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Abstract: The requirement of innovative big data analytics has become a critical success factor
for research in biological psychiatry. Integrative analyses across distributed data resources are
considered essential for untangling the biological complexity of mental illnesses. However, little is
known about algorithm properties for such integrative machine learning. Here, we performed a
comparative analysis of eight machine learning algorithms for identification of reproducible biological
fingerprints across data sources, using five transcriptome-wide expression datasets of schizophrenia
patients and controls as a use case. We found that multi-task learning (MTL) with network structure
(MTL_NET) showed superior accuracy compared to other MTL formulations as well as single task
learning, and tied performance with support vector machines (SVM). Compared to SVM, MTL_NET
showed significant benefits regarding the variability of accuracy estimates, as well as its robustness to
cross-dataset and sampling variability. These results support the utility of this algorithm as a flexible
tool for integrative machine learning in psychiatry.
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1. Introduction

Biological research on psychiatric illnesses has highlighted the scale of investigations required to
identify reproducible hallmarks of illness [1,2]. In schizophrenia, collaborative analysis of common
genetic variants has exceeded 150,000 subjects [3], demonstrating the challenges tied to low-effect
sizes of individual variants, large biological and clinical heterogeneity, and genetic complexity.
Not surprisingly, these challenges are also found in other mental illnesses [4] and do not seem to be
modality specific, as analysis of neuroimaging data, for example, faces similar problems [5,6].

The combined “mega-analysis” of data across cohorts and modalities has advantages compared
to the more traditional meta-analysis [4,7], as it makes data amenable for a broader spectrum of
computational analyses and allows consideration of confounders across studies. There is growing
consensus that advanced computational strategies are required to extract biologically meaningful
patterns from these data sources. Beyond functional analysis, a particular focus is on machine
learning, which, in other areas, has shown substantial success in integrating weak signals into accurate
classifiers [8]. In addition to potential clinical use of such classifiers, the discovery of robust biological
patterns may uncover new insights into etiological processes. However, the increasing scale and
complexity of big data in psychiatry requires careful evaluation of the most suitable computational
strategies. A particularly intuitive and very timely problem is the optimal integration of multi-cohort
data, where simple concatenation of datasets may give suboptimal results, and even more so when
integration is performed across modalities.
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The application of machine-learning techniques on biological problems in psychiatry has already
yielded impressive results, including on the prediction of genetic risk, the identification of biomarker
candidates, or the exploration of etiological mechanisms [9]. For example, the use of a Bayesian
approach for the incorporation of linkage disequilibrium (LD) information during polygenic risk
score determination led to a 5% improvement of accuracy in a large schizophrenia dataset [10].
In a study exploring the molecular basis of psychiatric comorbidity, an iterative LASSO approach was
used for cross-tissue prediction and identified a schizophrenia expression signature that predicted
a peripheral biomarker of T2D [11]. Beyond the analysis of individual data modalities, several
machine-learning strategies have been developed for integrative multimodal analysis. For example,
a study focusing on the IMAGEN cohort [12] applied an elastic net model to explore information
patterns linked to binge drinking across multiple domains, including brain structure and function,
personality traits, cognitive differences, candidate gene information, environmental factors, and life
experiences. Similarly, another study [13] explored the inherent data sparsity of neuroimaging and
psychiatric symptom data, and successfully stratified subjects using sparse canonical correlation
analysis. The study found four dimensions of psychopathology with different patterns of connectivity.
In the present study, we were particularly interested in multi-task learning (MTL), which aims to
improve generalizability by simultaneously learning multiple tasks (such as case-control associations
in different datasets) and these learning processes exchange information to achieve a globally optimal
solution [14]. Historically, MTL was developed as an extension of neural networks [14], and has
since been used across data-intensive research areas, including biomedical informatics [15–20], speech
and natural language processing [21,22], image processing and computer vision [23,24], and web
based applications [25,26]. In psychiatric research, MTL has been applied for integrating measures
of cognitive functioning and structural neuroimaging [27], as well as for improved fMRI pattern
recognition [28]. In other research fields, MTL approaches have been proposed to combine different
sources of biological data, including the linking of MRI or expression with genetic data [29,30], as well
as the integrative analysis of multi-cohort expression data [31].

