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Abstract: Homologous recombination (HR) is a DNA repair pathway that is deficient in 50% of
high-grade serous ovarian carcinomas (HGSOC). Deficient HR (DHR) constitutes a therapeutic
opportunity for these patients, thanks to poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi;
olaparib, niraparib, and rucaparib are already commercialized). Although initially, PARPi were
developed for patients with BRCA1/2 mutations, robust clinical data have shown their benefit in a
broader population without DHR. This breakthrough in daily practice has raised several questions
that necessitate further research: How can populations that will most benefit from PARPi be selected?
At which stage of Ovarian Cancer should PARPi be used? Which strategies are reasonable to
overcome PARPi resistance? In this paper, we present a summary of the literature and discuss the
present clinical research involving PARPi (after reviewing ClinicalTrials.gov) from a translational
perspective. Research into the functional biomarkers of DHR and clinical trials testing PARPi benefits
as first-line setting or rechallenge are currently ongoing. Additionally, in the clinical setting, only
secondary restoring mutations of BRCA1/2 have been identified as events inducing resistance to
PARPi. The clinical frequency of this and other mechanisms that have been described in preclinics is
unknown. It is of great importance to study mechanisms of resistance to PARPi to guide the clinical
development of drug combinations.

Keywords: Ovarian Cancer; high-grade serous Ovarian Cancer; deficient homologous recombination;
PARP inhibitors; BRCA1; BRCA2; mechanisms of resistance

1. Introduction

Homologous recombination (HR) is an error-free DNA-repair system that is activated in cases of
double-strand damage, such as that induced by ultraviolet light, spontaneous mutations, and some
chemotherapies (e.g., platinum salts) [1]. This pathway acts by building a homology-directed copy of
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the sister chromatid during the S and G2 phases. Breast cancer gene 1 (BRCA1) and, to a lesser extent,
breast cancer gene 2 (BRCA2) play key roles in HR [2]. DNA double-strand breaks (DSBs) can cause
cellular apoptosis if not repaired in time, but BRCA1, in particular, coordinates the repair response
by recruiting several proteins, and ultimately contributes to the maintenance of the genome integrity
and cell survival. In contrast, BRCA2 has a very precise role in the HR by interacting with RAD51
recombinase (RAD51). RAD51 is involved in a very significant step of HR; it is the recombinase
that promotes the invasion of the preserved sister chromatid that serves as a mold to rebuild a copy
with high fidelity. During the S/G2 phases of the cell cycle, RAD51 accumulates at DSBs and forms
microscopically visible subnuclear foci [3].

BRCA1/2 deficiency causes HR impairment and is associated with breast and ovarian
carcinogenesis [2]. Their pathologic germline mutations were described long time ago to be linked
to the hereditary syndrome of breast and Ovarian Cancers. In fact, they are present in 50% of
hereditary high-grade serous Ovarian Cancers (HGSOC), which is the most frequent pathologic
subtype. Truncating somatic mutations affect an additional small proportion of sporadic HGSOCs
(<7%) [4]. However, the most frequent event causing BRCA1 inactivation in sporadic HGSOC is its
promoter hypermethylation (~15%) [5]. Loss of heterozygosity (LOH) usually occurs when one allele
of BRCA1/2 harbours pathologic mutations, leading to total BRCA1/2 inactivation and very low or
undetectable BRCA1/2 expression [6]. In fact, The Genome Cancer Atlas project in Ovarian Cancer
(TGCA-Ov), which is focused on HGSOC, showed that this particular subtype is characterized by
high genomic instability and tumor protein p53 (p53) functional loss in all cases, as well as deficient
HR (DHR) in 50% of cases. This study also identified other defects related to DHR beyond BRCA1/2
alterations, such as mutations or methylations of ATM, BARD1, BRIP1, CHEK1, CHEK2, FANCL,
PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L, ATR, BARD1, NBN, RAD50, FAM175A, and
MRE11A [4].

HGSOCs associated with germinal BRCA1/2 mutations have some common clinical features that
are included under the term “BRCAness phenotype” (or absence of functional BRCA phenotype).
Numerous retrospective studies have described more frequent visceral metastases at the debut of
disease [7]. Strong evidence indicates that BRCA1/2 mutations are associated with improved survival
in HGSOC patients after adjustment for staging [7]. In 2012, Bolton et al. [8] published a pooled
analysis of 1213 patients from 36 different studies, showing five-year overall survival rates (OS) of
36%, 44% and 52% for non-mutated patients, patients with the BRCA1 mutation and patients with
the germinal BRCA2 mutation, respectively. There was a statistically significant survival benefit for
patients with a mutation in either gene relative to non-mutated genes [gBRCA1 mut: hazard ratio (hr)
0.78, 95% CI 0.68–0.89; gBRCA2 mut: hr 0.61, 95% CI 0.50–0.76]. While the best prognosis of these
tumors is hypothesized to be related to increased platinum sensitivity, it cannot be ruled out that
they present different natural histories related to greater lymphocyte infiltration [7]. Moreover, the
published phase I trial of olaparib written by Fong et al. pointed at BRCA1/2 mutated cancers as good
candidates for poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) treatment and attributed the
antitumor activity of these molecules to an effect called synthetic lethality [9].

