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Abstract: Protein–ligand docking is a molecular modeling technique that is used to predict the
conformation of a small molecular ligand at the binding pocket of a protein receptor. There are many
protein–ligand docking tools, among which AutoDock Vina is the most popular open-source docking
software. In recent years, there have been numerous attempts to optimize the search process in
AutoDock Vina by means of heuristic optimization methods, such as genetic and particle swarm
optimization algorithms. This study, for the first time, explores the use of cuckoo search (CS) to
solve the protein–ligand docking problem. The result of this study is CuckooVina, an enhanced
conformational search algorithm that hybridizes cuckoo search with differential evolution (DE).
Extensive tests using two benchmark datasets, PDBbind 2012 and Astex Diverse set, show that
CuckooVina improves the docking performances in terms of RMSD, binding affinity, and success
rate compared to Vina though it requires about 9–15% more time to complete a run than Vina.
CuckooVina predicts more accurate docking poses with higher binding affinities than PSOVina
with similar success rates. CuckooVina’s slower convergence but higher accuracy suggest that it is
better able to escape from local energy minima and improves the problem of premature convergence.
As a summary, our results assure that the hybrid CS–DE process to continuously generate diverse
solutions is a good strategy to maintain the proper balance between global and local exploitation
required for the ligand conformational search.

Keywords: structure-based drug design; optimization; metaheuristic; cuckoo search; differential
evolution; conformational search; AutoDock Vina; PSOVina; CuckooVina

1. Introduction

Protein–ligand docking is a computational method that is used to predict the binding pose of
a small molecular ligand at the active site of a target protein. It has been routinely used in both
academia and industry to screen for new potent compounds and subsequently, has been used for
lead optimization. The most notable and successful application of protein–ligand docking and virtual
screening is the discovery of inhibitors against the human immunodeficiency virus (HIV) protease
for curing AIDS disease [1]. Over the past decades, many protein–ligand docking programs have
already been developed to aid these studies. Among others, AutoDock, developed by Morris and
co-workers [2], is the most popular open-source program. It encodes the configuration of a given ligand
into a solution vector and repeatedly mutates values in the vector to identify the ligand configuration
that gives the optimal binding energy. AutoDock was found to achieve an accuracy of up to 2 kcal/mol.
When the experimental structure of the protein–ligand complex is known, one can compare the
predicted ligand binding pose of the docking program to the experimental binding pose. A small
difference between the two (usually taken to be <2 Å) indicates successful docking.

The ultimate goal of a docking program is to achieve high structural accuracy while minimizing the
computational cost, which has always been a challenge. Exploring a proper way to use computational
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power more efficiently has encouraged the upgrade from AutoDock 4 [2] to AutoDock Vina [3].
For instance, AutoDock Vina (also named Vina here for short) has significantly improved accuracy in
terms of the binding pose prediction compared to AutoDock 4 through the use of a new scoring function.
This knowledge-based scoring function also makes Vina run faster than AutoDock 4 by two orders of
magnitude [3]. In addition, AutoDock Vina has updated its minimization method to a quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and employed multi-threading to parallelize
and accelerate the docking process.

In recent years, plenty of nature-inspired metaheuristic algorithms have been invented to solve
complex and highly nonlinear optimization problems. As a matter of fact, the protein–ligand docking
can be regarded as an optimization problem where the list of values defining the ligand configuration
represent the design variables to be optimized, and the scoring function is the objective function
which minimizes the free energy of interactions between the protein and the ligand. In view of this,
studies have incorporated metaheuristic algorithms for protein–ligand docking or structural alignment,
such as simulated annealing (SA) [4], tabu search (TS) [5], and ant colony optimization (ACO) [6,7].
A number of variants based on AutoDock or AutoDock Vina were developed, in which the search
algorithm is replaced by a metaheuristic algorithm. To name a few, SODOCK [8], PSO@AUTODOCK [9],
FIPSDock [10], FlAPCps [11], PSOVina [12,13], and ADHDock [14] have recently been published and
have demonstrated superior performance over the basic AutoDock or AutoDock Vina methods. During
the development of PSOVina, we realized that the main weakness of the original particle swarm
optimization (PSO) algorithm is insufficient exploration of the search space. Since all particles in PSO
follow the same rule, evolving under the influence of the single best particle, quick but premature
convergence is hard to avoid.

