression. It has low probability of
side effects typical for second generation antipsychotics, but higher risk of akathisia in comparison to
other atypicals [99].
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Third generation antipsychotics include aripiprazole (10), brexpiprazole (11) and cariprazine (12),
as seen in Figure 6. The mechanism of action of these drugs is still mainly linked to the dopaminergic
neurotransmission, shown in Figure 7, however, not to dopamine receptor antagonism but to partial
or biased agonism (functional selectivity) [100,101]. Due to partial agonism properties aripiprazole is
termed as “dopamine stabilizer” [102–104]. Aripiprazole was one of the first functionally selective
D2 receptor ligands identified that may stabilize the dopaminergic signaling through D2 receptor.
Although aripiprazole was first described as a partial D2 receptor agonist, it was later demonstrated
that aripiprazole could behave as a full agonist, a partial agonist, or an antagonist at D2 receptor
depending upon the signaling readout and cell type interrogated [105]. Aripiprazole is a partial agonist
for inhibition of cyclic adenosine monophosphate (cAMP) accumulation through the D2 receptor (i.e.,
Gα signaling) [106–108]. In contrast, it has also been reported that aripiprazole is an antagonist in
GTPγS binding assays with the D2 receptor [107,109]. It was also revealed that aripiprazole failed
to activate outward potassium currents following activation of the D2 receptor in MES-23.5 cells,
indirectly suggesting that it was inactive or possibly an antagonist for Gβγ signaling through the D2

receptor [107]. Aripiprazole was also reported to be either an antagonist [110] or a partial agonist [111]
for β-arrestin-2 recruitment.
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Aripiprazole is also a partial agonist of 5-HT1A and 5-HT2A receptors (much weaker in the latter
case) which results in functional antagonism at these receptors, as seen in Figure 7 [90]. In contrast to
classical atypical drugs, aripiprazole has higher affinity for dopamine D2 receptor than for serotonin
5-HT2A receptor. Clinical application of aripiprazole includes also bipolar disorder, major depression,
obsessive-compulsive disorder, and autism. Aripiprazole is characterized by efficacy similar to that of
both typical and atypical antipsychotic drugs (except olanzapine and amisulpride) [112]. Aripiprazole
resulted in considerably lower weight gain and lower changes in glucose and cholesterol levels in
comparison to clozapine, risperidone, and olanzapine [112]. Moreover, aripiprazole led to weaker
EPS, less use of antiparkinsonian drugs, and akathisia, in comparison to typical antipsychotic drugs
and risperidone [112]. Furthermore, aripiprazole is characterized by better tolerability compared to
other antipsychotics [113]. Adverse effects of aripiprazole may include agitation, insomnia, anxiety,
headache, constipation or nausea [103].

Brexpiprazole was approved by FDA in 2015 and is a partial agonist of dopamine D2, D3 and
serotonin 5-HT1A receptors, as well as antagonist of 5-HT2A, 5-HT2B and 5-HT7 receptors, as seen in
Figure 7 [114]. Its pharmacological properties are close to those of aripiprazole. In comparison to
aripiprazole, brexpiprazole is more potent at 5-HT1A receptors and has less intrinsic activity at D2

receptors [115]. Brexpiprazole is applied for treatment of schizophrenia and as an adjunct in major
depressive disorder. The adverse effects of this drug invole akathisisa, weight gain, infections of upper
respiratory tract, somnolence, headache, and nasopharyngitis.

Approval of both cariprazine and brexpiprazole was in 2015. Cariprazine is a new antipsychotic
displaying unique pharmacodynamic and pharmacokinetic properties [116]. As aripiprazole and
brexpiprazole, cariprazine is the dopamine D2, D3 and serotonin 5-HT1A receptors partial agonist,
as seen in Figure 7. However, its affinity for dopamine D3 receptor is approximately ten times
higher than for D2 receptors. It is metabolized to two equipotent metabolites, desmethyl cariprazine
and didesmethyl cariprazine, of which didesmethyl cariprazine has a half-life of 1 to 3 weeks [116].
Available reports indicate that cariprazine is efficient in management of cognitive and negative
symptoms of schizophrenia. It also seems to have antimanic properties and it has a potential to treat
bipolar depression [117]. However, currently it is not possible to evaluate antipsychotic potential of
cariprazine in comparison to other antipsychotics. Cariprazine may be associated with adverse effects
such as sedation, akathisia, weight gain, nausea, constipation, anxiety, dizziness [117].