The family of PARPs catalyzes the addition of polyAPD-ribose groups from the NAD+
dinucleotide to phosphate groups of certain proteins, modifying their cellular function (PARylation).
PARP1 is particularly involved in DNA-repair mechanisms. PARP1 accumulates in single-strand
DNA breaks, contributing to the recruitment of several proteins involved in base-excision repair
(BER), and regulating transcription through histone PARylation. Upon completion of these tasks,
autorybosilation of PARP1 allows its dissociation from DNA [10]. PARPi compete with NAD+, thus
inhibiting PARP catalytic activity, and causing the trapping of PARP molecules (PARP trapping) in
DNA damage points. This latter fact provokes a stop in the replication forks and can induce increased
apoptosis than inhibition of PARP catalytic activity [10,11]. On the whole, PARP inhibition induces the
accumulation of single-strand DNA damage, which, in turn, can result in DSBs. Cells with inactive HR
are not able to repair these DSBs, causing the cell to undergo apoptosis. In the case of HGSOCs with
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BRCA1/2 mutations, this effect is cytotoxic for tumor cells. This mechanism of cell death mediated
by the simultaneous failure of two DNA repair mechanisms has been called “synthetic lethality” [12].
This was the initial basis for the development of PARPi. There are alternative or complementary
hypotheses that aim to explain the mechanism of action of PARPi related to the role of PARP in
the regulation of HR, non homologous end joining (NHEJ), and alternative end joining (A-EJ) [13].
However, these are only partially understood. Nowadays, although PARPi have proved to be useful in
a broader population than exclusively BRCA1/2-mutated patients, these alterations are the strongest
predictive factor of response to PARPi. In addition, since the beginning of the clinical development of
PARPi in the late 2000s, they have obtained several approvals in Ovarian Cancer from drug regulatory
agencies. Future approvals for breast, pancreatic and prostate cancers are expected.

There are several PARPi in development, but only three have been already commercialized: olaparib
(O, first-in-class), niraparib (N), and rucaparib (R). O and R inhibit PARP1, PARP2 and PARP3, while N
only inhibits PARP1 and PARP2. The three molecules inhibit catalytic PARP1 activity with different levels
of potency (IC50 values: O, 1.2 nmol/L; N, 50.5 nmol/L; R, 21 nmol/L) and different capabilities to trap
PARP1 in the replication forks (greater for N) [11]. Clinically, the first trials with O showed high response
rates (at a dose of 400 mg daily) in highly pretreated patients, between 24% and 40% of patients with
BRCA1/2-mutated associated triple-negative breast cancer or HGSOC [9,14,15]. Updated approvals by the
European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) are summarized
in Table 1. O was first approved by FDA as a treatment for relapsed HGSOC associated with germline
BRCA1/2 mutations after progression to three or more previous chemotherapy lines [16]. This approval
is based on a phase II trial with 193 platinum-resistant relapsed patients (or not candidates to retreatment
with platinum salts), in which investigators observed a rate of objective responses of 34% (95% CI: 26–42)
and an OS of 16.6 months [17]. In contrast, in Europe, O was first approved for patients with BRCA1/2
mutated-associated HGSOC as a maintenance treatment following response to platinum salts used for
recurrence [18]. This indication was based on the Nineteen study, a phase II trial that showed an absolute
benefit in the progression-free survival (PFS) of seven months (hr: 0.18, p < 0.0001) in the subgroup of
patients with BRCA1/2 mutations (retrospective preplanned subgroup analyses, n = 136) [19–21]. Recent
publication of the results of the phase III trial SOLO2, including only BRCA1/2-mutated patients, supports
this approval, showing an absolute benefit of nearly 14 months (hr: 0.30, p < 0.0001) [22]. Recently, FDA
granted O with the maintenance indication without molecular selection, based on data from the Nineteen
study showing hr of 0.35, p < 0.001, in the intention-to-treat analyses including patients with or without
BRCA1/2 mutations following response to platinum-based chemotherapy used for relapse treatment
(n = 265). Moreover, EMA has recently given a post-authorization positive opinion on this indication [19].
Confirmatory results from two phase III-IV trials are expected (see below). In addition, N was approved in
Europe and US in the maintenance setting for “all comers” (without molecular selection) [18] based on the
NOVA trial. Its results indicate an absolute PFS benefit of five months in BRCA1/2 wild-type patients (hr:
0.45, p < 0.001), nine months in BRCA1/2 wild-type patients with DHR (hr: 0.38, p < 0.001), and sixteen
months in BRCA1/2-mutated patients (hr: 0.27, p < 0.001) [23]. In 2018, R has also obtained FDA approval
for this same indication, based on results obtained in the ARIEL3 randomized placebo-controlled trial [24].
However, in contrast, its first indication was obtained from the FDA as a monotherapy for relapses or
progression after two or more lines of chemotherapy in patients with BRCA1/2 mutations who are unable
to tolerate further platinum-based chemotherapy. This was based on two phase II studies whose global
analyses showed a response rate of 54% (9% complete) with a median duration of 9 months [16,25,26]. In
May 2018, R has obtained a similar indication from EMA restricted to patients with platinum-sensitive
relapse unable to tolerate further platinum-based chemotherapy. Regarding the toxicity reported in the
three maintenance studies (Nineteen, NOVA and ARIEL3), the most frequent non-hematological grade 3
adverse events were nausea/emesis and fatigue, which occurred in 2 to 4% and 6 to 9% of cases, respectively.
Hematological toxicity is also relevant, but its profile differs among the three drugs: N alters the three series
(20 to 34% of patients with grade 3–4 events), while O and R cause anemia, in particular (17% and 22%
grade 3–4 events, respectively) [19,23,24].
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Table 1. History of PARPi approvals in ovarian cancer.

OLAPARIB NIRAPARIB RUCAPARIB

EMA Jan 2015:
—Maintenance treatment of patients with platinum-sensitive relapsed BRCA-mutated (germline
and/or somatic) HGSOC who are in response to platinum-based chemotherapy
Feb 2018: positive opinion on the extension of marketing authorization of olaparib tablets for
patients regardless of the presence of BRCA1/2 mutations.