In this study, our goal was to investigate other metaheuristic algorithms for solving the
protein–ligand docking problem, in particular the ligand conformation generation strategy during
the docking process. Bearing in mind the weakness of PSO, we designed and tested a new search
algorithm which combines the cuckoo search (CS) and differential evolution (DE) algorithms in
a novel way to enhance the search diversity and to escape from local minima. CS is also a swarm
intelligence-based algorithm. It was proposed by Yang and Deb in 2009 [15] to solve difficult
nonlinear optimization problems. Since its inception, it has been widely adopted in various computer
science and engineering areas, such as pattern recognition, software testing, data fusion, networking,
and job scheduling [16,17]. It is based on the aggressive brood reproductive strategy of cuckoo birds
to increase their own population. CS is computationally more efficient and effective than PSO,
as demonstrated in a performance comparison study using problem specific distance functions [18].
Its effectiveness is due to a good balance between local and global random search controlled by
a switching parameter. On the other hand, differential evolution (DE) is a unique, non-nature inspired
evolutionary algorithm proposed by Storn and Price in 1995 [19], the same year that PSO was proposed
by Kennedy [20]. It is well-known for its simplicity and capability to solve a diverse range of problems.
It is simple and robust in that the same results can be obtained consistently over many repeated runs.
DE is described as a method that can perform contour matching, meaning that the evolution of DE
solutions closely follows the contours of the objective function [21].

Using the advantages of both CS and DE, we proposed a novel hybrid CS–DE docking algorithm
named CuckooVina. It performs global exploration over the large conformational space of a ligand and
simultaneously maintains good local exploitation to fine-tune the binding pose of the ligand. Our search
strategy is different from most of the aforementioned docking methods that two metaheuristic
algorithms were used in the search process. The two metaheuristic algorithms did not perform the
search independently but rather complementarily where CS explores locally in the promising regions
and DE undergoes large jumps to seek for new promising regions.

We tested the performance of CuckooVina using two benchmark datasets, PDBbind 2012 and the
Astex Diverse set, and compared it with its predecessor AutoDock Vina [3], which uses a Markov Chain
Monte Carlo approach as a global search technique and PSOVina [12,13] which uses PSO. All three
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methods use the same energy minimization algorithm and scoring function, which are the original
implementations of Vina.

2. Results

2.1. Docking Experiment Setup

Our proposed docking algorithm CuckooVina is described in detail in the Materials and Methods
section. We compared the docking performances of CuckooVina to AutoDock Vina and PSOVina,
namely, their root mean squared deviations (RMSDs), success rates, predicted binding affinities, run
time, and convergence value. The run time was obtained using the system command time that
measures the elapsed time from start to finish of the process. To determine convergence of the search
process, energy of the best solution found was monitored. Once a stable solution is reached, i.e.,
no better solution is found from that point until the end of the docking process, the search is considered
as converged. The proportion of the search process to reach convergence was computed as the ratio
of energy evaluations reaching convergence and total number of energy evaluations. Furthermore,
to understand the search behavior of CS–DE and PSO, we measured the sum of all pairwise Euclidean
distances of search agents to estimate the time evolution of the space searched by these agents. We also
monitored the solution update behavior brought about by the hybridization of CS and DE in the search
process, to gain further insight into a better search strategy for docking problems. Finally, we evaluated
the effects of the number of search agents and number of parallel threads on the docking results. As for
the experiments, we note that for different methods the number of energy evaluations in each iteration
is different. To ensure a fair comparison, we set the same number of maximum energy evaluations
for CuckooVina, PSOVina, and Vina. We used the same number of search agents, i.e., 8, in both
CuckooVina and PSOVina for most experiments, unless explicitly specified. Other docking parameters
were conveniently taken from publications where the methods were introduced. A complete list
of the parameters and values used are presented in Table 1. Due to the stochastic nature of these
methods, each docking run, even those using the same method, may generate different final solutions.
To address this problem, the docking of each complex was repeated 30 times.