In the present study, we used MTL to differentiate schizophrenia patients from controls across
multiple transcriptome-wide expression datasets. We hypothesized that MTL is particularly suited for
this task, since it allows the consideration of different cohorts as separate classification tasks. As MTL
aims to identify predictive patterns that are shared across tasks, it should uncover expression patterns
that are biologically reproducible across cohorts. This may result in better and biologically more
relevant classifiers compared to those derived from conventional single task learning (STL), which
may be unduly influenced by strong signals present in individual cohorts. To test this, we performed
a comparative analysis of different MTL and STL approaches in five transcriptome-wide datasets of
schizophrenia brain expression. A ‘leave-dataset-out’ procedure was applied to explore and compare
the generalizability of the models, with specific focus on classification accuracy, and variability thereof,
as well as model sensitivity to cross-dataset and sampling variability.

2. Results

2.1. Accuracy Comparison Between MTL and STL

Figure 1 shows a comparison of average classification accuracies when four out of five datasets
were used for training and the remaining dataset for testing. The distributions of accuracies are
shown for 10 repetitions of the classification procedure to assess the variability caused by parameter
tuning via cross-validation. With an average accuracy of 0.73, MTL_NET outperformed all other
methods, followed by SVM, which had a marginally inferior accuracy of 0.72. Moderate accuracies
were observed for MTL_Trace (0.69), MTL_L21 (0.66) and RF (0.68). The sparse logistic regression
performed worst (0.64). As an extension of MTL_NET and MTL_L21, respectively, MTL_SNET (0.71)
and MTL_EN (0.66) achieved similar accuracies to their original algorithms. In the following analysis,
we focused on the comparison of MTL_NET and SVM as representatives of MTL and STL, respectively.
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learning algorithms. 

 

Figure 2. Distribution of classification accuracies and their standard errors across different numbers 

of training datasets. The Figure shows the mean (a) and standard error (b) of classification accuracies 

obtained for different numbers of training datasets (��). Performance was evaluated from the test 

Figure 1. Predictive performance comparison between eight algorithms. The ‘leave-dataset-out’
procedure was used for comparison. Four out of five datasets were combined for training, and then
the model was tested on the remaining dataset. The distribution of accuracy estimates indicated the
variation of parameter selection across 10 repetitions. The boxplots in gray denote the multi-task
learning algorithms.

In Figure 1, the standard error of accuracies for SVM (0.011) was slightly smaller than that for
MTL_NET (0.012), indicating that SVM might be more robust regarding parameter selection. A possible
reason was that SVM obtained higher statistical power by comparing cases and controls across datasets.
In contrast, MTL_NET derived transcriptomic signatures using cases and controls within datasets,
limiting the statistical power.

2.2. Dependency of Classification Performance on the Number of Training Datasets

We performed a side-by-side comparison of MTL_NET and SVM to explore the dependency
of classification performance on the number of available training datasets. Figure 2a shows that
increasing accuracy was observed for both MTL_NET and SVM with increasing numbers of training
datasets. Notably, MTL_NET only outperformed SVM at nd = 4 (four datasets used for training),
suggesting that MTL required a higher dataset number to identify a reproducible biological pattern.
However, we observed that the variation of accuracies for MTL_NET substantially decreased with
increasing numbers of training datasets (Figure 2b), which was not the case for SVM. This suggested
that MTL_NET was more conservative in that accuracy was not driven by highly successful prediction
on an individual test set, but by improved predictability observed for all test sets.

Int. J. Mol. Sci. 2018, 19, 3387 3 of 15 

 

In Figure 1, the standard error of accuracies for SVM (0.011) was slightly smaller than that for 

MTL_NET (0.012), indicating that SVM might be more robust regarding parameter selection. A 

possible reason was that SVM obtained higher statistical power by comparing cases and controls 

across datasets. In contrast, MTL_NET derived transcriptomic signatures using cases and controls 

within datasets, limiting the statistical power. 