Nov 2017:
—Maintenance treatment of patients with
platinum-sensitive relapsed HGSOC who are in
response to platinum-based chemotherapy

May 2018:
—Treatment of adult patients with platinum sensitive, relapsed or
progressive, BRCA mutated (germline and/or somatic) HGSOC, who have
been treated with two or more prior lines of platinum based chemotherapy,
and who are unable to tolerate further platinum based chemotherapy

FDA Dec 2014:
—Treatment after 3 lines of chemotherapy for relapse, in germline BRCA mutated advanced
ovarian cancer
Aug 2017:
—Maintenance treatment of patients with recurrent epithelial Ovarian Cancer, who are in
response to platinum-based chemotherapy.

Oct 2016:
—Maintenance treatment of patients with
platinum-sensitive relapsed HGSOC who are in
response to platinum-based chemotherapy

Dec 2016:
—Treatment of patients with deleterious BRCA mutation (germline and/or
somatic) associated advanced Ovarian Cancer who have been treated with
two or more chemotherapies
Apr 2018:
—Maintenance treatment of recurrent epithelial Ovarian Cancer who are in
response to platinum-based chemotherapy
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In summary, HR is a DNA-repair pathway that is frequently deficient in HGSOC. This constitutes
a therapeutic opportunity for these patients, thanks to PARPi. Although initially these drugs were
developed for patients with BRCA1/2 mutations, robust clinical data showing their benefit in a broader
population without DHR are now available. This breakthrough in daily practice raises many other
unanswered questions that represent opportunities for translational research, such as (1) the selection
of the population that will most benefit from such treatments; (2) the stage of disease that they should
be used; and (3) the formation of strategies overcome resistance to PARPi. Our goal is to discuss each
of these topics from a translational perspective.

2. Open Questions

2.1. Choicing Good Candidates for PARPi

The BRCAness phenotype has been attributed to DHR and it could potentially be extrapolated to
other patients with HR defects other than germinal BRCA1/2 mutations. As stated before, PARPi were
initially developed for germline BRCA-mutated patients under the synthetic lethality hypothesis [27].
In this section, we will summarize which molecular tumor features may indicate sensitivity to PARPi
(Reviewed in Hoppe 2018 [28]).

2.1.1. Somatic BRCA1/2 Mutations

Subsequent published research has suggested a similar prognosis between germline and somatic
BRCA1/2 mutations. Pennington showed that somatic BRCA1/2 mutations have similar positive
impacts on OS and platinum responsiveness as germline BRCA1/2 mutations [19]. Although clinical
trials suggest that somatic and germline mutations have similar predictive roles in the response to
PARPi (ARIEL2 and ARIEL3 trials, Nineteen, NOVA), the body of evidence is small due to the small
proportion of somatic BRCA1/2 mutations. Specifically, the NOVA trial performed an exploratory
analysis with 47 patients that harbored somatic mutations in BRCA1/2 and found that the benefit of N
was identical to that found in patients with germline mutations [hr: 0.27 (95% CI: 0.08–0.90); and hr:
0.27 (95% CI: 0.17–41), respectively] [23]. A current trial involving the use of O as a maintenance drug
after response to retreatment with platinum aims to recruit 54 patients with somatic BRCA1/2-mutated
tumors (ORZORA trial, NCT02476968) [29]. In addition, the impacts of specific BRCA1 or BRCA2
mutations or the absence of BRCA locus-specific LOH on the prognosis and response to PARPi are still
unknown [24,28,30,31].

2.1.2. BRCA1 Promoter Hypermethylation

On the other hand, there is discordant literature regarding the impact of BRCA1-promoter
hypermethylation on HGSOC prognosis. A few retrospective clinical studies have suggested that
low expression of BRCA1, measured either by RNA quantification or by immunochemistry, may
be associated with greater sensitivity to platinum compounds [32,33]. However, the TGCA-Ov
study (where 94% of the patients had received a combination of platinum with taxanes) provided
evidence in favor of different prognosis between tumors with mutations of BRCA1/2 and those with
BRCA1-promoter hypermethylation (similar to BRCA1/2 wild-type tumors, p = 0.69, log-rank test) [4].
To date, the prognostic impact of BRCA1 expression in HGSOC without BRCA1 mutations is still
unclear. This alteration has not been shown to be predictive of long responses to PARPi, and this is
currently being tested in other cancers [28].

2.1.3. Mutations in HR Genes in BRCA1/2 Wild-Type Patients

As stated previously, BRCA1/2 defects are only present in a small portion of patients with HGSOC.
Whether other HR-related genetic alterations present the BRCAness phenotype and response to PARPi
is partly unknown. Kang et al. developed a score based on the expression of 23 genes related to
DNA-repair mechanisms and using data from 511 patients studied in the TCGA-Ov. These 23 genes
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were selected based on a previous literature review and knowledge of the DNA-repair pathways of
the authors. The group of patients with high scores (high expression) had increased five-year OS
(40% vs. 17% in the low-score group). This score proved to be a more reliable prognostic factor than
classical clinical ones in the receiver operating characteristic (ROC) curves (area under the curve (AUC):
0.65 vs. 0.52), and was correlated with response rates and PFS after the first line with platinum [34].
Subsequently, Pennington et al. showed similar prognoses and response rates to platinum salts between
germline BRCA1/2-mutated tumors and those with mutations in ATM, BARD1, BRIP1, CHEK1, CHEK2,
FAM175A, MRE11A, NBN, PALB2, RAD51C, and RAD51D in a retrospective study of 390 samples of
which 31% harbored one of these alterations [35]. These genes have been related to DHR through
assays in-vitro [36,37]. Preliminar clinical data of PARPi efficacy in these patients come from ARIEL3
trial. In this study, mutational status of these and other 17 HR-related genes (apart from BRCA1/2)
was used for stratification. Forty-three patients harboring mutations in these genes were identified and
showed particular sensitivity to rucaparib (28 in the rucaparib arm/15 in the placebo arm). The value
of these defects as predictive factors of response to olaparib is being investigated in the ORZORA trial
(NCT02476968).

