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Abstract: Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult
individuals requires a fine-balanced interplay of regulating factors that individually trigger the
fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific
lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas
in other tissues the same factors antagonize each other. However, the molecular basis of this obvious
dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and
fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common:
They are both highly preserved between different species, involved in essential cellular functions,
and their ligands vastly outnumber their receptors, making extensive signal regulation necessary.
In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data
reflect that both factors synchronously act in many tissues, and that antagonism and synergism both
exist in a context-dependent manner. Therefore, by challenging a generalization of the connection
between these two pathways a new chapter in BMP FGF signaling research will be introduced.

Keywords: bone morphogenetic protein; fibroblast growth factor; signal transduction; cross-talk;
signal integration

1. Introduction

Canonical signaling cascades activated by bone morphogenetic proteins (BMPs) and fibroblast
growth factors (FGFs) both play crucial parts in essential cell and tissue functions, from early
development to repair, maintenance and homeostasis of adult tissue. Hence it is not very surprising
that BMPs and FGFs mechanistically interact with each other, and that their mostly divergent roles
often result in a functional antagonism. Investigating the BMP-FGF interplay hence touches on many
areas of interest in research, and insights into the underlying molecular interactions may represent
fundamental biological processes in complex organisms.

The main focus of this review is on the inter-connections between BMP and FGF signaling.
Their individual properties and their regulation will only be introduced shortly, as they have already
been described in great detail elsewhere. (For reviews on FGF signaling, see References [1,2].)
For a broad overview on BMP signaling, see Cytokine and Growth Factor Reviews’ special issues on
BMPs, volumes 20 and 27).
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2. Bone Morphogenetic Proteins

2.1. The Baffling Promiscuity in BMP Signaling

BMPs and growth and differentiation factors (GDFs) are dimeric growth factors forming
a subgroup of the transforming growth factor 3 (TGF{3) family, with other subgroups, such as
the eponymous “true” TGEfs (isotypes 1-3), the activins, and others like anti muellerian hormon
(AMH) and GDF15 [3]. All TGFf family members signal through heteromeric receptor complex
assemblies, usually comprised of two type I and two type II serine/threonine kinase receptors [4].
An activated signal-receptor complex recruits intracellular signaling components at the type I receptors,
most prominently receptor-regulated so-called (R-)SMAD (abbreviation derived from homologies
to Caenorhabditis elegans SMA (“small” worm phenotype) and Drosophila MAD (“Mothers Against
Decapentaplegic” proteins) proteins. R-SMADs belong to one of two subgroups, and each type I
receptor (with the exception of activin-like kinase 1 (ALK1)) activates SMADS of just one subgroup:
Most BMP/GDF receptors phosphorylate SMADs 1, 5 and 8, whereas the TGFf3 type I (ALK5) and
the activin type I receptors phosphorylate SMADs 2 and 3. Activated R-SMADs form heterotrimers
with one so-called common-mediator (Co-SMAD) SMAD4 protein, and translocate into the nucleus to
exert their influence on gene expression with the help of co-factors and histone modifying enzymes.
Apart from this canonical signaling pathway, BMP and TGFf3 receptors have also been reported to
activate other signaling proteins, including mitogen-activated protein kinases (MAPKSs), such as p38
and Erk, as well as phosphoinositide 3-kinase (PI3K) [5-7].

2.2. BMP Signal Regulation

It appears plausible that a signaling system with high receptor promiscuity and limited
downstream events like this one can only generate so many distinct functions if it is extensively
regulated. Diverse regulatory mechanisms exist at any point in the signaling cascade. Intrinsically,
receptor specificity and ligand concentration determine, such as active signaling complexes can
form. A multitude of extracellular modulators, e.g., Noggin, Follistatin, Chordin, and others, prevent
receptor-ligand interaction by sequestering ligands and masking their receptor-binding epitopes [6,8],
and some extracellular matrix components like heparin or heparan sulfates, but also pseudo-receptors
like BAMBI may likewise deflect BMP ligands from their receptors [6]. Intracellularly, R-SMAD
phosphorylation can either be stabilized (cyclin-dependent kinase (CDK) 8 and CDK 9) or destabilized
(SMUREF proteins, inhibitory (I)-SMADs (SMAD 6 and 7)), influencing the duration of the active
signal [4,5,9,10]. Receptor stability on the cell surface, and SMAD entrance into the nucleus are also
being regulated (e.g., MANI, [11]), and the influence of phosphorylated R-SMADs on transcription is
dependent on the presence or absence of co-factors and/or co-repressors [4,7-9].

3. Fibroblast Growth Factors

3.1. An Omnipresent Growth Factor System

In the adult organism, FGF signaling is active in most tissues and fulfills vital functions both in
the cellular and in the tissue metabolism. Looking at the level of individual cells, FGFs are linked
to proliferation, migration, and/or differentiation, which translates into the regulation of tissue
homeostasis and repair [1]. These multiple roles and the vast presence of active FGF signaling become
evident in the high number of ligands, receptor splice variants, and downstream effectors of this
signaling system.

The FGF family comprises 22 members, 18 of which get secreted and are able to bind to one or
more of the four FGF receptors (FGFR) 1-4. FGF ligands are monomeric factors whose close association
to extracellular matrix components, in particular to heparan sulfate proteoglycans (HSPGs), determine
their auto- or paracrine nature. HSPGs not only limit the distribution of FGFs, but also act as stabilizers
of ligand-binding to the respective receptors [2]. Only three members of the FGF ligand family have
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a reduced affinity to HPSGs and hence function as endocrine factors (FGF 19, -21, and -23). They signal
via the same four FGF receptors, but utilize Klotho proteins instead of HPSGs as co-receptors [1].