Table 1. Docking parameters used in experiments: For PSOVina, number of particles N, inertia weight
ω, cognitive weight α, social weight β. For CuckooVina, number of host nests k, switching parameter
Pworse, mutate probability Pmutate.

Method Parameters

PSOVina N = 8; ω = 0.36; α = β = 0.99 a

CuckooVina k = 8; Pworse = 0.25; Pmutate = 0.25 b

a ω, α, and β were taken from [12]. b Pworse was taken from [15] and Pmutate was set equal to Pworse.

2.2. Single-Thread Docking Experiment

In AutoDock Vina, multi-threaded docking is performed by default when the number of CPU
cores available in the machine is more than 1. Vina automatically generates a number of threads equal
to the number of cores. Each of the threads runs the search process in parallel but independently,
where the best docking solutions found in each search are pooled together to generate the final solution
list. Inherited from Vina, both CuckooVina and PSOVina do the same.

Although the docking solution is generally improved by using a multi-threaded approach,
we argue that this way of pooling results together from independent runs is not beneficial for the
study of the search algorithm in the docking program. Since each fresh-start search process performs
re-initialization of the population, as long as more repeats are done, the search space will be more
globally covered which usually yields better overall lowest energy solutions. For this reason, the ability
of the search algorithm to globally explore the search space cannot be fully revealed. Moreover,
a search process which has been trapped in a local minima leading to premature convergence cannot
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be easily identified. Therefore, we employed a more rigorous experimental approach, i.e., to perform
a single-thread docking experiment. Repeated dockings were mainly used to obtain statistics and
examine the consistency of the search results.

Figure 1 presents the results of all docking repeats on the PDBbind 2012 dataset. Each point
represents the average value of all 201 complexes in one docking experiment. Five metrics were
measured: RMSD, success rate, binding affinity, run time, and convergence value. A docking is
considered successful if the docked ligand has an RMSD of <0.2 nm from the experimental ligand
with respect to the protein. When the performances of three docking methods are compared, it is
clearly seen that CuckooVina performs consistently better than both Autodock Vina and PSOVina in
RMSD, success rate, and binding affinity (based on the post-hoc test of Tukey’s Honestly Significant
Difference (HSD) using α = 0.05). It is worth mentioning that CuckooVina not only performs better,
but the generated solutions are also more consistent over different independent runs than those of
PSOVina and AutoDock Vina as observed from the low deviations in all three metrics among different
docking repeats. As a consequence, the requirement of performing many docking repeats to obtain
reliable results for other stochastic search methods may be relaxed for CuckooVina.

Figure 1. Docking performances of AutoDock Vina, PSOVina, and CuckooVina in 30 independent
docking repeats using the PDBbind 2012 dataset. Each data point is an average of 201 complexes.

The average docking performances of three methods using the PDBbind 2012 dataset are
summarized in Table 2. CuckooVina gives improvements over PSOVina of 11%, 4%, and 4% in
terms of the RMSD, success rate, and binding affinity respectively (p-values of 8.26 × 10−10, 0.0049,
1.490 × 10−11, respectively, using Tukey’s HSD test at α = 0.05). As both PSOVina and CuckooVina
have some overheads for managing search agents, they need about 39% and 15% more run time,
respectively, to complete the same number of energy evaluations as Vina. To assess convergence
speed, we computed the ratio of energy evaluations reaching a stable solution (i.e., no more updates
until end of the docking process) to the total number of energy evaluations. Vina and PSOVina
obtained convergence values of about 0.5, whereas CuckooVina obtained 0.69. Although Vina and
PSOVina are converged faster, their lower performances in the success rate and binding affinity suggest
that both of them were trapped in local energy minima that led to premature convergences. Using
additional energy evaluations, solutions in CuckooVina continued to be optimized reaching closer to
global minimum.