2.1.4. Detecting “Genomic Scars”

Another strategy for the identification of tumors with DHR is to detect unique patterns of DNA
damage and repair, the so-called “genomic scar”. Several genomic methods have been investigated
for this purpose, but those based on SNP assays are the most developed [28]. Their objective
is to quantify facts such as allele telomeric imbalance, the percentage of genome-wide LOH and
large-scale transitions, which are hints of genomic abnormalities derived from defects in DNA-repair
mechanisms [38]. The use of any of these scales individually or in combination has led to the
development of different molecular tests to determine the state of HR (deficient or competent).
These tests are performed on paraffin-embedded tissue and have already been used in clinical trials
with PARPi in Ovarian Cancer. The My Choice test (Myriads) used in the NOVA study combines these
three scales and its result is predictive of the response to N in terms of PFS, although all subgroups
of patients largely benefited from this drug, as stated in the Introduction of this article (hazard ratios
ranging from 0.27 in germline BRCA1/2 mutated patients to 0.58 in BRCA1/2 wild-type HR proficient
patients, the latest being an exploratory analysis). The ARIEL2 trial, a phase II trial assessing R
sensitivity in prospectively defined molecular groups, presented the LOH (using a cutoff = 14%) as a
potential biomarker of the response to this drug in patients with platinum-sensitive relapse after one or
more prior platinum chemotherapy lines [26]. However, ARIEL3 failed to validate LOH (cutoff = 14%)
as a predictive biomarker of sensitivity to R in the maintenance setting after platinum for relapses,
showing a hr of 0.44 in the subgroup of BRCA1/2 wild-type patients with high levels of LOH versus
0.58 in the subgroup of BRCA1/2 wild-type patients with low levels, both being preplanned analyses.
On the whole, the results of trials that evaluated N and R in a maintenance setting showed that these
tests are not able to efficiently discriminate between patients who may obtain a significant benefit and
those who may not [39].

2.1.5. Determining HR Real Status

However, the detection of “genomic scars” reflect cellular events that occurred in the past,
rather than the current status of HR. Because DHR can be reversible (i.e., when secondary BRCA1/2
mutations appear) [28], several groups are investigating the development of functional tests based on
the quantification of RAD51 foci in response to DNA damage by means of immunohistochemistry or
immunofluorescence- its absence is a feature of DHR. However, the requirement of fresh tissue makes
their use in daily practice difficult, and there are not available techniques yet [40–43].

The results of the ARIEL3 and NOVA trials, showing that all patients with HGSOC benefit from
PARPi as a maintenance treatment (to a greater or lesser degree), cast doubt on the need for the
aforementioned tests. There are no clear biological explanations for these results, but it is important
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to remark that PARPs are essential enzymes in several cellular functions, some of which are only
partially known [11,44]. However, the determination of HR status could be used to optimize future
therapeutic armamentarium. Learning the biological mechanism of action of PARPi in tumors with
competent HR will contribute to the development of new strategies in this group of patients. In this
sense, very recently, Zimmermann et al. reported their preclinical findings in cell lines in which
clustered regularly interspersed palindromic repeats (CRISPR) technology identified that mutations in
the three genes encoding ribonuclease H2, and thus impaired ribonucleotide excision repair, predicted
in-vitro hypersensitivity to PARPi [45].

2.2. In Which Setting Should PARPi Be Used?

As stated before, PARPi have been approved in different settings by the FDA and EMA [16,18].
Very briefly, maintenance approvals are focused on patients with response to platinum used for relapse,
while treatment approvals are focused on pretreated patients with deleterious BRCA1/2 mutated
epithelial Ovarian Cancer, both for platinum-resistant or sensitive relapses. In summary, data from
large phase III trials have provided strong evidence for the maintenance setting, but the use of PARPi
as a treatment for relapse is based on phase II trials with fewer than 200 patients each. Currently,
results from large trials assessing the role of R, O and N as treatment at relapse are awaited:

- The ARIEL4 trial (NCT02855944), a phase III currently under accrual, aims to compare rucaparib
to chemotherapy as a treatment of Ovarian Cancer relapses in BRCA1/2-mutant patients,
excluding only platinum-refractory patients.

- Olaparib is also being studied in two phase III trials as treatment for platinum-sensitive
relapses (results pending): in SOLO3, O is compared to non-platinum chemotherapy in
germline BRCA1/2-mutated patients who have received at least two prior platinum treatments
(NCT02282020), and in GY004, O is being compared to cediranib plus O and standard
platinum-based chemotherapy (3 arms in total) (NCT02446600).

- Final results of QUADRA (a large phase II with 500 participants), exploring niraparib as a
treatment at relapse in highly pretreated patients, are awaited (NCT02354586) [29].

In summary, the optimal setting is still unknown. Clone selection after chemotherapy is a key
question to be considered, since the use of PARPi as a maintenance therapy after response to platinum
agents or as a treatment for relapses target different population of cells.