2.2. Dependency of Classification Performance on the Number of Training Datasets  

We performed a side-by-side comparison of MTL_NET and SVM to explore the dependency of 

classification performance on the number of available training datasets. Figure 2a shows that 

increasing accuracy was observed for both MTL_NET and SVM with increasing numbers of training 

datasets. Notably, MTL_NET only outperformed SVM at nd = 4 (four datasets used for training), 

suggesting that MTL required a higher dataset number to identify a reproducible biological pattern. 

However, we observed that the variation of accuracies for MTL_NET substantially decreased with 

increasing numbers of training datasets (Figure 2b), which was not the case for SVM. This suggested 

that MTL_NET was more conservative in that accuracy was not driven by highly successful 

prediction on an individual test set, but by improved predictability observed for all test sets. 

 

Figure 1. Predictive performance comparison between eight algorithms. The ‘leave-dataset-out’ 

procedure was used for comparison. Four out of five datasets were combined for training, and then 

the model was tested on the remaining dataset. The distribution of accuracy estimates indicated the 

variation of parameter selection across 10 repetitions. The boxplots in gray denote the multi-task 

learning algorithms. 

 

Figure 2. Distribution of classification accuracies and their standard errors across different numbers 

of training datasets. The Figure shows the mean (a) and standard error (b) of classification accuracies 

obtained for different numbers of training datasets (��). Performance was evaluated from the test 

Figure 2. Distribution of classification accuracies and their standard errors across different numbers of
training datasets. The Figure shows the mean (a) and standard error (b) of classification accuracies
obtained for different numbers of training datasets (nd). Performance was evaluated from the test
datasets not used for training. The variation of the boxplot was due to the sampling variability
during cross-validation.
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2.3. Consistency and Stability of Trained Models

Figure 3a,b show that, in terms of vertical and horizontal consistency, MTL_NET outperformed
SVM, independently of the number of training datasets. This indicated that similar discriminative
patterns of genes were identified by MTL across training datasets, and implied strong robustness
against cross-dataset variability. In particular, the superior performance of vertical consistency
for MTL_NET showed that this algorithm was less sensitive to the small numbers of training
datasets compared to SVM. Table 1 shows the mean consistency (both horizontal and vertical)
across bootstrapping samples. Compared to SVM, MTL_NET achieved a higher mean consistency
by approximately 1.6% for horizontal and 2.2% for vertical consistency. Notably, the success rate
of consistency was 100%, independent of the number of training sets, showing that MTL_NET
models consistently identified higher transcriptomic profile robustness across bootstrapping samples
than SVM.
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Figure 3. Horizontal and vertical model consistency. To analyze the consistency of a given
machine-learning algorithm against the cross-dataset variability, we quantified the horizontal (a) and
vertical (b) model consistency for different numbers (nd) of training datasets. Specifically, horizontal
consistency quantified the similarity between models trained using the same number of datasets, and
vertical consistency quantified the pairwise similarity of models, where one was trained using all
datasets and the other was trained using less datasets. Stratified 100-fold bootstrapping procedure was
applied to quantify the variation of the consistency.

Table 1. Mean consistency, stability, and success rate across the number of training sets, nd.

MTL_NET/SVM nd = 2 nd = 3 nd = 4 nd = 5

Horizontal consistency 0.26/0.24 0.39/0.37 0.51/0.49 -
Vertical consistency 0.22/0.21 0.35/0.33 0.49/0.46 -

Stability 0.64/0.63 0.65/0.64 0.65/0.64 0.654/0.645
Success rate (horizontal consistency) 1 1 1 -