Table 2. Average performances of AutoDock Vina, PSOVina, and CuckooVina for docking the PDBbind
2012 dataset.

Method RMSD (nm) Success Rate (%) Affinity (kcal/mol) Run Time (s) Convergence a

AutoDock Vina 0.605 32.74 −7.645 13.73 0.48
PSOVina 0.409 49.12 −7.954 18.99 0.49

CuckooVina 0.364 51.08 −8.287 15.79 0.69
a Fraction of energy evaluations reaching convergence.
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The same benchmarking exercise was performed using another docking dataset, the Astex Diverse
dataset. As shown in Figure 2 and Table 3, the three docking methods exhibit almost the same order of
performance as for the PDBbind 2012 dataset. Overall, CuckooVina still gives the best docking results
in terms of lower RMSD (p-value of 1.49 × 10−11 versus Vina and 0.0172 versus PSOVina) and better
binding affinity (p-value of 1.49 × 10−10 versus both Vina and PSOVina), though the difference in
success rates between CuckooVina and PSOVina is insignificant (p-value = 0.138). We note that the
deviations of CuckooVina are still the smallest among the three methods and it took about 9% more
time than Vina to complete a docking run.

As a summary, the single-thread experiments assure that CuckooVina, which employs the hybrid
CS and DE approach, shows superior performance than Autodock Vina. While having a similar
success rate to PSOVina, CuckooVina predicts ligand binding poses more accurately with higher
binding affinities.

Figure 2. Docking performances of AutoDock Vina, PSOVina, and CuckooVina in 30 independent
docking repeats using the Astex Diverse dataset. Each data point is an average of 85 complexes.

Table 3. Average performances of AutoDock Vina, PSOVina, and CuckooVina for docking the Astex
Diverse dataset.

Method RMSD (nm) Success Rate (%) Affinity (kcal/mol) Run Time (s) Convergence a

AutoDock Vina 0.272 59.84 −8.882 6.50 0.46
PSOVina 0.212 69.61 −8.952 8.99 0.48

CuckooVina 0.198 71.14 −9.153 7.06 0.67
a Fraction of energy evaluations reaching convergence.

2.3. Search Space Coverage

In our docking experiments, we used eight search agents in both CuckooVina and PSOVina.
In PSOVina, all eight agents updated in the same manner, whereas in CuckooVina, the search agents
updated differently depending on whether they were from the better set or from the worse set.
How these search agents evolve is the core of the optimization algorithm which governs the efficiency
of the search and accuracy of the result.

As the global minimum is generally unknown, the basic strategy to find this minimum is to search
as widely as possible across the entire space for promising regions. On the other hand, the search
cannot be performed uncontrollably; whenever promising regions are discovered, they should be
sufficiently exploited to make sure that the global minimum is not missed. Since AutoDock Vina
has a rather good built-in minimization method, the local minimum can usually be found with all
three docking methods. Here, our focus was on the global exploration of the search space and the
comparison of search behavior between the proposed hybrid CS–DE and PSO algorithms.

As a measure of search space coverage, we computed the distance sum (DS), the sum of pairwise
Euclidean distances between search agents, as defined in Equation (1), at every 100 energy evaluation
interval in the course of docking. We ran this experiment on dozens of protein–ligand pairs and
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selected three typical cases (1kfb, 1a30, and 3sjf) for illustration, as shown in Figure 3. Each of the
subplots shows the DS evolution for the two methods. For CuckooVina, the results for both eight
agents and the six agents from the better-set are shown. For better visual comparison, the DS values
for six agents were multiplied by a factor (m = 8C2/6C2) to approximate their values as if there were
eight agents.

Figure 3. Search space coverage measured as the sum of pairwise distances between search agents in
the docking process of the 1fkb, 1a30, and 3sjf complexes.

The experiments were run with eight agents and the switching parameter was set to Pworse = 0.25.
Therefore, the better set contained six search agents and the worse set contained two. We can see
that these six agents in CuckooVina maintained a small search space coverage exhibited by small
DS values. When all eight agents were considered, the DS was greatly increased, revealing that the
worse set agents explored the search space widely. This “wide-scope” search continued throughout
the entire process.