The problem with the third generation antipsychotics is that they deteriorate the patient’s
condition in some patients suffering from schizophrenia. Thus, multi-target second generation
antipsychotics are nowadays a gold standard in the schizophrenia treatment, although some patients
respond better to the first generation treatment.
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4.2. Other Multi-Target Compounds for the Treatment of Schizophrenia

Although recently implemented antipsychotics (e.g., cariprazine and brexpiprazole) are the third
generation drugs, attempts are still made to design new multi-target ligands, which can be developed
into second generation antipsychotics or better third generation drugs. These efforts will be presented
in this chapter.

4.2.1. Modifications of Marketed Drugs

In recent years, a number of research groups studied halogenated arylpiperazines as a privileged
scaffold active in CNS resulting in antipsychotics such as aripiprazole, trazodone and cariprazine [118].
The multimodal receptor profile of aripiprazole (5-HT1A, 5-HT2A, 5-HT7, D2 and D3 receptors), as well
as its functional profile as a partial agonist of D2 and 5-HT1A receptors and antagonist of 5-HT2A and
5-HT7 sites, makes it a good starting point to design compounds with antipsychotic, antidepressant,
and anxiolytic activity [119]. Expanding the concept of mixed serotonin/dopamine receptor agonists as
novel antipsychotics, Butini et al. designed a series of aripiprazole analogs that combined high affinity
for 5-HT1A and 5-HT2A receptors, low affinity for D2 receptors and high affinity for D3 receptors.
The structures of the compounds were based mainly on the 2,3-dichlorophenylpiperazine core
structure, which was functionalized with isoquinoline-amide and quinolone- and isoquinoline-ether
moieties, e.g., compound (13), compared in Figure 8. The study revealed that the optimal
serotonin/dopamine receptor affinity balance was characterized by compounds with isoquinoline or
benzofurane rings as heteroatomic systems [120]. As a continuation of their studies they developed a
series bishetero(homo)arylpiperazines as novel and potent multifunctional ligands characterized by
high affinity to D3, 5-HT1A and low occupancy at D2 and 5-HT2C receptors [121].
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In 2013 Zajdel et al. developed a series of new quinoline- and isoquinoline-sulfonamide
analogs of aripiprazole to explore the effect of the replacement of the ether/amide moiety
with sulfonamide, as well as the localization of a sulfonamide group in the azine moiety,
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(14–16), see in Figure 8. In this study, two specific compounds displayed 5-HT1A agonistic,
D2 partial agonistic and 5-HT2A/5-HT7 antagonistic activity, thus resulting in significant
antidepressant activity in mice models of depression [119]. Furthermore, the 4-isoquinolinyl analog
(N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)isoquinoline-4-sulfonamide) not only exhibited
a similar receptor binding and functional profile but also displayed significant antipsychotic
activity in MK-801-induced hyperlocomotor activity in mice [119]. These results supported
the study previously conducted by Zajdel and coworkers in 2012, which reported on
quinoline- and isoquinoline-sulfonamide derivatives of long-chain arylpiperazines with 3- or
4-chloro-phenylpiperazine moieties as potential antidepressant, anxiolytic and antipsychotic
agents [122].