FGF receptors are tyrosine kinases with a single transmembrane domain that dimerize and become
autophosphorylated upon ligand binding. They exist as various isoforms derived from alternative
splicing events, adding further complexity to the FGF signaling system. Once activated, FGFRs
trigger four main pathways within the cell, comprising mitogen-activated protein (MAP) kinases,
phosphoinositide 3-kinase (PI3K), signal transducers and activators of transcription (STATs) and
phospholipase Cy (PLCy). The adaptor protein FGFR substrate 2« (FRS2«) directly binds to the FGFR
and triggers signaling via MAP kinase and PI3K cascades via growth factor receptor-bound protein
2 (GRB2) [2,12]. STATs 1, 3, and 5, as well as the PLCy pathway do not utilize any adapter proteins,
but are activated upon direct binding to the phosphorylated FGFR. STAT proteins, as well as Akt and
MAP kinases (including ERK1/2, p38 and JNK) translocate into the nucleus to alter the transcription
of target genes once they are phosphorylated. PLCy influences the calcium ion levels within the cell
and activates protein kinase C (PKC) [1].

3.2. FGF Signal Regulation

As is the case in BMP signaling, various growth factor functions are governed via a small number
of receptors. Hence, signal transduction has to be tightly and variably regulated. At the cell surface,
the system gains plasticity by the high number of different FGF ligands, alternative splicing and
glycosylation status of the FGF receptors, and the necessity for co-receptors, such as HPSGs or
Klotho proteins, as has been mentioned above. FGF ligands also experience short half-lifes, due to
free cysteines. Consequently, not every cell capable of FGF signaling can respond to every ligand,
and signaling becomes cell-type specific [1,13,14]. Receptor internalization is then able to limit the
signal duration [2], at least if the receptor is subsequently degraded. Otherwise, the signaling may
continue from within the cell, independently of extracellular ligand changes [13,15].

Intracellularly, most regulatory proteins only address one or two of the four activated pathways.
For instance, binding of GRB14 to the activated FGFR1 only inhibits the activation of PLCy. If in
turn FRS2« and/or GRB2 are targeted, for example by ubiquitination via CBL (an E3 ubiquitin
ligase) or by dephosphorylation via Src homology region 2-containing protein tyrosine phosphatase
2 (SHP2), only the MAP and PI3 kinase pathways are impaired [1]. However, CBL can also directly
ubiquitinate the receptor to initiate its internalization, effectively terminating signaling by this
receptor [2]. The tyrosine kinase inhibitor Sprouty (SPRY), which not only inhibits FGFRs, but also
VEGEFRs, PDGFR and NGFR, interacts with GRB2 and likewise affects signaling linked to this adapter
protein, albeit with a prevalence for MAPK inhibition. Downstream, transmembranic SEF (similar
expression to fgf genes) binds to the MEK-MAPK complex, inhibiting only the MAPK pathway. Finally,
MAPK phosphatases can terminate signaling of individual MAP kinases, thus blocking only parts of
the MAP kinase route. For example, MKP3 is specific for Erk kinases and therefore does not influence
an active JNK or p38 signal [1]. ERK in turn is able to limit FGFR signaling more comprehensively by
phosphorylating FRS2« and thus inhibiting GRB2 binding [2].

3.3. The Curse of Promiscuity and Ommnipresence

Both BMP and FGF signaling systems contain a number of ligands that by far exceeds the number
of their receptors, and both fulfill multiple functions in various tissues. Subsequently, both systems
need to be extensively regulated and fine-tuned by distinct spatial and temporal expression patterns
and a variety of regulatory proteins, as has been briefly addressed above.

A graphical depiction of general pathway components of both pathways is shown below (Figure 1).
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Figure 1. Molecular mechanisms of fibroblast growth factor (FGF)-bone morphogenetic protein
(BMP) interactions. Depicted are canonical BMP- and FGF signal transduction pathways.
BMPs are dimeric proteins, assembling heterotetrameric receptor complexes and activating R-SMAD
proteins to translocate into the nucleus and influence transcription. Extracellular inhibitors
like Noggin, membrane-associated inhibitors like BAMBI or intracellular inhibitors like Smurfs
limit BMP signal transduction. FGFs recruit two FGF receptors and heparan sulfates into
the signaling complex, and activate multiple-step cascades with effector kinases, including
Erk, Akt and p38. The muscle-specific kinase MuSK is able to influence BMP signaling
via binding to BMP ligands without involvement of its own kinase domain. Abbreviations:
BMP—bone morphogenetic protein; Co-SMAD—common mediator SMAD; CRKL—Crk-like
protein;, DAG—diacylglycerol; Dusp—dual specificity phosphatase; ECM—extracellular matrix;
FGF—fibroblastic growth factor; FRS2a—FGEFR substrate 2a; Gabl—GRB2-associated-binding protein
1; GRB2—growth factor receptor-bound protein 2; HSPG—heparan sulfate proteoglycan; IP3—inositol
triphosphate; MAPK—mitogen-activated kinase; MEK—MAPK kinase; MuSK—muscle-specific kinase;
PDK1—pyruvate dehydrogenase lipoamide kinase isozyme 1; PI3K—phosphoinositide 3-kinase;
PKC—protein kinase C; PIP2—phosphatidylinositol 4,5-biphosphate; PIP3—phosphatidylinositol
3,4,5-trisphosphate; PLCy—phospholipase Cy; PTEN—phosphatase and tensin homolog;
R-SMAD—receptor-regulated SMAD; SHP2 — Src homology region 2-containing protein tyrosine
phosphatase 2; Smurf—SMAD specific E3 ubiquitination regulatory factor; SOS—Son of sevenless;
Spry—Sprouty; STAT—signal transducers and activators of transcription.