On the other hand, PARPi use as maintenance immediately after the first chemotherapy line
is currently being investigated in large randomized trials. Final published results are awaited
from the SOLO1 trial (NCT01844986), which has tested O in germline BRCA1/2-mutated patients.
Noticeably, a very recent press release from AstraZeneca in June 2018 communicated a significant
improvement in PFS (SOLO1 press release 27 June 2018, www.astrazeneca.com). Also, results
from the PAOLA1, a phase III trial testing maintenance with O added to the standard regimen
carboplatin/paclitaxel/bevacizumab in “all-comers”, are pending (NCT02477644). N has been
tested in the PRIMA trial as a maintenance drug after first line chemotherapy (results pending,
NCT02655016). Finally, veliparib (PARPi still in clinical development) is being investigated in a large
phase III trial comparing three arms: carboplatin/paclitaxel versus carboplatin/paclitaxel/veliparib
versus carboplatin/paclitaxel/veliparib followed by veliparib as maintenance (results pending,
NCT02470585) [29]. Therefore, several clinical trial results are pending, but based on the close
relationship between platinum-sensitivity and PARPi sensitivity, it can be hypothesized that using
PARPi at earlier stages of the disease may increase their efficacy and the number of patients who
benefit from them.

2.3. Trying to Overcome Resistance to PARPi

Despite the initial and sometimes prolonged response to PARPi, most patients with HGSOC will
eventually develop resistance to them. The study of the mechanisms of resistance to these drugs can

www.astrazeneca.com
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provide key knowledge to guide their future clinical development and improve their clinical results.
These mechanisms can be conceptually divided into those that restore HR and those that do not.
Only some of them have been identified in the clinic [46].

Among HR-restorative mechanisms, the most featured one are secondary BRCA1/2 mutations.
Much clinical evidence shows the presence of secondary mutations that functionally restore BRCA1
and BRCA2 proteins in platinum-resistant ovarian tumors [46–48], and also in BRCA1/2-mutated
ovarian carcinomas that are resistant to olaparib [7,49]. In a cohort of 26 platinum-resistant
Ovarian Cancer patients carrying BRCA1/2 mutations, 46.2% had secondary mutations [50]. Recently,
secondary mutations in RAD51C and RAD51D were reported in six patients with rucaparib-resistant
Ovarian Cancer [51]. However, the frequency of these events in patients treated with PARPi
is unknown.

Other HR-restorative mechanisms only described in preclinical work affect the imbalance between
HR and NHEJ. Preclinical evidence supports the loss of p53 (P53BP1) expression and the consequent
NHEJ impairment as a mechanism of resistance to PARPi in BRCA1-deficient cell lines [46]. The P53BP1
is a mediator of the NHEJ, which is a DNA damage-repair system that is activated alternatively to HR
through fine cellular regulation depending on RAP80, among others [52]. Bouwman et al. showed
that P53BP1 is essential for sustaining growth arrest induced by deficient BRCA1, given that its
absence allows for the recruitment of RAD51, even in BRCA1-deficient cells, and it can thus restore
HR, according to observations in murine models [53,54]. In addition, its dysfunctional mutated status
has been identified in BRCA1-mutated, PARPi-resistant, murine breast-cancer models [55]. PARPi
resistance related to loss of P53BP1 may be enhanced by mutant BRCA1 stabilization secondary to heat
shock protein 90 (HSP90) [56]. HR can also be restored by the deficiency of other factors that promote
NHEJ, such as JMJD1C [57], REV7 [58,59], or RIF1 [60], or the overexpression of microRNA622 [61].

On the other hand, a decreased expression of PARP enzymes [46], the overexpression of
FANCD2 [62] or SLFN11 inactivation [63] have been postulated as potential not HR-restoring
mechanisms of resistance to PARPi. These and other events have been related to PARPi resistance in
the preclinical setting but clinical validation has not been performed yet. The relationship of these
alterations to platinum resistance has not been well-described to date [7,64].

Regarding PARPi pharmacology, olaparib resistance mediated by the overexpression of
transporter protein genes (such as the transmembrane pump PgP or ABCB1) has been described
in murine models of breast cancer associated with BRCA1 mutations [7]. In a previous study, 8% of
relapsed HGSOC samples overexpressed ABCB1 [50]. These mechanisms are potentially reversible
with the coadministration of PgP inhibitors and migh not be common to other PARPi.

The impact of the above-described mechanisms of resistance to PARPi, in terms of frequency in a
clinical setting, is unknown. Whether they are drug-dependent or class-dependent, and their relevance
according to basal patient characteristics (proficient or deficient HR, for instance) are also unknown in
most cases. Basic and clinical research in this field should provide key information to increase PARPi
efficacy and to guide therapeutic management upon progression to PARPi. At present, the usefulness
of intermittent (on/off) strategies or the sequential use of different PARPi are still undetermined.
Nowadays, clinical research is mainly orientated to potential combinations including PARPi [65], as
will be detailed in the next section.

Finally, some of the presented data questions the value of the platinum-free interval to determine
whether a new treatment with platinum is appropriate after progression to PARPi, as some of the
mentioned mechanisms of resistance may also explain platinum-resistance. However, if we look
at the clinical data from the SOLO2 trial, there is also significant benefit in the time to second
subsequent therapy (median TSST in the olaparib arm not reached versus 18 months in the placebo
arm) [22]. Moreover, rechallenge with PARPi is currently under clinical investigation, either as a
maintenance option after subsequent platinum retreatment (such as the case of OREO trial with
olaparib, NCT03106987) or in combination with other drugs after progression on olaparib (such as
olaparib with cediranib, NCT02340611) [29].
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2.4. Potential Drug Combinations Including PARPi for Ovarian Cancer Patients

With the aim of increasing PARPi efficacy and overcoming their resistance, O, N, R, veliparib, and
talazoparib (another PARPi still under clinical development), are involved in several combination trials.
Main strategies and some relevant results are described in this section. Recruiting trials exploring
different combinations with PARPi in Ovarian Cancer patients (and a representation of those active
trials with results pending) are detailed in Table 2 [29].