Partyka et al. inspired by previous findings on a group of N-alkylated azinesulfonamides,
synthesized a series of 15 azinesulfonamides of phenylpiperazine derivatives, based on
4-(4-{2-[4-(4-chlorophenyl)-piperazin-1-yl]-ethyl}-piperidine-1-sulfonyl)-isoquinoline with semi-rigid
alkylene spacer (17), as seen in Figure 8, and evaluated them as multimodal dopamine/serotonin
receptor ligands. The study allowed to identify compound 5-({4-(2-[4-(2,3-dichlorophenyl)
piperazin-1-yl]ethyl)piperidin-1-yl}sulfonyl)quinolone which behaved as mixed D2/5-HT1A/5-HT7

receptor antagonist. Preliminary pharmacological in vivo evaluation showed that compound was
active in MK-801-evoked hyperactivity test in mice, and produced antidepressant-like activity in
a mouse model of depression. Further studies in the area of CNS agents with multiple mode
of action might confirmed its broad-based efficacy in the treatment of comorbid symptoms of
schizophrenia/depression/anxiety [123].

In 2007 the atypical antipsychotic bifeprunox [1-(2-oxo-benzoxazolin-7-yl)-4-(3-biphenyl)
methylpiperazine], with dual D2 and 5-HT1A partial agonist activity, was filed for regulatory approval
with the Food and Drug Administration (FDA), however the application was rejected owing to the
weakness of evidence submitted and the death of a patient involved in the clinical trials. Nevertheless,
through various molecular modification studies, it was established that the phenylpiperazine moiety
is responsible for its antiserotonergic and antidopaminergic activity of this compound [120]. Based
on these findings and the anti-inflammatory, nitric oxide synthase inhibitory activity, antidiabetic
and antifungicidal activity of biphenyl compounds, a hybrid structure comprising a biphenyl and
arylpiperazine moiety with an acetyl linker was designed [124]. In this study Bhosale et al. focused
on combining the beneficial effects of the biphenyl moiety of bifeprunox with the methylpiperazine
moiety of the aripiprazole. The newly designed hybrid antipsychotic scaffold (18) is presented in
Figure 9.

Int. J. Mol. Sci. 2018, 19, 3105 16 of 29 

 

 

Figure 8. Novel potential multi-target antipsychotics derived from aripiprazole structure. Q: 

quinolone or isoquinoline. 

 

Figure 9. Design of multi-target hybrid compound based on aripiprazole and bifeprunox scaffold. 

4.2.2. Other Multi-Target Compounds with Potential Application for the Treatment of 

Schizophrenia 

It has been reported that the adjunctive usage of a neuroleptic together with selective serotonin 

reuptake inhibitor (SSRI), e.g., fluvoxamine, fluoxetine or citalopram is beneficial for the treatment of 

negative symptoms of schizophrenia without increasing EPS [125]. In this regard van Hes et al. 

elaborated SLV310, seen in Figure 10, (19), as a novel, potential antipsychotic displaying the 

interesting combination of potent dopamine D2 receptor antagonism and serotonin reuptake receptor 

inhibition in one molecule which can be useful in treatment a broad range of symptoms in 

schizophrenia [126]. Subsequently the same research group obtained a series of compounds 

displaying D2 receptor antagonism as well as SSRI properties by connecting the aryl piperazine of a 

neuroleptic with the indole moiety of a SSRI through alkyl chain in order to obtain promising 

antipsychotic agents, seen in Figure 10, (20). Optimization of length of the alkyl linker chain, 

substitution pattern of the indole moiety and bicyclic heteroaryl part has led to the maximally potent 

Figure 9. Design of multi-target hybrid compound based on aripiprazole and bifeprunox scaffold.