We must remain aware that any biological effect observed is only the sum product of a whole
concert of interaction partners, and that connections between single events within one of these
pathways are not always as straightforward as we would like them to be. Receptor hyper-activation
does not necessarily lead to an elevated biological response to its ligand [13]; highly activated
intracellular signaling does not necessarily rely on abundant receptor levels on the cell surface [15];
ligand synergism in one cellular context does not necessarily exclude antagonism in the next [16];
receptor activation does not necessarily lead to downstream signaling [16]; and boosting receptor
affinity in a ligand does not necessarily render it a more potent agent [16]. While it is certainly out
of scope for any publication to address all possible ways of regulating the respective ligand-receptor
interaction in focus, it is worth keeping in mind that any causal link made between two events within
one of these signaling pathways is a context-dependent connection and subject to re-evaluation under
different circumstances.
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4. The Cross-Talk between BMP and FGF

4.1. Development

Cell fate determination and axis formation are often the result of growth factor gradient formation,
or the integration of different gradients, of morphogens, such as BMPs and FGFs. In this context,
BMP-FGF antagonism has been described as “constituting a common module” [17], and examples can
be found both in axis formation, as well as in tissue specification [17].

The central roles of TGFf3 family members and FGFs in early development already become
evident at the very first stages of cell fate determination. For example, once the fertilized egg develops
into a hollow sphere (the blastocyst), the inner cell mass ICM (which gives rise to the embryo itself) can
be distinguished from the outer cell layer (trophoblast). Pluripotency factors Oct4 and Nanog within
the ICM induce FGF4 expression to elevate FGFR2-mediated MAPK signaling, which in turn leads
to the ICM’s separation into the epiblast (expressing Nanog and FGF4) and the primitive endoderm
(expressing FGFR2 and its downstream target Gata6, a Nanog-suppressor) [18]. The epiblast represents
the origin of the three germ layers. At its posterior, the primitive streak (mesendoderm) is associated
with the expression of Wnt3, Brachyury, as well as the TGF{3 family member Nodal, while the anterior
part of the epiblast develops into epidermal tissues [19]. FGF8-activated FGFR1 facilitates the continued
expression of Brachyury and Thx6, as well as a high migratory potential in descendants of the primitive
streak and thereby determines mesoderm, the origin of the musculoskeletal system and others [20].

Apart from the three germ layers, the early embryo also develops three distinct axes,
the anterioposterior (AP) one along which the germ layers originally form, the dorsoventral (DV) axis,
and the left-right (L/R) axis. FGF signaling (most prominently the FGFs 4 and 8) and TGF(3/BMP
signaling (mainly Nodal, as well as the BMPs 2, 4 and 7) are involved in the formation of all three
axes: Along the AP axis, extraembryonal BMP2/4 signaling via the type I receptor BMPRIA helps
to determine the posterior primitive streak within the embryonal tissue [17,21]. The primitive streak
expresses Nodal, with high Nodal levels determining endoderm, and medium Nodal levels together
with FGF8/FGFR1 signaling drive mesoderm determination, as stated above [19,22]. During the
subsequent AP separation into the individual germ layers, FGFs show strong posteriorizing capacities
along with Wnt and retinoid acid [22]. Along the DV axis, Wnt initiates dorsal cell fates, whereas
BMPs are strongly ventralizing. Here, Wnt-induced FGFs antagonize BMPs on several levels: By BMP
expression downregulation, Chordin and Noggin upregulation, and SMAD inactivation via Erk
mediated tyrosine phosphorylation [17,22]. Finally, the L/R axis is predominantly determined by the
antagonism of Nodal (left) and Lefty1 and 2 (right), but BMPs and FGFs are still involved in the early
steps of L/R axis formation, as well as in the regulation of Nodal expression [17,21].

4.2. Bone and Cartilage

The appendicular skeleton. The skeleton forms mainly from mesodermal tissue, although parts
of the skull and teeth originate from ectodermal precursors. Signaling events in osteochondral
development has been most extensively studied in the context of appendicular skeleton formation,
which starts with the appearance of limb buds in the lateral plate mesoderm. Their outgrowth is
driven by FGFs (mainly FGFS, but also FGF4 and FGF17) and Gremlin-1, a BMP inhibitor. Distally,
expression of BMPs signaling via BMPRIA (including BMPs 2, 4 and 7) limits FGF signaling and limb
bud outgrowth [20,23-25].

Histologically, the formation of limb bones is described by a number of steps in a process
called endochondral ossification: (1) Mesenchymal cell condensation, (2) chondrocyte proliferation,
(3) column formation (pre-hypertrophy), (4) hypertrophy, and (5) vascularization and mineralization.
While most chondrocytes in the skeletal anlagen become hypertrophic and are replaced by bone
forming cells, there are two regions where cartilage persists after birth: The epiphysis or growth plate,
whose chondrogenic core keeps proliferating and undergoing hypertrophy for the sake of longitudinal
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growth until early adulthood and the joints, where non-proliferative cartilage resides on top of the
bones, flanking the joint space, avoiding hypertrophy through life [23].