2.4.1. Combinations with Chemotherapy

Some chemotherapy agents are potential companions to PARPi due to their ability of inducing
DNA damage, and this area is being increasingly studied (Reviewed in Matulonis 2017 [66]). Selection
of specific drugs can potentiate inhibition of PARP catalytic activity and/or PARP trapping, and specific
combinations may act synergistically or additively. Moreover, overlapping myelosupression may be a
dose limiting toxicity [66].

Combinations with DNA damaging anticancer agents such as platinum compounds or
alkylating agents have been specifically assessed in Ovarian Cancer. Regarding platinum
compounds, two separate trials assessing the feasibility of olaparib or veliparib in combination
with carboplatin/paclitaxel have been reported, with a metronomic and a standard regimen,
respectively [67,68]. Additionally, in a randomized phase II trial, olaparib plus carboplatin
(AUC 4)/paclitaxel followed by olaparib as maintenance significantly improved PFS versus the
chemotherapy doublet alone (AUC 6 for carboplatin), with a hr of 0.51 in the intention-to-treat
population analysis (n = 173, 12.2 vs. 9.6 months), and had an acceptable and manageable tolerability
profile. A prespecified exploratory analyses of BRCA1/2-mutated patients (retrospectively assessed)
showed a hr of 0.21 in the germline BRCA1/2-mutated patients, n = 41) [69]. The authors explained
that one of their aims was to explore the extent by which the addition of olaparib potentiates the
chemotherapy cytotoxic effect. Taking into account the small differences in response rates between
the two arms and the late separation of the PFS curves, they concluded that an additive effect to
the lower carboplatin dose may be suggested, and that the maintenance phase was probably the
key contributor to the observed clinical benefit of the combination. Development of O, N and R as
maintenance therapies has not included immediately prior combination with chemotherapy (during
the treatment phase). Nontheless, as stated before, results from a large phase III trial testing the addition
of veliparib both in the chemotherapy phase and the maintenance phase are awaited (NCT02470585).
However, important myelosupressive toxicity and hypertension were observed with the combination
of carboplatin/pegilated liposomal doxorubicin/bevacizumab/veliparib in a phase I trial [70]. New
strategies such as intermittent administration of PARPi concurrently to chemotherapy are being current
studied [71].

Regarding alkylating agents, the addition of veliparib has not proved to provide any benefit to
cyclophosphamide when treating platinum-resistant relapsed Ovarian Cancers in germline BRCA1/2
mutated patients [72], and results are not available from its combination with temozolamide
(NCT00526617, NCT01113957).

On the other hand, some preclinical studies suggest a synergistic effect between PARPi and
topoisomerase I inhibitors, due to enhanced inhibition of both enzymes [73]. In this sense, published
results of a phase I testing the combination of veliparib and irinotecan showed acceptable tolerability
and 19% of responses, correlating with specific changes in the performed pharmacodynamics
studies [74].

Also combinations of PARPi with topoisomerase II inhibitors (liposomal doxorubicin) and
cytotoxic agents with different mechanism of action are currently being tested (mirvetuximab
soravtansine or lurbinectidine, see Table 2).
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Table 2. Current recruiting trials combining PARPi with other drugs in Ovarian Cancer (and some examples of active trials not recruiting with pending results).

Combinational Drug PARPi NCT Title Trial Status

Carboplatin and Paclitaxel Veliparib NCT02470585
Veliparib With Carboplatin and Paclitaxel and as Continuation Maintenance Therapy in Subjects with Newly
Diagnosed Stage III or IV, High-grade Serous, Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer
(phase III)

Active, not recruiting (pending results)

Mirvetuximab Soravtansine Rucaparib NCT03552471 Mirvetuximab Soravtansine and Rucaparib Camsylate in Treating Participants with Recurrent Endometrial,
Ovarian, Fallopian Tube or Primary Peritoneal Cancer. Recruiting

Lurbinectidine Olaparib NCT02684318 Study to Evaluate PM01183 in Combination with Olaparib in Advanced Solid Tumors. Recruiting

Liposomal Doxorubicin Olaparib NCT03161132 Resistant Ovarian Cancer, Olaparib and Liposomal Doxorubicin (ROLANDO). Recruiting

Floxuridine Veliparib NCT01749397 Veliparib and Floxuridine in Treating Patients with Metastatic Epithelial Ovarian, Primary Peritoneal Cavity, or
Fallopian Tube Cancer.

Active, not recruiting
(pending results)

Onalespib Olaparib NCT02898207 Olaparib and Onalespib in Treating Patients with Solid Tumors That Are Metastatic or Cannot Be Removed by
Surgery or Recurrent Ovarian, Fallopian Tube, Primary Peritoneal, or Triple-Negative Breast Cancer. Recruiting

AZD6738 Olaparib NCT03462342 Combination ATR and PARP Inhibitor (CAPRI) Trial with AZD6738 and Olaparib in Recurrent Ovarian Cancer. Recruiting

Adavosertib Olaparib NCT03579316 Adavosertib With or Without Olaparib in Treating Participants with Recurrent Ovarian, Primary Peritoneal, or
Fallopian Tube Cancer. Not yet recruiting

Bevacizumab Niraparib NCT02354131 Niraparib Versus Niraparib-bevacizumab Combination in Women with Platinum-sensitive Epithelial
Ovarian Cancer.