Int. J. Mol. Sci. 2018, 19, 3105 17 of 30

4.2.2. Other Multi-Target Compounds with Potential Application for the Treatment of Schizophrenia

It has been reported that the adjunctive usage of a neuroleptic together with selective serotonin
reuptake inhibitor (SSRI), e.g., fluvoxamine, fluoxetine or citalopram is beneficial for the treatment
of negative symptoms of schizophrenia without increasing EPS [125]. In this regard van Hes et al.
elaborated SLV310, seen in Figure 10, (19), as a novel, potential antipsychotic displaying the interesting
combination of potent dopamine D2 receptor antagonism and serotonin reuptake receptor inhibition
in one molecule which can be useful in treatment a broad range of symptoms in schizophrenia [126].
Subsequently the same research group obtained a series of compounds displaying D2 receptor
antagonism as well as SSRI properties by connecting the aryl piperazine of a neuroleptic with the
indole moiety of a SSRI through alkyl chain in order to obtain promising antipsychotic agents, seen
in Figure 10, (20). Optimization of length of the alkyl linker chain, substitution pattern of the indole
moiety and bicyclic heteroaryl part has led to the maximally potent compound. Further, the molecular
modelling studies have shown that the bifunctional activity of compound can be explained by its
ability to adopt two different conformations fitting either D2 receptor or SR pharmacophore without
the disadvantages of potential pharmacokinetic interactions [127].
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Figure 10. Dopamine D2 receptor antagonists with selective serotonin reuptake inhibitor (SSRI) activity.

Li et al. reported synthesis and structure-activity relationships of a series of tetracyclic
butyrophenones that display high affinities to serotonin 5-HT2A and dopamine D2 receptors [128]. In
particular, ITI-007 (4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo
quinoxalin-8-yl)-1-(4-fluorophenyl)-butan-1-one 4-methylbenzenesulfonate), seen in Figure 11, (21),
was found to be a potent 5-HT2A receptor antagonist, postsynaptic D2 receptor antagonist and inhibitor
of serotonin transporter [128].

Int. J. Mol. Sci. 2018, 19, 3105 17 of 29 

 

compound. Further, the molecular modelling studies have shown that the bifunctional activity of 

compound can be explained by its ability to adopt two different conformations fitting either D2 

receptor or SR pharmacophore without the disadvantages of potential pharmacokinetic interactions 

[127]. 

 

Figure 10. Dopamine D2 receptor antagonists with selective serotonin reuptake inhibitor (SSRI) 

activity. 

Li et al. reported synthesis and structure-activity relationships of a series of tetracyclic 

butyrophenones that display high affinities to serotonin 5-HT2A and dopamine D2 receptors [128]. In 

particular, ITI-007 (4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-

pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl)-butan-1-one 4-

methylbenzenesulfonate), seen in Figure 11, (21), was found to be a potent 5-HT2A receptor 

antagonist, postsynaptic D2 receptor antagonist and inhibitor of serotonin transporter [128]. 

 

Figure 11. ITI-007, a potent 5-HT2A receptor antagonist, postsynaptic D2 receptor antagonist and 

inhibitor of serotonin transporter. 

In the latest study, Zajdel et al. [129] designed, synthesized and characterized a new series of 

azinesulfonamides of alicyclic amine derivatives with arylpiperazine/piperidine scaffold. Structure-

activity studies of this compound series disclosed that the (isoquinolin-4-ylsulfonyl)-(S)-pyrrolidinyl 

fragment and the 1,2-benzothiazol-3-yl- and benzothiophen-4-yl-piperazine fragments were 

beneficial for affinity to 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and D3 receptors. Furthermore, binding of 

these compounds with 5-HT6 receptor depended on the stereochemistry of the alicyclic amine. Within 

this compound series, (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl) pyrrolidin-1-yl) 

sulfonyl) isoquinoline, seen in Figure 12, (22), was identified as a potential novel antipsychotic. This 

compound is also characterized by blockade to SERT. Because it reverses PCP-induced hyperactivity 

and avoidance behavior in the CAR test, (22) it can be used to treat positive symptoms of 

Figure 11. ITI-007, a potent 5-HT2A receptor antagonist, postsynaptic D2 receptor antagonist and
inhibitor of serotonin transporter.