Understandably, the molecular regulatory processes governing these steps are quite complex,
including the influence of a multitude of growth factors, such as BMPs and FGFs, as well as
Ihh, Wnt ligands, parathyroid hormone related protein PTHrP, and TGF@s; which regulate key
transcription factors like Sox9 (cartilage) and Runx2 (bone), as well as various homeobox genes [26-28].
Seemingly, every knot of this signaling network is connected to every other: TGFf{ influences PTHrP,
which influences hedgehog proteins, which influence BMPs, which influence FGFs, which influence
Wnts, which influence TGEf3s, etc. [28-31]. Importantly, the inter-connection of BMP and FGF signaling
in endochondpral ossification entails synergistic and antagonistic parts: For example, BMPs (mainly
BMP2 and BMP4, but also TGF{s) promote chondrocyte differentiation and proliferation, while FGFs
(mainly via FGFR3) inhibit these processes. This has been exemplified by studies showing that severe
forms of chondrodysplasia can either be caused by down-regulation of BMP2/BMPRIA, BMPRIB
signaling [32] or by up-regulation of FGFR3 signaling, respectively [2,33]. This antagonism is mediated,
at least to some extent, via opposing regulation of the chondrocyte-inducer and -stabilizer Sox9, and via
negatively influencing each other’s expression levels [23,27,29,33,34]. One step further in the course of
bone formation, hypertrophy and osteoblast differentiation are mediated by the transcription factor
Runx2, a Sox9 antagonist [34-36]. TGFf ligands and SMAD2/3 signaling actually inhibit Runx2
function and thus prevent chondrocyte hypertrophy, while BMP ligands (especially BMP2 and BMP6,
which are highly expressed in hypertrophic zones [33]) and SMAD1/5/8 signaling strongly promote
hypertrophy [26,34,37,38]. BMP2 induces the translocation of Runx2 into the nucleus, and it has been
shown that FGF2 is actually necessary for this induction [28,39]. Further indications for the positive
effect of both FGF and BMP signaling on cell hypertrophy can be seen in the phenotypes of FGF9
KO or FGFR1 ¢KO mice driven by the Twist2 promoter, which is active in early osteoblastic stages:
Both gene deletions lead to the same phenotype, namely reduced hypertrophic zones [33]. In contrast
to the proliferation zone, in which only FGFR3 is expressed, pro-hypertrophic FGF signaling seems
to be transmitted via FGFRs 1 and 2, which are expressed in or adjacent to hypertrophic zones [36].
Thus, in contrast to the mechanisms stated for chondrocyte proliferation, BMPs and FGFs closely
synergize to promote chondrocyte hypertrophy and osteoblastic differentiation, both by positively
regulating the expression of each other’s signal cascade components, as well as by synergistically
increasing the expression and thus activity of Runx2 [28,29,39]. Notably, while the BMPs involved
seem to be mainly the same in the two processes; the involved FGF receptors differ.

Cranium. Some parts of the skull, including but not limited to the cranial base, develop via
endochondral ossification as well. These structures are paraxial mesoderm-derived and are collectively
referred to as the chondrocranium. As in long bones, there are cartilage sites that persist after birth to
function in the same way as growth plates, called synchondroses, and the steps of bone formation,
as well as the molecular regulation is highly similar to long bone and growth plate mechanisms [33,40].

Skull parts forming via membraneous ossification are neural crest-derived. They encompass the
facial bones (viscerocranium) and the membraneous neurocranium, entailing most of the calvaria [40].
To allow for growth and expansion of the calvaria after birth, membraneous bones of the skull are not
divided by chondrogenic synchondroses, but by fibrous connective tissue, the sutures.

The mechanisms involved in membraneous ossification, suture formation, and suture maintenance
are quite similar if compared to later stages of endochondral ossification: For example, Runx2
is an essential driver of osteoblast differentiation in membraneous ossification as well [41],
and mesenchymal proliferation is likewise regulated by TGFf ligands, Wnt and FGF signaling [40].
On the other hand, Sox9 haplo-insufficiency does not cause malformation of the cranial skeleton [41],
suggesting a far less important role for Sox9 in cranial development. This is not surprising, as it is the
regulator of chondrocyte differentiation, a developmental step absent in membraneous ossification.
Likewise, Ihh and PTHrP, regulators of chondrocyte proliferation and pre-hypertrophy, seem to be less
involved in membraneous ossification as well. Their mutations seldomly yield cranial phenotypes,
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although they are present in the developing calvaria [36,42,43]. It seems that while the players
in membraneous and osteochondral ossification are mainly the same, their importance within the
signaling network and their impact on the physiological development shifts depending on the type of
bone formation.

4.3. Other Tissues

As BMPs and FGFs are quite ubiquitously expressed and involved in essential cell functions,
such as proliferation and differentiation, they meet in many other tissues as well. Skeletal development,
as described above, is a very prominent example, but far from being the only one.