In contrast, the search space coverage of the PSO with eight agents kept dropping from the
start of the search process. In a low-dimensional space, we would consider this to be a good feature
because it would search a wider space in the beginning and then converge to a rather small space to
obtain a final answer. However, with a high-dimensional space as that in the protein–ligand docking
problem, PSO’s quick collapse in search space coverage leads to the premature convergence problem.
By maintaining a wide search scope throughout the search process, CuckooVina can locate the best
energy poses while PSOVina and Vina were trapped in local minima.

2.4. Monitoring the Updating Situation of the Better and Worse Sets

To understand how Cuckoo Search overcomes the premature convergence problem, we closely
monitored how the better and worse sets updated during the search process. An update in the better set
was considered important when a newly generated solution had a binding affinity with a lower energy
than the worst nest in the better set. Similarly, an update in the worse set was considered important
when a newly generated solution in the modified DE process had a binding affinity with a lower
energy than the worst nest in the better set. Whenever there was an important update, solutions were
re-ranked, and a new and better solution was then included in the better set.

Figure 4 shows how the docking process for complex 1a30 updates as the algorithm proceeds.
The results of two independent runs are displayed. As shown in the figure, both sets (better and worse)
update very rapidly in the beginning. However, after a few iterations, no new solutions from the
modified DE process are better than those in the better set, so the worse set update line stays flat. In the
meantime, the better set nests keep on improving via random walk in local regions until all the better
set solutions converge to minima, where the better set update line also stays flat. The breakthrough
moment comes when an important worse set update occurs (as indicated by a small red triangle in
the figure). This new and better solution found by the modified DE process signals the discovery of
a new potential low-energy region in the search space. The solutions are thus re-ranked and the new
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solution is placed in the better set. Once in the better set, exploration around the region of this newly
discovered solution is conducted in later iterations, which is shown by the subsequent rapid rise of the
better set update line.

Figure 4. Number of updates that occurred in the better and worse sets in two docking runs of the
representative complex 1a30. The colored triangles indicate the an iteration where an important worse
set update (red) leads to subsequent rapid updates of the better set (blue).

2.5. Effect of the Number of Search Agents

We investigated the effect of the number of search agents by running experiments using 4, 8, 16,
and 32 search agents. As shown in Figure 5, the performances of CuckooVina were minimally affected
by the number of search agents in terms of binding affinity. On the contrary, the success of PSOVina
critically depends on the selected number of search agents, typically, the more the better. In all cases,
CuckooVina had smaller error bars than PSOVina, computed from 30 independent runs. This indicates
that the docking algorithm of CuckooVina is more robust, and each docking result is more reliable.

Figure 5. Effects of the number of search agents (4, 8, 16, and 32) on the docking performances of
PSOVina and CuckooVina using the PDBbind 2012 and Astex datasets. Experiments were performed
using 30 docking repeats.

2.6. Effect of the Number of Parallel Threads

AutoDock Vina supports the use of multiple threads to perform docking by specifying the
exhaustiveness option. Each thread runs an independent ligand pose searching process and the
found solutions are pooled together to select the top k results ranked by predicted binding affinities.
Consequently, when more threads are used for docking, better solutions can be expected as more
searches are performed. Both PSOVina and CuckooVina have inherited this feature from Vina, but,
so far, our experiments have been done with a single thread to focus our analysis on the search
algorithms. In this section, we describe an investigation on the effect of the number of threads on the
docking performances by using 1–10 threads.
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As shown in Figure 6, both PSOVina and CuckooVina performed better with an increased number
of threads, as expected. It is worth noting that, even with fewer threads, CuckooVina outperformed in
all cases.

Figure 6. Effect of the number of threads on the docking performances of PSOVina and CuckooVina
using the PDBbind2012 dataset.