Int. J. Mol. Sci. 2018, 19, 3105 18 of 30

In the latest study, Zajdel et al. [129] designed, synthesized and characterized a new
series of azinesulfonamides of alicyclic amine derivatives with arylpiperazine/piperidine scaffold.
Structure-activity studies of this compound series disclosed that the (isoquinolin-4-ylsulfonyl)-
(S)-pyrrolidinyl fragment and the 1,2-benzothiazol-3-yl- and benzothiophen-4-yl-piperazine fragments
were beneficial for affinity to 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and D3 receptors. Furthermore,
binding of these compounds with 5-HT6 receptor depended on the stereochemistry of the alicyclic
amine. Within this compound series, (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)
pyrrolidin-1-yl) sulfonyl) isoquinoline, seen in Figure 12, (22), was identified as a potential novel
antipsychotic. This compound is also characterized by blockade to SERT. Because it reverses
PCP-induced hyperactivity and avoidance behavior in the CAR test, (22) it can be used to treat
positive symptoms of schizophrenia. Next, its ability to reverse the social interaction deficit in a
ketamine model and memory impairment in phencyclidine (PCP)- and ketamine-disrupted conditions
reveals that that drug can improve the negative symptoms and has procognitive activity. Importantly,
this compound did not have cardiac toxicity and tendency of inducing catalepsy [129].
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inhibitory properties.

In order to obtain novel antipsychotics Menegatti et al. designed and synthesized a series of
N-phenylpiperazine derivatives [130]. A few compounds, i.e., 1-[1-(4-chlorophenyl)-1H-pyrazol-4-
ylmethyl]-4-phenyl-piperazine (LASSBio-579, 23, Figure 13), 1-phenyl-4-(1-phenyl-1H-[1,2,3]triazol-4-
ylmethyl)-piperazine (LASSBio-580) and 1-[1-(4-chlorophenyl)-1H-[1,2,3]triazol-4-ylmethyl]-4-phenyl-
piperazine (LASSBio-581) were selected based on potential antipsychotic activity. It was found that
LASSBio-579 is the most promising of the three compounds, thanks to its affinity to both dopamine
and serotonin receptors, in particular agonist activity at 5-HT1A receptor [131]. Thus, this multi-target
compound was active in animal models of psychosis and reversed the catalepsy induced by WAY
100,635, Furthermore, co-administration of sub-effective doses of LASSBio-579 with sub-effective
doses of clozapine or haloperidol prevented apomorphine-induced climbing without induction of
catalepsy [131].
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In 2013, another team synthesized and made a pharmacological evaluation of the antipsychotic
homologues of the lead compound LASSBio-579. The applied homologation approach turned
out to be appropriate for increasing the affinity of these compounds to the 5-HT2A receptors,
with no significant changes in the affinity for the D2, D4 and 5-HT1A receptors. In this context,
(1-(4-(1-(4-chlorophenyl)-1H-pyrazol-4-yl) butyl)-4-phenylpiperazine) (LASSBio-1635, 24), Figure 13
was the most promising derivative with a ten-fold higher affinity for the 5-HT2A receptor than its parent
compound. Moreover, LASSBio-1635 displayed beneficial antagonistic efficacy at the 5-HT2A receptors.
Next, LASSBio-1635 has also a 4-fold higher affinity for α2 adrenergic receptors in comparison to
LASSBio-579 and the favorable antagonistic efficacy. This multi-target ligand fully prevented the
apomorphine-induced climbing in mice and prevented the ketamine-induced hyperlocomotion at
doses with no effect on the mice locomotor activity [132].

In order to search for potential multi-target antipsychotics, Kaczor et al. [86] performed
structure-based virtual screening using a D2 receptor homology model in complex with olanzapine
or chlorprothixene. As a result of a screen they selected 21 compounds, which were subjected to
experimental validation. From 21 compounds tested, they found ten D2 ligands (47.6% success rate,
among them D2 receptor antagonists as expected) possessing additional affinity to other receptors
tested, in particular to 5-HT1A (partial agonists) and 5-HT2A receptors (antagonists). The affinity of
the compounds ranged from 58 nM to about 24 µM. Similarity and fragmental analysis indicated a
significant structural novelty of the identified compounds. The best compound (D2AAK1, 25) has
affinity of 58 nM to D2 receptor and nanomolar or low micromolar affinity to D1, D3, 5-HT1A and
5-HT2A receptors. D2AAK1 is an antagonist at D2 receptor and 5-HT2A receptor and a partial agonist
at 5-HT1A receptor which is favorable for antipsychotic activity [131]. They found one D2 receptor
antagonist (D2AAK2, 26) that did not have a protonatable nitrogen atom which is a key structural
element of the classical D2 pharmacophore model necessary to interact with the conserved Asp(3.32).
This compound exhibited over 20-fold binding selectivity for the D2 receptor compared to the D3