Teeth, another mineralized tissue, develop by close interaction of the oral epithelium and the
underlying neural crest-derived mesenchyme. The integration of its four core signaling pathways,
Wnts, hedgehogs, BMPs (mainly 2 and 4), and FGFs (including 3, 4, 8-10, depending on the expressing
cellular subtype and particular function), is largely independent of the surrounding tissues [44]. Due to
the high connectivity of this signaling network, synergistic and antagonistic relationships between
FGFs and BMPs are hard to distinguish [45]: BMPs and FGFs antagonize each other in the regulation
of tooth type-determining homeobox genes [46], while positively influencing each other’s expression
via some of the same genes: For example, Pax9, a key regulator of tooth development, is up-regulated
by FGFS8, subsequently induces BMP4 expression, which in turn suppresses it again [45]. While FGF8
and BMP4 are clearly antagonistic in terms of patterning the border between incisors and molars,
they both induce and can be maintained by Msx1, another key transcription factor [45,47]. On the
level of a single tooth anlage, enamel knots (an organisatory unit determining tooth shape and dental
cell differentiation) express FGFs (including 4 and 9), as well as BMP4, but no FGF receptors. Hence,
the FGFs do not act on the enamel knots themselves, but initiate the proliferation of surrounding cells,
and enamel knots eventually undergo BMP4-driven apoptosis [46,47].

Eyes and Skin. Other ectodermal tissues, such as skin and eyes, likewise rely on FGF-BMP
interaction in their development. For example, the optical lens is induced both by FGF and BMP7
signaling [48] and both signals, mediated via FGFR1/2 and BMPRIA /IB, respectively, have positive
effects on lens fiber cell differentiation [49,50]. BMPs and FGFs are also involved in retinal cell fate
determination [51], although here, their antagonism defines the tissue border between neural retina
(FGF8 via FGFR3) and pigmented epithelium (BMPs 4 and 5) [52,53].

Skin originates from ectodermal progenitors due to (Wnt-mediated) BMP4 signaling in
antagonism with the FGFs that are linked to neural development. While both BMPs and FGFs
continue to be expressed at the sites of epidermal and dermal development, they are not described as
key players in skin maturation or skin cell differentiation [54,55].

Central Nervous System. For ectodermal progenitors, neural differentiation is the alternative
route to epidermal differentiation, and according to the default model, it is largely driven by the
absence of BMP4 signaling. This is enforced by a number of BMP inhibitors, such as Noggin,
Follistatin and Chordin, rather than by the presence of an inductive agent [56,57]. While it has been
suggested that FGF signaling (most prominently FGF8) also antagonizes BMPs and thereby triggers
neuralization [54,58], it seems more likely that it is involved in embryonic stem cell priming towards
an epiblast-like state, meaning involvement already at the beginning of germ layer definition, and that
it should be considered a pre-requisite for subsequent neural differentiation rather than a direct neural
inducer [56,59]. Once neural fate is determined, the anterior-posterior and dorso-ventral organization
of these CNS cells is patterned not only by BMPs and BMP inhibitors, but by FGFs, hedgehogs, Wnts,
and retinoid acid as well [56,60]. Here, BMP-FGF interaction is usually antagonistic, as can be seen
for example in the FGF-dependent survival of telencephalic precursors blocking SMAD2 /3-mediated
apoptosis [61], in border formation between the telencephalic dorsal midline (BMP4) and cerebral cortex
(FGFS8) [62], or in the development of posterior neural tissues (hindbrain and spinal cord), where BMP
inhibitor levels expressed by the anterior organizer are low, and FGFs, including FGF3, take over to
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antagonize BMPRIA-mediated, ventralizing signals intracellularly, allowing neural differentiation and
specifying posterior cell fates [63].

Kidneys and Heart. On the mesodermal side, FGF-BMP interaction can be observed for
example in nephrogenesis and cardiogenesis. In nephrogenesis, once the uteretic bud forms from
the intermediate mesoderm, bud outgrowth and branching is initiated by FGF7 and FGF10 from the
adjacent mesenchyme, signaling via FGFR2 expressed in the outgrowing tip. BMP4 is one of the
negative regulators of this outgrowth. Down the road of kidney development, other members of
these growth factor families, namely BMP7, FGF9 and FGF10 synergize in promoting the maintenance
and proliferation of nephron progenitors [64]. In the development of cardial tissue, mesoderm is
specified and subtype patterning is achieved by the combination of Nodal and FGF8 signaling in the
presence of BMP inhibitors, such as Chordin, Noggin, and Follistatin. Once the visceral mesoderm
is specified, BMP2 and 4 expressed by the adjacent endoderm now synergize with FGF8 and 4
signaling to induce heart-specific markers. BMP2/4 continues to drive precursor differentiation,
for example in myofibrillogenesis, while FGFs, including FGF9, continue to be involved in cardiac
cell proliferation [65-67].

Lung and Gut. The gastrointestinal tract, encompassing thyroid, stomach, intestine, lung, liver,
and pancreas, develops along the AP axis in close communication between mesoderm and endoderm.
Among the key factors, FGFs and BMPs, expressed in the mesoderm, help to determine the endodermal
cell fates along the axis [68]. For example, FGFs 1, 2 and 10 initially synergize with BMP4 in fate
determination of pulmonal precursors from the foregut epithelium. However, just as in kidney
development, BMP4 and FGF10 signals via FGFR2IIIb then antagonize in the regulation of lung bud
outgrowth and branching. As FGF signaling enhances the expression of its antagonist BMP4 itself,
it self-limits its proliferative potential at the bud tip, while still stimulating peripheral outgrowth,
causing branching. FGF-induced Spry expression limits the overall outgrowth [69]. In other regions
of the foregut, Wnt and FGF4 suppression enables liver and pancreas induction. Once liver- and
pancreas-forming domains are specified, mesodermally expressed FGF1, FGF2 and BMP4 synergize to
favor hepatic over pancreatic cell fates [70]. In the mid- and hindgut regions, Wnt and FGF4 signals are
active and intestinal cell fates are adapted [71]. BMPs and FGFs resume an antagonistic relationship in
the intestinal epithelium, where BMPRIA-driven signaling and FGFR3-driven signaling differentially
regulate Wnt in the formation and maintenance of stem cells in crypts [72,73].