Success rate (vertical consistency) 1 1 1 -
Success rate (stability) 1 1 1 1

To further identify the robustness of models against sampling variability, we quantified the
algorithms’ stability. In Figure 4, across the number of training datasets, nd, the increasing trend
of stability demonstrated that both MTL_NET and SVM gained more robustness against sampling
variability with an increasing number of subjects used for training. However, MTL_NET demonstrated
higher stability than SVM independently of the number of training datasets (Figure 4). The mean
stability across models also supported the result (Table 1). Moreover, the mean stability for MTL_NET
was 1.2% higher than SVM (100% success rate of stability across all nd, Table 2).
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Figure 4. Stability comparison. The stability quantified the robustness of an algorithm against sampling
variability. For each nd, stability was computed as the pairwise similarity of models trained from two
given bootstrap samples. The stability was then averaged across bootstrap samples. In the Figure,
the distribution of the stability was due to the different combination of training datasets given, nd.

We did not perform comparative functional analysis of markers identified by the two algorithms,
since marker sets were quite similar. For example, using all five datasets for training, the average
similarity over all bootstrapping samples was 98.75%, suggesting that similar functional implications
would be derived for these algorithms.

3. Discussion

The present study provides a comparative evaluation of using MTL for integrative machine
learning, compared to classical, single task learning in five transcriptome-wide datasets of
schizophrenia brain expression. Overall, MTL showed similar accuracy, albeit with lower variability,
compared to STL. Accuracy estimates varied by up to approximately 10% between algorithms,
suggesting different sensitivities of algorithms to cross-dataset heterogeneity as well as sampling
variability. Among all MTL formulations, MTL_NET was most predictive. This was likely due to
the fact that it harmonized algorithms across tasks with respect to both predictor weight and sign of
diagnosis association, resulting in biologically plausible predictive patterns. In contrast, MTL_L21
ignores the sign of association and MTL_Trace improves models’ correlation in each subspace, but
failed to modulate the cross-subspace correlation. Contrary to the usual assumption that simpler
models show improved generalizability [32], a sparse version of MTL_NET (MTL_SNET) did not
improve the prediction. This may be due to the fact that the sparse model was trained by constructing
a solution tree among an unlimited number of optimal solution trees. Although these solution trees
have similar performance on the training dataset, they may show differently predictive ability on a
cross-modality test dataset because the “independent and identically distributed (i.i.d)” assumption
may not hold. MTL_NET (as well as SVM) solves a strictly convex optimization problem, resulting
in a uniform solution in the entire feature space, which may be equally effective when tested on
independent test data.

The higher consistency and stability of MTL_NET implied that a set of similar differentially
expressed genes were identified for multiple training datasets. In addition, these genes demonstrated
higher predictability and robustness against study-specific effects, which is particularly important for
data integration in multi-modal analyses, such as the integrative analysis of genetic and expression
data [33] or the analysis of shared markers across multiple comorbid conditions [34–36].
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Table 2. Overview of demographic details. Values are shown as mean ± sd.

GSE12679 GSE35977 GSE17612 GSE21935 GSE21138

Reference [37] [38] [39] [40] [41]
n SZ 11 50 22 19 29
n HC 11 50 22 19 29

age SZ 46.1 ± 5.9 42.4 ± 9.9 76 ± 12.9 77.6 ± 11.4 43.3 ± 17.3
age HC 41.7 ± 7.9 45.5 ± 9 68 ± 21.5 67.7 ± 22.2 44.7 ± 16.1

sex SZ (m/f) 7/4 37/13 16/6 11/8 23/6
sex HC (m/f) 8/3 35/15 11/11 10/9 24/5

PMI SZ 33 ± 6.7 31.8 ± 15.4 6.2 ± 4.1 5.5 ± 2.6 38.1 ± 10.8
PMI HC 24.2 ± 15.7 27.3 ± 11.8 10.1 ± 4.3 9.1 ± 4.3 40.5 ± 14

brain pH SZ NA 6.4 ± 0.3 6.1 ± 0.2 6.1 ± 0.2 6.2 ± 0.2
brain pH HC NA 6.5 ± 0.3 6.5 ± 0.3 6.5 ± 0.3 6.3 ± 0.2

Genechip HGU HuG HGU HGU HGU
Brain Region PFC PC APC STC PFC

HGU: HG-U133_Plus_2; HuG = HuGene-1_0-st; APC: Anterior prefrontal cortex; PFC: Prefrontal cortex; PC: Parietal
cortex; STC: Superior temporal cortex; HC: Healthy control; SZ: Schizophrenia.