receptor. The four best compounds (D2AAK1–D2AAK4, 25–28, Figure 14) were subjected to in vivo
evaluation. In particular compound D2AAK1 decreased amphetamine-induced hyperactivity (when
compared to the amphetamine-treated group), measured as spontaneous locomotor activity in mice.
In addition, in a passive avoidance test this compound improved memory consolidation after acute
treatment in mice. Elevated plus maze tests indicated that D2AAK1 compound induced anxiogenic
activity 30 min after acute treatment and anxiolytic activity 60 min after administration [133].
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AVN-101 (29, Figure 12) is another multi-target drug candidate that has an advantageous target
fingerprint of activities with prevalent affinity to serotonin receptors, mainly 5-HT7, 5-HT6, 5-HT2A,
and 5-HT2C, as well as to adrenergic α2B, α2A, and α2C and histamine H1 and H2 receptors. The
AVN-101 exhibits positive effects in the animal models of both impaired and innate cognition. It also
exhibited significant anxiolytic and anti-depressant capabilities [134].

2-[4-(6-fluorobenzisoxazol-3-yl)piperidinyl]methyl-1,2,3,4-tetrahydro-carbazol-4-one (QF2004B),
a conformationally constrained butyrophenone analog (30, Figure 15) has a multi-receptor profile with
affinities similar to those of clozapine for serotonin (5-HT2A, 5-HT1A, and 5-HT2C), dopamine (D1, D2,
D3 and D4), alpha-adrenergic (α1, α2), muscarinic (M1, M2) and histamine H1 receptors. In addition,
QF2004B mirrored the antipsychotic activity and atypical profile of clozapine in a broad battery of
in vivo tests including locomotor activity, apomorphine-induced stereotypies, catalepsy, apomorphine-
and DOI (2,5-dimethoxy-4-iodoamphetamine)-induced prepulse inhibition (PPI) tests. These results
point to QF2004B as a new lead compound with a relevant multi-receptor interaction profile for the
discovery and development of new antipsychotics [135].
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Figure 15. Multi-target ligands of aminergic GPCRs as potential antipsychotics.

Searching for potential multi-target antipsychotics, Huang et al. [136] obtained a series of
compounds bearing benzoxazole-piperidine (piperazine) scaffold with considerable dopamine D2 and
serotonin 5-HT1A and 5-HT2A receptor binding affinities. The best compound (31, Figure 16) had high
affinity to D2, 5-HT1A and 5-HT2A receptors, but low affinities foroff-targets (the 5-HT2C and histamine
H1 receptors and human ether-a-go-go-related gene (hERG) channels). This compound diminished
apomorphine-induced climbing and DOI-induced head twitching without observable catalepsy, even
at the highest dose tested making it a promising candidate for multi-target antipsychotic treatment.
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Figure 16. Multi-target ligands of aminergic GPCRs as potential antipsychotics with low affinity
to off-targets.

Chen et al. [137] obtained potential antipsychotic coumarin derivatives, having potent dopamine
D2, D3, and serotonin 5-HT1A and 5-HT2A receptor affinities. The best compound, seen in 32, Figure 16,
also possesses low affinity for 5-HT2C and H1 receptors and hERG channels. In behavioral studies this
compound inhibited apomorphine-induced climbing behavior, MK-801-induced hyperactivity, and the
conditioned avoidance response without observable catalepsy. Further, fewer preclinical side effects
were observed for (32) in comparison to risperidone in assays that measured prolactin secretion and
weight gain.