4.4. Similarities and Discrepancies in BMP or FGF Related Disorders

In order to investigate FGF- and /or BMP-related disorders, knock-in or knock-out models provide
the basis to understand the specific role of these factors in the native developmental processes, as well
as in maintenance of any given tissue.

Mutations in FGF ligands and receptors affect a plethora of tissues in both mice and men. Due to
the pleiotropic functions of FGFs, mutations in a single FGF family member can have widely differing
consequences, ranging from early embryonic lethality over (severe) neuronal or cardiac deficiencies
to short legs or long hair [1]. In terms of FGF receptors, germinal gain-of-function mutations usually
cause chondrocyte and osteoblast dysfunctions, most prominently dwarfism and craniosynostosis [74],
while somatic gain-of-function mutations are associated with elevated proliferation and survival of
cells, hence cancer [2].

In contrast to FGF signaling derailing, mutations in BMP signaling components rarely affect cancer
progression, as their physiological functions are mostly linked to differentiation processes or apoptosis,
rather than proliferation or cell motility. A vast literature search by Skovr]j et al. yielded no evidence
of BMP2 causing tumors de novo [75], although both tumor-promoting and tumor-suppressing actions
of BMPs have been reported in general, dependent on the particular cellular context: BMPs seem to
antagonize cancer proliferation and cancer stem cell survival, but to positively influence migration and
angiogenesis [76,77]. Nonetheless, BMPs are usually considered tumor suppressors [78], and tumor
promotion is linked to TGFf3s rather than to BMPs [76,79].
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Just like for FGFs, mutations in BMP ligands and their receptors have widely differing
consequences, depending on the affected component and/or the specific mutation. Loss-of-function of
central BMP ligands or receptors can result in (early) embryonic lethality, while non-lethal phenotypes
range from severe and progressive disorders, such as pulmonary hypertension or fibrodysplasia
ossificans progressiva, via eye malformations to irregularities in single finger joints [80].

The wide range of phenotypes caused by members either of the FGF or the BMP family is
quite startling. Based on their omnipresence and developmental importance, one would assume that
mutations that affect one of them should not be compatible with life (and for some, this is certainly true).
However, the reason why most mutations in a single ligand or receptor cause non-lethal phenotypes
or syndromes lies in their vast promiscuity and excessive regulation. These are also the reason
why different mutations in the same protein can sometimes produce bafflingly distinct phenotypes.
In FGFR3, a P250R mutation causes the closure of a specific cranial suture, sometimes accompanied by
hand malformations and deafness, while an A391E mutation causes craniosynostosis accompanied
by a skin condition, and a G380R mutation neither affects cranial sutures nor skin or hearing ability
upon birth, but causes achondroplasia resulting in dwarfism (OMIM 134934). Even more discrete
phenotypes arise upon specific mutations in the BMP ligand GDF5, sometimes only affecting one or
few determined finger joints [81].

While we do not understand why some specific mutations cause such specific disorders, the focus
on shared phenotypes between FGF and BMP family members nonetheless helps to shed light on their
molecular connections.

4.5. Meeting of the Titans in Craniosynostosis

Syndromes rooted in either BMP of FGF signaling mutations are mostly exclusive in their
phenotypes, but do sometimes overlap in bone/cartilage malformations, such as craniosynostosis.

Craniosynostosis is described to originate from enhanced bone formation rather than altered
proliferation, as is the case in growth plate deficiencies [37,82]. While syndromic craniosynostoses
caused by FGF receptors 1, 2 or 3 usually affect coronal or multiple sutures, the most commonly
affected suture is the sagittal one (or both midline sutures), including in some syndromic forms that
are not linked to FGF signaling [82-84]. By genotyping, midline suture fusions in non-syndromic
craniosynostosis patients were most prominently linked to haplo-insufficiency of SMAD6, a BMP
inhibitor [83]. Other enhancing mutations of BMP signaling, such as deficiency of the inhibitory
SMUREF1 or duplication of the downstream mediator Runx2, also cause the fusion of midline sutures
during infancy [85,86].

In contrast to the midline sutures, the coronal suture is unique in its embryonic origin, emerging
between the neural crest-derived frontal bone and mesodermal parietal bone. As mutations in the
neural-crest related osteoinductive Twistl or site-specific expression of a constitutive active BMP
type I receptor (BMPRIA) in cranial neural crest both also cause premature suture closing [82,84,87],
the pathomechanism may be dependent on the developmental background of the affected cells [83].