3. Materials and Methods

3.1. Cuckoo Search and Differential Evolution

Cuckoo search (CS) is a metaheuristic algorithm based on the parasitic breeding behavior of
some cuckoo species. These cuckoos lay eggs in other birds’ nests. When the baby cuckoos hatch,
which usually happens earlier than other chicks, they kick the others out of the nest and are then raised
alone by the adoptive parents. Like other swarm-based methods, CS solves an optimization problem
by maintaining a population of solutions and updating them in an iterative fashion. Here, a nest (or the
egg) represents a solution, a cuckoo represents a search agent, and an egg-in-a-nest represents one of the
solutions at the current iteration. The replace and maintain operations in CS were designed to mimic the
aggressive behavior of cuckoos following three simple rules:

1. Each cuckoo lays one egg at a time and dumps it into a random nest (first replace).
2. Some proportion of nests that have the best eggs can carry them over to the next

generations (maintain).
3. The fraction of remaining nests, those with the worst eggs, are abandoned by the host birds and

new ones are built (second replace).

The first rule means that the search algorithm selects one nest for mutation and then compares
the new solution to its existing solution. The second and third rules ensure that top solutions can
carry on to the next generation while a proportion of not-so-good solutions are replaced by new ones.
Yang introduced Lévy flight, providing a reasonably expensive exponential calculation, into CS [15]
for the mutation step by performing a random walk with a step size that is proportional to the number
of iterations.

The differential evolution (DE) has a similar pattern to other evolutionary algorithms:
initialization, selection, mutation, and recombination. In each iteration, the DE algorithm first creates
a donor vector, xdonor = x1 − F(x2 − x3), where xk = 1, 2, or 3 represents three randomly selected
solutions from the current population, and F is the user-specified differential weight. A trial vector,
xtrial , is then constructed by selecting each element of xdonor for xtrial with a probability of p ∈ [0, 1].
Afterwards, xtrial is compared with a randomly selected solution in the current generation. The better
solution is kept for the next generation. These steps are repeated until a desirable population size
is reached.
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3.2. The Protein–Ligand Docking Search Problem

Our proposed optimization method for docking was integrated into AutoDock Vina [3].
This necessitated the search problem to first be described in Vina. In Vina, a ligand pose is
represented by a vector of 7 + τ elements, which includes the ligand position in Cartesian coordinates
(3 elements), the ligand orientation in quaterion form (4 elements), and ligand rotatable torsions
in single angular values (τ elements). The conformational search process is divided into two
parts—global search and local search. The former is used to generate new ligand poses by randomly
adjusting either the position, orientation, or one of the rotatable torsions of the ligand by some
random amount. Each generated pose is refined to its closest minimum energy conformation through
the quasi-Newton Broyden–Fletcher–Goldfarb–Shannon (BFGS) minimization algorithm. It is then
subjected to Metropolis criteria to decide whether to keep or to revert back to the original pose.
The main problem of the global search in Vina is that the random walk method does not utilize any
previous knowledge of the search, except for the last pose. Since its step size and move direction are
both generated randomly, Vina takes almost no advantage of the search history.

3.3. CuckooVina

In this work, we investigated the use of CS and DE to enhance the conformational search
process in protein–ligand docking. Our implementation was based on AutoDock Vina. At first,
we replaced the Markov chain Monte Carlo (MCMC) method with the original CS algorithm for
the global search in Vina. However, two problems were observed: (1) The first-replace operation in
CS, namely, randomly replacing any nest by a cuckoo’s offspring, limits the search diversity of the
algorithm. Obviously, there is a higher chance that the cuckoo’s offspring, which has been mutated
from a nest at a higher rank, can generate better eggs as compared to the eggs from a lower rank
nest. This means that worse solutions are frequently replaced by better solutions from regions that
have been explored, leading to premature convergence. (2) In the original CS algorithm, the Lévy
flight method, which is used to the generate cuckoo’s offspring, is computationally expensive due to
its exponential calculation. This makes the entire docking process very inefficient. As the ability to
perform sufficient exploration of the conformational space is crucial to the success of protein–ligand
docking, the CS algorithm needs to be improved such that it can search widely over the conformational
space to avoid premature convergence and so that it is computationally less expensive.