An interesting observation of the present study was that for MTL_NET, the variance of the
classification accuracy substantially decreased with an increasing number of training datasets.
This suggested that MTL_NET selected biological signatures with similar effect sizes across
independent training datasets, further supporting the biological reproducibility of the identified
patterns. In contrast, SVM did not show a decreasing accuracy variance with increasing numbers
of training datasets. This indicates that despite the increasing classification accuracy, the identified
signatures worked well only for some, but not other, test datasets. These results for these particular
datasets highlight differences between single and multi-task learning regarding the variance of the
test-set accuracy, which is a fundamentally important consideration for study design and interpretation
of classifier reproducibility.

4. Materials and Methods

4.1. Datasets

In the present study, five transcriptome-wide expression datasets from schizophrenia post-mortem
brains and controls were used for analysis. Details of the datasets are shown in Table 2. All datasets
were downloaded from the GEO (Gene Expression Omnibus).

4.2. Preprocessing

Preprocessing was performed using the statistical software, R (https://cran.r-project.org/).
First, raw expression data were read using the ‘ReadAffy’ function. Then RMA (Multi-Array
Average [42]) was applied for background correction, quantile normalization, and log2-transformation.
Subsequently, multiple probes associated to one gene symbol were averaged. This was followed by
the selection of common genes across all datasets (17,061 genes). For each dataset, propensity score
matching was used to obtain a sample with approximate 1:1 matching for diagnosis, sex, ph, age,
and post-mortem interval (pmi). Next, all datasets were concatenated for quantile normalization and
covariate correction. Specifically, the ‘Combat’ function from the R library sva [43] was applied to
correct for covariates (sex, ph, age, age2, pmi, and a dataset indicator). Finally, datasets were separated
again for feature standardization (z-score) to remove bias from the expressed genes with large variance
and for downstream machine learning analysis.

4.3. Machine Learning Approaches

For MTL, multiple across-task regularization strategies were tested, such as MTL with network
structure (MTL_NET), sparse network structure (MTL_SNET), joint feature learning (MTL_L21),

https://cran.r-project.org/
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joint feature learning with elastic net (MTL_EN), and low-rank structure (MTL_Trace). As a comparison,
we selected logistic regression with lasso (LR), linear support vector machines (SVM), and random
forests (RF) as representatives of conventional STL methods. For all models (except for RF), stratified
five-fold cross validation was used to select hyper-parameters. Methodological details of the respective
methods are described below. All machine-learning analyses were performed using Matlab (R2016b).

4.3.1. Multi-Task Learning

For all MTL formulations, the logistic loss (L(·)) was used as the common loss function.

L(W, C) =
1
ni

ni

∑
j=1

log
(

1 + e(−Yi,j(Xi,jWT
i +Ci))

)
(1)

where X, Y, W, and C referred to the gene expression matrixes, diagnostic status, weight vectors,
and constants of all tasks, respectively. In addition, i and j denoted the index of the dataset and
subject respectively, i.e., ni and WT

i referred to the number of subject and weight vector of task i.
This model aimed to estimate the effect size of each feature such that the likelihood (i.e., the rate of
successful prediction in the training data) was maximized. During the prediction procedure, given the
expression profile of a previously unseen individual, the model calculates the probability of belonging
to the schizophrenia class (with subjects where the probability exceeded 0.5 being assigned to the
patient group). Notably, while we focused on classification due to the categorical outcomes of the
investigated datasets, the cross-task regularization strategies explored in the present study are not
limited to classification, but can also be applied for regression. All MTL formulations were used as
implemented in the Matlab library, Malsar [44], or based on custom Matlab implementations.