Witnessing the underlying mutations, it seems that both elevated BMP and/or elevated FGF
signaling may cause premature suture closing. This indicates BMP-FGF synergism in the context
of craniosynostosis. Indeed, it has been described that FGFR2 and FGF2 suppress the expression
of the BMP inhibitor Noggin, whose expression is vital for patent cranial sutures. In turn, Noggin
overexpression in skulls of healthy mice prevents natural suture fusion [88]; and application of ectopic
recombinant Noggin rescues rats overexpressing FGFR2 from the craniosynostosis phenotype [89],
as well as prevents the recurrence of suture closure after they need to be surgically opened [31].
As FGF2 has been described to suppress Noggin only at high concentrations [88] and to induce BMP2
expression in cranial suture cells [90], it seems that BMP activity is either permitted and/or supported
only by these high FGF concentrations. Once this threshold is reached, FGF and BMP work together
to drive osteoblast differentiation and mineralization, or suture closure, in an additive/synergistic
manner. Both FGF and BMP signals appear to be essential for suture closure, as FGF-driven ossification
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appears quite BMP-dependent [31,90]. However, this interaction may be rather context-dependent,
as not all pre-fusing sutures express higher BMP2/4 and lower Noggin levels [91], and as high doses
of FGF2 have been described to lower BMP2 levels via the induction of Noggin at another side of bone
formation [92]. Taken together, it appears evident that suture homeostasis is the result of a very specific
composition of cells/tissues and a fine balance between synergistic FGF and BMP signaling events.

The inter-connections between FGF and BMP signaling, which have been briefly mentioned in
the preceded sections are summarized in Figure 2.

Eye Development
Optical lens induction and
differentiation (BMP7 and
FGFR2-mediated signals)

| “Border between neural retina ||

(FGF8, R3) and pigmented

epithelium (BMP4,5)

Cranial Development
Suture closure (BMP2,4 and
FGF2, R2)

Neurogenesis
Neurogenesis in the absence of

Border between telencephalic

dorsal midline (BMP4 and

| Anterior neural cell fates (FGF3) |
versus ventralization (BMPRIA-
mediated signals)

Odontogenesis

enamel knot-driven proliferation
(i.a. FGF4,9) versus enamel knot

incisor (i.a. FGF8) versus molar

development (BMP4)

Lung Development
Lung bud branching (FGF10, R2)
 limited by BMP4

Nephrogenesis
bud outgrowth and branching
(FGF7,10, R2) limited by BMP4
| “nephron progenitor maintenance |
and proliferation (BMP7 and

FGF9,10)

Cardiogenesis
heart cell fate determination
(BMP2,4 and FGF4,8)

Skeletogenesis
limb bud outgrowth (i.a. FGF8)
limited by i.a. BMP4
| chondrocyte proliferation | |
(BMP2,4) limited by FGFR3-
mediated signals
| “chondrocyte hypertrophy | |
(BMP2,6 and FGFR1,2-mediated

signals)

Gastrointestinal

Development
Hepatic cell fate determination

Crypt stem cell self-renewal
(FGFR3-mediated signals) limited
by BMPRIA-mediated signals

Skin Development

- Skin cell fate determination
(BMP4) versus alternative neural
cell fate (FGFs)

Anterior-Posterior Axis

posteriorizing (FGFs) versus
anteriorizing (BMPs)

Figure 2. Examples of BMP-FGF Interaction throughout the Developing Body. BMPs and FGFs interact
in (the development of) various tissues, such as the brain, lung, heart, gut, skin, eyes, teeth, kidneys,
and the skeleton. Examples of a synergistic nature are flanked by a green indicator, antagonistic
examples are flanked by a red indicator. (cartoon provided by www.motifolio.com).

4.6. Connecting Two Signaling Pathways

With the BMP and FGF families having as many members and functions as they have,
their molecular interaction with each other can hardly be generalized for all developmental stages
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and tissues. Most observations are context-dependent, and many examples of that have been detailed
above. One is BMP2/FGEF2 synergism in ossification, and underlying mechanisms entail influencing
members of each other’s signaling pathway, as well as regulating shared target genes: BMP2 and
FGF2 positively regulate each other’s expression in murine bone [29,39], and FGF2 can increase
BMP receptor expression in sutures as well [90]. FGF2 and BMP2 both have a positive influence on
Runx2 expression, and mice homogeneously lacking FGF2 show impaired nuclear accumulation of
BMP2-induced Runx2. Applied research approaches try to exploit this by using both factors in grafts
for bone repair [93-95], although the success may depend on both the sequence of their application,
and their respective concentrations [92,93,96]. It appears that conditions have to be “just right” to allow
synergism. Otherwise, antagonistic effects take over: In proliferating chondrocytes, BMP signaling
inhibits FGFR1 expression [28], and FGFR3 activity in turn down-regulates expression of the BMP
type I receptor BMPRIA [33]; FGF2 increases Noggin and SMADG6 expression during the formation of
ectopic bone formation, thus antagonizing BMPs [92], and reduces BMPRIA or IB expression in the
growth plate of mice correlates with elevated levels of FGFR1, FGF4, and FGFS8 [20,97].

Only a few interactions have been encountered multiple times and can be considered more
general: For example, Erk and other MAP kinases are known to phosphorylate SMAD1/5 proteins in
their linker region, hindering their translocation into the nucleus and promoting their degradation.
The kinases JNK, p38 and Erk may also cause proteosomal degradation of SMAD4 [8,98,99].

4.7. Cell Surface Integration

All examples described here have in common that they study BMP-FGF connections in terms of
their effectors (e.g.,, SMADs or MAPKSs), and/or in terms of transcriptional changes of selected genes.
If and how BMPs and FGFs influence each other on the cell surface remains mainly hypothetical,
although they share important binding partners in the extracellular matrix (ECM). Most FGFs and
many (SMAD1/5/8-inducing) BMP ligands are paracrine factors because of their ECM association,
and heparan sulfates are the mediators (see Figure 1).