Another group synthesized a series of benzisothiazolylpiperazine derivatives combining potent
dopamine D2 and D3, and serotonin 5-HT1A and 5-HT2A receptor affinities [138]. The best compound,
as seen in (33), Figure 17, had significant affinity for D2, D3, 5-HT1A, and 5-HT2A receptors,
accompanied by a 20-fold selectivity for the D3 versus D2 subtype, and a low affinity for muscarinic M1

and for hERG channels. In animal studies this compound blocked the locomotor-stimulating effects of
phencyclidine, inhibited conditioned avoidance response, and improved the cognitive impairment in
the novel object recognition tests in rats [138].
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In a recent study Xiamuxi et al. [139] reported a series of tetrahydropyridopyrimidinone
derivatives, possessing potent dopamine D2, serotonin 5-HT1A and 5-HT2A receptors affinities. The
most promising compound, seen in (34), Figure 17, displayed high affinity to D2, 5-HT1A, and
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5-HT2A receptors, with low affinity to α1A, 5-HT2C, H1 receptors and hERG channels. In animal
models, this compound diminished phencyclidine-induced hyperactivity with a high threshold for
catalepsy induction.

In another new study Yang et al. [140] designed a series of benzamides, with potent dopamine
D2, serotonin 5-HT1A and 5-HT2A receptor affinity. Two best compounds, seen in (35) and (36),
Figure 18, were not only potent D2, 5-HT1A, and 5-HT2A receptor ligands, but they were weak binders
of 5-HT2C, H1 receptors and hERG channels. In behavioral studies these compounds decreased
phencyclidine-induced hyperactivity with a high threshold for catalepsy induction.
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5. Conclusions and Perspectives

The growing pace of life promotes mental disorders. Pharmacotherapy for schizophrenia is
nowadays very effective, in particular regarding treating positive symptoms of the disease, but at
the same time there is a tremendous, unmet clinical need for the therapy of negative and cognitive
symptoms, as well as for the management of drug resistant schizophrenia. Over the last half century,
there has been only limited progress in the innovating mechanisms of action and the developing
novel therapeutic agents for the treatment of schizophrenia. However, the breadth of potential
goals and tested compounds clearly shows interest and importance in the pursuit of innovative
drug development. A multi-target approach to drug design and discovery is now a hot topic in
medicinal chemistry, in particular for the treatment of complex diseases such as schizophrenia. It
should be emphasized that regarding management of schizophrenia, nothing more effective than
multi-target treatment has been proposed. Involvement of nicotinic and glutamatergic targets in
modern multi-target drugs can be beneficial for the treatment of negative symptoms and cognitive
impairment. Another potential strategy is exploration novel signaling mechanisms concerning in
particular GPCRs, such as allosteric modulation, biased signaling (functional selectivity), and receptor
oligomerization. However, this approach will also be more promising when it involves multiple targets.
In summary, as current multi-target antipsychotics are mainly orthosteric ligands of aminergic GPCRs
with SSRI or SERT inhibitory activity in some cases, there is a huge unexplored area to include other
receptors and enzymes as drug targets and to explore the wealth of signaling mechanism beyond the
ternary complex model of GPCRs.
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Abbreviations

3D QSAR Three-dimensional structure-activity relationship
AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
cAMP Cyclic adenosine monophosphate
CAR Conditioned avoidance response
CNS Central nervous system
cNT PDEs Cyclic nucleotide phosphodiestereases
EPS Extrapyramidal symptoms
FDA Food and Drug Administration
GABA γ-Aminobutyric acid
GPCRs G protein-coupled receptors
GSK-3 Glycogen synthase kinase-3
GTP Guanosine-5′-triphosphate
LSD Lysergic acid diethylamide
MTDs Multi-target drugs
NMDA N-methyl-D-aspartate
PCP Phencyclidine
SSRI Selective serotonin reuptake inhibitor
VTA Ventral tegmental area
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