min
W, C

t

∑
i=1
L(W, C) + λ

t

∑
i=1

∣∣∣∣∣
∣∣∣∣∣Wi −

1
t

t

∑
j=1

Wj

∣∣∣∣∣
∣∣∣∣∣
2

2

(2)

We selected the mean-regularized multi-task learning method [45] as an algorithm for the
MTL_NET framework. This algorithm assumes that a latent model exists underlying all tasks, which
can be estimated as the mean model across tasks. Based on this assumption, the formulation attempts
to identify the most discriminative pattern in the high-dimensional feature space, while limiting the
dissimilarity between pairwise models. Dissimilarity is quantified with respect to the effect size of a
given predictor and the sign of its association with diagnosis. We expected this combined dissimilarity
measure to lead to biologically plausible predictive patterns that are characterized by consistent
differences across tasks, both in terms of magnitude as well as directionality. Here, λ had a range
of 10(−6:1:2).

min
W, C

t

∑
i=1
L(W, C) + λ(α

t

∑
i=1

∣∣∣∣∣
∣∣∣∣∣Wi −

1
t

t

∑
j=1

Wj

∣∣∣∣∣
∣∣∣∣∣
2

2

+ (1− α)||W||1) (3)

MTL_SNET was the sparse version of MTL_NET, and the sparsity was introduced by the l1 norm
(i.e., coefficients of predictors with low utility are set to 0). Here, λ controls the entire penalty and
α distributes the penalty to full-sparse and non-sparse terms. λ had a range of 10(−6:1:2) and α was
chosen from the range [0:0.1:1].

min
W,C

t

∑
i=1
L(W, C) + λ||W||2,1 (4)

The formulation of MTL_L21 introduced the group sparse term, ||W||2,1 =
p
∑

i=1
||Wi||2,

which aimed to select or reject the same group of genes across datasets. λ controlled the level of
sparsity with a range of 10(−6:0.1:0).
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min
W, C

t

∑
i=1
L(W, C) + λ((1− α)||W||2,1 + α||W||22) (5)

The MTL_EN was formulated by adding the composite penalties, where ||W||22 is the squared
Frobenius norm. Similar to elastic net in conventional STL, such regularization helped to stabilize the
solution when multiple highly correlated genes existed in the high-dimensional space [46]. Here, λ had
a range of 10(−6:0.1:0) and α was chosen from the range [0:0.1:1].

min
W, C

t

∑
i=1
L(W, C) + λ||W||∗ (6)

MTL_Trace encouraged a low-rank model, W, by penalizing the sum of its eigenvalues, ||W||∗.
λ had a range of 10(−6:0.1:1). By compressing the subspace spanned by weight vectors, models were
structured (i.e., clustered structure). Thus, the models that were clustered together demonstrated high
pairwise correlation.

4.3.2. Conventional, Single-Task Machine Learning

LR_L1: We trained logistic regression with lasso using the package, “Glmnet”. The lambda
parameter was chosen among the set, 10(−10:0.5:1).

SVM: Linear support vector machine was trained using the built-in Matlab function, ‘fitcsvm’,
with the box constraints in the range of 10(−5:1:5). We only used the linear kernel to facilitate
determination of predictor importance.

RF: We used the Matlab built-in function, ‘TreeBagger’, to train a random forest model with
5000 trees. The predictor importance was calculated according to the average error decrement for all
splits on a given predictor.

4.3.3. Assessment of Predictive Performance

To quantify predictive performance and capture stability of decision rules against cross-dataset
and sampling variability, we used a leave-dataset-out procedure. Specifically, the set of five expression
datasets was denoted as D = {d1, d2, . . . , d5} and we calculated the power set, P(D), of D. Then for
each subset, d ∈ P(D), we trained a given algorithm on d and tested the model on D− d. For example,
for d = {d1, d2}, we trained using the combination of datasets, {d1, d2}, and then tested on {d3, d4, d5}.
For convenience, we organized these training procedures according to the size of d, noted as
nd ∈ {2, 3, . . . , 5}. We thus obtained a series of models trained using all subsets of the five datasets
(except for single dataset) and they are referred to using nd.