Heparan sulfates (HS) represent a heterogeneous group of sulfated disaccharide chains, anchored
to the cell membrane or the extracellular matrix (ECM) (or, in some cases, in secretory vesicles)
via HS proteoglycans (HSPGs) [100]. As stated above, they are essential co-receptors to most
FGFs, binding both the ligand and the receptor to mediate signal complex formation. In addition,
they shield FGF ligands from enzymatic degradation, can establish FGF ligand reservoirs in the
ECM and regulate their diffusion and endocytosis [101]. They do not seem to be essential for the
direct ligand:receptor inteactions of BMPs, but they nonetheless modulate BMP signaling in various
ways: They may increase local ligand concentrations, facilitate short distance diffusion (by repeated
dissociating and re-associating) or trap BMP antagonists, and thereby enhance BMP signals; or they
may reduce such signals by immobilizing ligands or antagonist-ligand pairs or by elevating ligand
clearance via endocytosis [100,102]. All these properties make HSPGs indispensable for gradient
formation of both FGFs and BMPs and hence their morphogen functions. HSPGs modulate the speed
and the range of ligand movement in the ECM, depending on their type and their modifications
and on the excess of HSPG shedding (the cleaving of ligand-binding HS fragments from the core
protein) [101,103]. Unfortunately, competition of morphogens for HSPG binding in the context
of gradient formation has been hardly studied, although one research team has suggested that
spatiotemporally regulated modifications of HSPGs may alter ligand-specificity and thereby facilitate
“morphogenic switches” [104]. If and how certain HSPG modifications influence BMP-FGF interaction
by preferentially supporting signaling via one ligand family over the other remains to be elucidated.

5. Conclusions

If interactions between members of the FGF and BMP families are as diverse and
context-dependent as described above, how do we approach finding more general connections
between them?
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To identify common mechanisms, combining models that reduce the number of influencing
parameters seems to be a good start. In drosophila melanogaster, the growth factor families are
much smaller, providing the complexity of an entire organism without that wide range of ligands
and receptors. Cell culture models also provide a reduced set of ligands and receptors; and make
spatiotemporal parameters both optional and controllable.

Further, mathematical models are a great tool to compare what is possible to what is observed.
Before the nature of morphogens was even understood, such models already were potent tools to
describe morphogen gradients as basis for the formation of complex anatomy [105]. A more recent
example looks at FGF/BMP synergy in the context of the formation of digits. Indeed, the model
was only able to accurately predict digit patterning, as observed in healthy and mutant mice, if BMP
and FGF positively influenced each other’s levels of concentration [106]. FGF/BMP antagonism has
likewise been modelled. In murine brain development, FGF2/8 and BMP4 form opposing shallow
gradients that nevertheless result in a sharp tissue border. By linking observed cell behavior with
mathematical models premising inhibition, a mode of cross-inhibition was proposed that explained
the cells” hypersensitivity to BMP4 in dependence of FGF2, their BMP4 hysteresis and their individual
thresholds (ECsg values) for the induction of different BMP4 targets: In a cross-inhibitory positive
feedback loop, un-specified intermediates in both FGF and BMP signaling cross-inhibit each other,
affecting downstream targets in both signaling cascades in dependence of their inhibitory effectiveness,
their abundance, and their influence on said targets [62].

Certainly, there are examples where downstream components of both pathways are (at least
unilaterally) antagonizing, as exemplified in the inactivation of R-SMADs by Erk-mediated
linker-phosphorylation, or in the inhibition of bHLH factors downstream of FGF2 by ID proteins
downstream of BMP4 [107]. However, more often than not, BMP-FGF interaction is linked by
intermediates operating on the level of transcription. Certainly, this allows for a highly cell
context-dependent result; and it would explain why synergistic and antagonistic effects of these
two growth factor families co-exist in many tissues.

In this context, it is noteworthy that canonical signal transduction via SMADs does not include
signal amplification by repeated phosphorylation steps, as is the case in MAPK signaling. On the
contrary, SMADs, the agents that both transport and execute the signal inside of the nucleus, are also the
ones directly activated by the receptor. Combined with the fast and constitutive dephosphorylation of
SMAD:s in activated cells, this results in a linear, proportional relation of receptor activation and SMAD
phosphorylation. Thus, BMP ligand-induced receptor activation does not “switch on” a response
that is amplified and hence stabilized inside the cell, as is the case for FGF ligand-induced signals,
but rather elicits a readily reversible activated cell state in close relation to BMP receptor activity [7].
These very different ways of signal transduction from underneath the cell surface to the nucleus further
support that primary FGF-BMP interaction happens at the level of transcription.

An interesting additional possibility is the integration at the cell surface, as has been discussed
above. This area of interaction has hardly been explored, but there are indications that it would deserve
to be. Surely, one indicator is the observation that heparan sulfates play such a pivotal role in gradient
formation of both BMPs and FGFs that their influence on morphogen crosstalk is far more likely than
not. Another is the recent description of muscle-specific kinase MuSK as a BMP co-receptor [108].
MuSK is a receptor tyrosine kinase (RTK), just like FGF receptors, but apart from its genuine ligands,
it can also bind to and positively influence signaling for BMPs 2, 4 and 7, independently of its own
kinase activity. It is intriguing to imagine that more ligand-receptor pairs that span two different protein
families may exist. Such cross-overs would open a new chapter of signaling crosstalk mechanisms that
could potentially touch on more than just FGF-BMP interactions.
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