Accrual completed
(Part2 pending results)

Bevacizumab Niraparib NCT03326193 Phase 2, A Study of Niraparib Combined with Bevacizumab Maintenance Treatment in Patients with Advanced
Ovarian Cancer Following Response on Front-Line Platinum-Based Chemotherapy. Recruiting

Bevacizumab Rucaparib NCT03462212
Trial of Carboplatin-Paclitaxel-Bevacizumab vs Carboplatin-Paclitaxel-Bevacizumab-Rucaparib vs
Carboplatin-Paclitaxel-Rucaparib in Patients with Advanced (Stage III B-C-IV) Ovarian, Primary Peritoneal and
Fallopian Tube Cancer. (MITO25) (NOTE: rucaparib only during the maintenance phase).

Recruiting

Cediranib Olaparib NCT02889900 Efficacy and Safety Study of Cediranib in Combination with Olaparib in Patients with Recurrent Platinum-Resistant
Ovarian Cancer. Recruiting

Cediranib Olaparib NCT02340611 A Study of Cediranib and Olaparib at the Time Ovarian Cancer Worsens on Olaparib. Completed accrual (pending results)

Cediranib Olaparib NCT03278717 Study Evaluating the Efficacy of Maintenance Olaparib and Cediranib or Olaparib Alone in
Ovarian Cancer Patients. Not yet recruiting

Cediranib Olaparib NCT02681237 A Study of Cediranib and Olaparib at Disease Worsening in Ovarian Cancer. Recruiting

Cediranib Olaparib NCT03117933 Olaparib +/− Cediranib or Chemotherapy in Patients with BRCA Mutated Platinum-resistant Ovarian Cancer. Recruiting

Cediranib Olaparib NCT03314740 Best Approach in Recurrent-Ovarian-Cancer-with Cediranib-Olaparib (BAROCCO). Recruiting

Cediranib Olaparib NCT02446600 Olaparib or Cediranib Maleate and Olaparib Compared with Standard Platinum-Based Chemotherapy in Treating
Patients with Recurrent Platinum-Sensitive Ovarian, Fallopian Tube, or Primary Peritoneal Cancer (phase III). Active, not recruiting (pending results)

Everolimus Niraparib NCT03154281 Evaluation of the Safety and Tolerability of Niraparib With Everolimus in Ovarian and Breast. Recruiting

Copanlisib Niraparib NCT03586661 Niraparib and Copanlisib in Treating Participants with Recurrent Endometrial, Ovarian, Primary Peritoneal, or
Fallopian Tube Cancer. Recruiting

Buparlisib or Alpelisib Olaparib NCT01623349 Phase I Study of the Oral PI3kinase Inhibitor BKM120 or BYL719 and the Oral PARP Inhibitor Olaparib in Patients
with Recurrent Triple Negative Breast Cancer or High Grade Serous Ovarian Cancer.

Active, not recruiting
(partially pending results)

Vistusertib or AZD5363 Olaparib NCT02208375
A Phase Ib Study of the Oral PARP Inhibitor Olaparib With the Oral mTORC1/2 Inhibitor AZD2014 or the Oral
AKT Inhibitor AZD5363 for Recurrent Endometrial, Triple Negative Breast, and Ovarian, Primary Peritoneal, or
Fallopian Tube Cancer.

Active, not recruiting
(pending results)

TSR-042 Niraparib NCT03602859 A Phase 3 Comparison of Platinum-Based Therapy With TSR-042 and Niraparib Versus Standard of Care
Platinum-Based Therapy as First-Line Treatment of Stage III or IV Nonmucinous Epithelial Ovarian Cancer. Not yet recruiting
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Table 2. Cont.

Combinational Drug PARPi NCT Title Trial Status

Atezolizumab Niraparib NCT03598270 Platinum-based Chemotherapy with Atezolizumab and Niraparib in Patients with Recurrent
Ovarian Cancer (ANITA). Recruiting

Pembrolizumab Niraparib NCT02657889 Niraparib in Combination with Pembrolizumab in Patients with Triple-negative Breast Cancer or
Ovarian Cancer (TOPACIO).

Active, not recruiting
(partially pending results)

Nivolumab Rucaparib NCT03522246 A Study in Ovarian Cancer Patients Evaluating Rucaparib and Nivolumab as Maintenance Treatment Following
Response to Front-Line Platinum-Based Chemotherapy (ATHENA). Recruiting

Avelumab Talazoparib NCT03642132 Avelumab and Talazoparib in Untreated Advanced Ovarian Cancer (JAVELIN OVARIAN PARP 100). Recruiting

Durvalumab & Tremelimumab Olaparib NCT02953457 Olaparib, Durvalumab, and Tremelimumab in Treating Patients with Recurrent or Refractory Ovarian, Fallopian
Tube or Primary Peritoneal Cancer with BRCA1 or BRCA2 Mutation. Recruiting

Tremelimumab Olaparib NCT02571725 PARP-inhibition and CTLA-4 Blockade in BRCA-deficient Ovarian Cancer. Recruiting

MEDI4736 Olaparib NCT02734004 A Phase I/II Study of MEDI4736 in Combination with Olaparib in Patients with Advanced Solid Tumors. Recruiting

MEDI4736
cediranib Olaparib NCT02484404

Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination with Olaparib
and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple Negative Breast, Lung,
Prostate and Colorectal Cancers.