The comparison of the predictive performance between methods was mainly based on nd = 4, i.e.,
when all, but one, datasets were used for training. To understand how dataset-specific confounders
affect the prediction, models were trained on a range of nd from 2 to 4. Finally, to explore the
convergence of genes’ coefficients across different training datasets, we compared the models trained
when nd = i, i ∈ {2, 3 . . . 5}.

During cross-validation (CV), as illustrated in Figure A1, subjects were randomly allocated to
5 folds, stratified for diagnosis and the dataset indicator. Subsequently, different strategies were
specified for MTL and STL. For MTL, the trainingcv datasets were trained in parallel, and the models
were tested on each testcv dataset by averaging the prediction scores. To determine the final accuracy of
the current fold, the accuracies retrieved from all testcv datasets were averaged. For STL, the trainingcv
datasets were combined to train a single algorithm that was then predicted on the combined testcv

datasets. Similar to CV, in the training procedure, MTL trained on datasets in parallel, while combining
the prediction scores for testing.
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4.3.4. Consistency and Stability Analysis

To compare the consistency and stability of markers between algorithms, we used the correlation
coefficient as the similarity measure of pairwise transcriptomic profiles (i.e., the coefficient vector for all
genes) learnt by algorithms. A high similarity between profiles implied that models shared important
predictors with respect to their weights and signs. Using this similarity measure, ‘consistency’
and ‘stability’ were defined, respectively. These measures were derived from 100-fold stratified
bootstrapping of subjects from a set of datasets. In each bootstrapping sample, we tested across the
number of training sets (nd = i, i ∈ {2, 3, . . . , 5}). For MTL, since the training procedure would output
multiple coefficient vectors (i.e., training on three datasets would output three coefficient vectors),
to compare the similarity between algorithms, the coefficient vectors were averaged.

Consistency: With ‘consistency’, we quantified the pairwise similarity of models trained using
overlapping or non-overlapping (i.e., 2 training datasets) datasets. For this, we differentiated two types
of consistencies: ‘Horizontal’ and ‘vertical’ consistency as illustrated in Figure A2a,b, respectively.
Horizontal consistency quantified model robustness against cross-dataset variability. For this, we fixed
the number of training datasets, (nd), and determined the pairwise similarity between models. This was
performed for all possible choices of nd (see supplementary methods for details). Vertical consistency
measured the sensitivity of models to the number of training datasets. For this, we varied nd and
quantified similarity between the model determined on all training datasets, (nd = 5), and all models
derived from lower training datasets numbers, (nd = i, i ∈ {2, 3, 4}) (see supplementary methods
for details). Low vertical consistency would, for example, be observed when models trained on two
training datasets led to vastly different transcriptomic profiles compared to that using all five datasets
for training.

Stability: To quantify the stability of an algorithm against the sampling variability, we observed
the variation of transcriptomic profiles learnt from different bootstrapping samples as illustrated
in Figure A3. Then the variation of all models given nd was summarized as the stability (see
supplementary methods for details).

Success rate: In addition to consistency and stability, to perform a side-by-side comparison of
algorithms, we defined the success rate as the proportion of cases where one algorithm outperformed
the other. For example, we quantified the success rate of consistency as the proportion of bootstrapping
samples where the first algorithm demonstrated higher consistency than the second (see supplementary
methods for details). The success rate of stability was quantified as the proportion of models,
which were more stable for the first algorithm than that for the second (see supplementary methods
for details).