Our ideas for such improvements were the following: We divided the host nests into two sets,
the better set and the worse set. The former includes nests which have a high ranking among the list of
nests and the latter are the remaining nests with worse solutions. During the first-replace operation,
the egg in a random nest is selected to generate a new egg, and a nest from the better set is then
randomly selected to be considered for replacement. Here, the egg generation is performed using
a random walk for efficiency. In the nest second-replace operation, each nest in the worse set is replaced by
a new solution using a modified DE process. In this process, any two nests can be selected as templates
to generate the donor vector. To ensure all solutions can be considered, each dimension in the solution
vector is updated independently and is subject to some randomness. The individual updates take into
account the width of the search space in the respective dimensions by virtue of the dimension-specific
differential weights. By using these two different replace operations, newer solutions can be found.
In addition, by carrying over the better solutions to the next generation, the quality of the solutions
will be improved.

Our proposed CuckooVina algorithm is presented in Algorithm 1, and the modified DE process is
presented in Algorithm 2. Three parameters are required. Two are the number of host nests (or the
population size; k) and the switching parameter (Pworse ∈ (0, 1)), which is the fraction of nests that are
included in the worse set in the CuckooVina algorithm. Thus, 1− Pworse is the fraction of nests in the
better set. The final parameter is the mutation probability (Pmutate) for the modified DE process.
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Algorithm 1: CuckooVina for protein–ligand docking.
1: Given the number of host nests (k) and the switching parameter (Pworse ∈ (0, 1))
2: Generate the initial population, X← {x1, . . . , xk}
3: Compute the energy levels, f (x1), . . . , f (xk)
4: Rank X according to the energy levels
5: Assign the Pworse nests lower in rank as the worse set and the remaining nests as the better set
6: while t < tmax or stopping criteria do

7: Set a nest (xi) randomly as the cuckoo
8: Generate its offspring (x′i) by a random walk
9: Compute f (x′i)

10: Choose a nest (xj) randomly from the better set
11: if f (x′i) < f (xj) then

12: xj ← x′i
13: end if
14: Nests from the worse set are discarded, and new ones are built using the modified DE
15: Re-rank X
16: Update the better set and worse set
17: end while
18: Return solutions X

Algorithm 2: Modified DE for mutating a nest (xw) in the worse set.
1: Given the mutation probability (Pmutate) and the number of existing nests to be mutated (xw)
2: Randomly choose two different nests, xr and xs
3: Compute the donor vector, xd = xr − xs
4: Initialize differential weights αp, αo, αt by the following:
5: s← rand(0, 1)/rand(0, 1)
6: αp ← s×max(position)/100
7: αo ← s×max(orientation)/100
8: αt ← s×max(torsion)/100
9: for all i ∈ position do

10: if rand(0,1) < Pmutate then

11: xw[i]′ ← xw[i] + αp × xd[i]
12: end if
13: end for
14: for all j ∈ orientation do

15: if rand(0,1) < Pmutate then

16: xw[j]′ ← xw[j] + αo × xd[j]
17: end if
18: end for
19: for all k ∈ torsion do

20: if rand(0,1) < Pmutate then

21: xw[k]′ ← xw[k] + αt × xd[k]
22: end if
23: end for
24: Return x′w

3.4. Datasets

Two datasets of experimental protein–ligand complexes were used in this study. The PDBbind-CN
database [22] is a manually curated database which provides a collection of known three-dimensional
structures of protein–ligand complexes with experimentally measured binding affinity data. In each
version of the database, three datasets are provided: the general set contains all valid complexes;
the refined set contains the good quality complexes (resolution ≤ 2.5 Å), which have only standard
amino acid residues in the protein and common organic elements (i.e., C, N, O, P, S, F, Cl, Br, I, and H)
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in the ligand; and the core set contains three selected complexes with the highest, medium, and lowest
binding affinities from each protein cluster generated from the refined set complexes. For example,
the 2012 version of the PDBbind database (v2012) contains 2897 complexes in the refined set and
201 complexes in the core set. The core set is particularly suitable for validating protein–ligand docking
methods owing to its use of a stringent selection procedure to ensure high quality and minimum
redundancy in the final dataset. This dataset was used to train and test different variants of cuckoo
search algorithms.