Recruiting

Tsr-042
Bevacizumab Niraparib NCT03574779 Phase 2 Multicohort Study to Evaluate the Safety and Efficacy of Novel Treatment Combinations in Patients with

Recurrent Ovarian Cancer (OPAL): tsr42, BEVA. Not yet recruiting

INCB057643 Rucaparib NCT02711137 Open-Label Safety and Tolerability Study of INCB057643 in Subjects with Advanced Malignancies. Active, not recruiting

Selumetinib Olaparib NCT03162627 Selumetinib and Olaparib in Solid Tumors. Recruiting
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2.4.2. Combinations with Selective DNA Damage-Repair Inhibitors

Combination of PARPi with targeted agents that negatively influence HR could overcome
HR-restoration and enhance PARPi efficacy in HR proficient tumors. The underlying rationale for these
combinations is again the concept of synthetic lethality, this time chemically induced: by concurrently
blocking alternative DNA damage-repair pathways, cancer cells become unviable [75,76]. This strategy
could therefore sensitize primary or acquired (upon restoration) HR proficient tumors to PARPi.
Currently studied companions are inhibitors of HSP90 (onalespib), WEE1 (Adavosertib), ATM/ATR
(AZD6738), and antiangiogenic agents (cediranib, bevacizumab) (see Table 2).

The ATM-CHK2 pathway and the ATR/CHK1/WEE1 pathway have a key role in cell-cycle
regulation. They are targets of cell-cycle checkpoints inhibitors, which abrogate S and G2 arrests and
therefore impair normal DNA-damage repair before mitosis is completed [77]. Clinical results from
their combinations with PARPi are awaited.

Hypoxia induced by antiangiogenic agents seem to downregulate BRCA1/2 and RAD51 in cancer
cells [78,79]. Remarkably, cediranib (a VEGFR3 inhibitor) has already shown very positive results
in combination with olaparib in a phase II trial with 90 patients with recurrent platinum-sensitive
HGSOC tumors, particularly in those BRCA1/2 wild-type. This combination showed 17.7 months
in PFS compared to 9 months with olaparib alone in the intention-to-treat population, while a
post-hoc exploratory analyses showed 16.5 and 5.7 months, respectively, in BRCA1/2 wild-type
patients [80]. This result has led to a plethora of trials assessing different combinations of a PARPi and
an antiangiogenic agent.

Other potential druggable targets are RAD51 [81,82], RAD52 [83,84] and proteins involved
in DNA-damage repair pathways other than HR, such as polymerase-θ (Polθ) involved in
microhomology-mediated end joining (MMEJ, an error-prone DDR pathway hyperactivated in DHR
cells) [85,86].

2.4.3. Combinations with PI3K Pathway Inhibitors

Combinations with inhibitors of PI3K or mTORC1/2 are also being investigated (see Table 2).
The rationale for this strategy is the observed preclinical synergistic activity of this combination in
murine models of breast cancer (either BRCA1-related or sporadic triple-negative) [87]. Taking into
account that up to 45% of HGSOC patients present deregulation of this pathway [4], this strategy
is of high interest. Published results of a phase I trial combining BKM120 and olaparib reported
grade 3 depression, transaminitis and hyperglycemia as DLTs of BKM120, though the combination
was feasible [88]. Recommended phase II dose of AZ5363, an AKT inhibitor, for combining with
olaparib has been recently communicated [89]. Currently ongoing trials assessing these combinations
are detailed in Table 2.

2.4.4. Combinations with Immunotherapies

The increased number of neoantigens released after PARPi-induced tumor cell apoptosis could
facilitate immunoresponse against the tumor. Moreover, immunomodulatory effects of PARPi
have been observed in vitro [90]. This serves as rationale for testing combinations of PARPi and
immunotherapies. Of note, preliminary results from the recurrent Ovarian Cancer cohort included in
TOPACIO/Keynote-162 (NCT02657889) trial were recently reported in ASCO. This phase 1/2 study
of niraparib + pembrolizumab showed 25% ORR in the 39 platinum-resistant patients and 45% of
objective response rates in BRCA1/2-mutant patients [91]. Several different combinations are under
accrual (see Table 2).

3. Conclusions

DHR is present in approximately 50% of HGSOC. Patients with these tumors exhibit better
prognose than those with competent HR, as well as prolonged responses to PARPi, due to the
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mechanism of action of these drugs. Therefore, DHR constitutes a therapeutic opportunity thanks to
PARPi. Although initially, these drugs were developed for patients with BRCA1/2 mutations, robust
clinical data showing their benefit in a broader population without DHR are now available.

This breakthrough in daily practice has raised several clinical questions: How can populations
that will most benefit from PARPi be selected? At which stage of Ovarian Cancer should PARPi be
used? What clinical strategies could overcome resistance to PARPi? Which strategies are reasonable
after progression to PARPi?

From the authors’ perspective, this scenario represents a great opportunity for translational
research. On the one hand, learning the impact of specific BRCA1 or BRCA2 mutations and developing
functional tests of HR status will help to define the most PARPi sensitive population. Secondly,
featuring differences between cell clones present at relapse and those selected under chemotherapy
pressure may impact on a differential clinical development for the treatment or maintenance setting.

The study of the mechanisms of resistance to PARPi is also highly interesting. Learning
PARPis’ mechanism of action in HR proficient tumors (a fact already proven in phase III trials)
while acknowledging that HR-restoration is a known mechanism of resistance is an intriguing question.
The frequency of the above-described mechanisms of resistance to PARPi in a clinical setting is
unknown. Outstandingly, the field of potential combinations is currently under extensive clinical
development. Translational research on the underlying mechanisms of action of such combinations is
of high importance.

In conclusion, this is a field in which quick clinical drug development and translational research
may act synergistically to improve strategies for disease control and eventually patients’ outcomes.
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