The second dataset used was the Astex Diverse set which is available from the Cambridge
Crystallographic Data Center [23]. It contains 85 diverse protein–ligand complexes with a resolution
better than 2.5 Å. The set was derived from different drug discovery studies, so all ligands are drug-like
samples. This dataset has been widely used for protein–ligand docking method development, so it
was used in this study to benchmark the performance of our method.

Both datasets were prepared by converting structure files into the PDBQT format using the
python scripts prepare_receptor4.py and prepare_ligand4.py provided in the MGLTools package.
Missing hydrogens were added, but nonpolar hydrogens were merged to the neighboring carbons
based on the united-atom model scheme. Unrecognizable atoms were removed. For each protein
receptor in the PDBbind dataset, the docking box was computed to include all atoms in the pocket
residues file. For the Astex Diverse set, a standard cubic docking box of (22.5 × 22.5 × 22.5 Å) was
used, following the setup in [11].

3.5. Search Space Coverage Metric

To investigate the behavior of a search process, we measured the search space coverage in an
iteration as the sum of the distances between each pair of search agents. The distance sum (DS) was
calculated as follows:

DS = ∑
i<j
||Xi − Xj||, (i, j ∈ [1, k]) (1)

where k is the number of search agents. A large DS indicates that the search agents are more dispersed,
implying that the search can cover the search space more thoroughly.

3.6. Statistical Tests

Given its capability to compare multiple methods, we used ANOVA with the post-hoc test of
Tukey’s Honestly Significant Difference (HSD) to determine if Vina, PSOVina, and CuckooVina are
different in terms of their docking performances. This post-hoc test is a comparison of means between
pair of methods, taken into consideration the variances between all individuals within the methods.
A significance level has been fixed at α = 0.05 in this study and the analyses were done using the R
statistics package [24].

3.7. Implementation

CuckooVina was implemented based on the AutoDock Vina 1.1.2 by replacing the original Monte
Carlo global search with CS and DE. The scoring function and the BFGS local search were not affected.
All docking experiments were conducted on a desktop with Intel Core i7 2.93 GHz and 16 GB memory.

4. Conclusions

In this paper, we investigated the use of the cuckoo search (CS) algorithm for solving the
protein–ligand docking problem. A hybrid method was proposed as a result, in which CS with
a random walk for the mutation operation was used to perform local exploration of promising regions,
while a modified DE process was used to perform global exploration throughout the entire search
process. This new method, called CuckooVina, was shown to outperform AutoDock Vina in terms of
binding affinity, RMSD, and success rate, as tested by two benchmark datasets. It predicts more accurate
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ligand binding poses with higher affinities than PSOVina with similar success rates. Although Vina
and PSOVina are converged faster, their lower performances in binding affinity prediction suggest
that both of them were trapped in local energy minima that led to premature convergences.

Our analysis of the distance sum of all search agents provided evidence that search agents in
CS can maintain broader coverage of the search space, which is believed to be a crucial factor for
its success. Unlike PSOVina where search agents can quickly collapse into limited search regions,
in CuckooVina, by virtue of the modified DE process, diverse solutions are continuously generated.
Once a new and better solution is identified (better than the better set), the region around this solution
is immediately exploited. Therefore, a better balance between global search and local search is
maintained in CS compared to PSO, contributing to its success in finding better docking solutions.
An analysis of the effect of the number of search agents and the number of threads indicated that the
search process in CuckooVina is robust, and reliable solutions can be obtained without the need of
a large number of search agents and parallel threads. Our experiments suggest that the combination
of eight search agents and eight to ten parallel threads yields optimal performance in CuckooVina.
A future improvement to the CuckooVina algorithm would be the use of an adaptive approach for the
switching parameter, Pworse, allowing the effort on global exploration to be adaptively adjusted based
on the updating conditions.
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