5. Limitations and Future Work

This work evaluates the performance of MTL and STL for biomarker analysis across five
transcriptomic schizophrenia expression datasets. Several quality control procedures were employed to
remove unwanted variation in the investigated datasets and to improve the biological generalizability
of the obtained results. Despite this, the presented results should be interpreted in the light of
the specific datasets investigated. Since other data modalities, including neuroimaging or gene
methylation, show similar cross-dataset heterogeneity and correlation structures across variables,
the present results may not be limited to expression data, although this remains to be empirically
demonstrated. Furthermore, future investigations should include systematic simulation studies
to explore the performance of MTL and its robustness against factors typically affecting machine
learning performance, including data dimensionality, predictor effect sizes, and biological as well as
experimental variability across datasets.
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6. Conclusions

The present study demonstrates the utility of MTL for integrative machine learning in
high-dimensional datasets, compared to classical single-task learning. Mega-analyses that require
integration of data across numerous datasets are becoming more frequent, but thus far, have rarely used
machine learning approaches. The present study shows that MTL bears substantial promise for such
applications. This particularly applies for scenarios where inter-dataset heterogeneity far outweighs
the illness associated signal, a typical case for high-dimensional datasets in psychiatric research.
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Appendix A

Supplementary Methods
Consistency, stability and success rate
Notations:

• The model pairs trained using different (overlapping or non-overlapping) combinations of datasets were
represented as M and M̃, respectively (i.e., M represented the model trained using the training set, d = {1, 2};
M̃ was trained using a different dataset combination, for example, d = {3, 4} or d = {1, 2, . . . , 5})

• The notation of an algorithm: α, β (i.e., α = MTL_NET, β = SVM)

• The index of the bootstrapping sample: b ∈ {1, 2, . . . 100} and b̃ ∈ {1, 2, . . . 100}. For computational efficiency,
bootstrapping was performed across all datasets, d = {1, 2, . . . , 5}, and data subsets were selected from
this sampling.

As an example, a model, Mα
b , could be trained based on bootstrap sample, b = 3, from which training

sets, d = {1, 2}, were extracted, using the algorithm, α = SVM. The model trained on the same bootstrap sample
based on a different combination of training sets and using the algorithm, α = SVM, would be denoted as M̃α

b .

Consistency

Given nd = i, i ∈ {2, 3, 4} and the algorithm, α, we calculated the expected similarity for each bootstrapping
sample, b as:

Cα, nd
b = EM, M̃, M 6=M̃Cor(Mα

b , M̃α
b )

Then, the expected similarity list, Cα, nd =
[
Cα, nd

1 , Cα, nd
2 , . . . , Cα, nd

100
]
, over b was the consistency list of

algorithm, α, for a given nd. Here, the expectation was calculated empirically by enumerating all pairs of models,
M and M̃. By assigning different values to M and M̃, horizontal and vertical consistency were differentiated. For
horizontal consistency, M and M̃ represented the pairwise models trained using the same number (nd) of datasets.
For vertical consistency, M̃ was trained using nd = 5 datasets and M was trained using fewer datasets.
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Stability

Given nd = i, i ∈ {2, 3, 4}, and algorithm, α, we quantified the expected similarity between pairwise models
(Mα

b and Mα
b̃
), which were trained using the same datasets (M), but different bootstrapping samples (b and b̃), as:

Sα, nd
M = Eb, b̃, b 6=b̃Cor(Mα

b , Mα
b̃
)

Over all models, (M), Sα, nd = [Sα, nd
1 , Sα, nd

2 , . . . , Sα, nd

(
5

nd
)

] was quantified as the stability list of algorithm, α,

given nd. The expectation was estimated empirically by enumerating all pairs of bootstrapping samples, b and b̃.

Success rate

The success rate compared algorithms, α and β, side-by-side, and was measured as the proportion of cases
where algorithm, α, outperformed β.

For example, given the consistency list of algorithm, α and β, (Cα, nd and Cβ, nd ), we determined the
proportion of bootstrapping samples where algorithm, α, demonstrated higher consistency than β, yielding
the success rate of consistency:

SRnd
C = Eb1

C
α, nd
b −C

β, nd
b >0

Given the stability list of algorithm, α and β, (Sα, nd and Sβ, nd ), we determined the proportion of models,
which demonstrated higher stability for algorithm, α, yielding the success rate of stability:

SRnd
S = EM1

S
α, nd
M −S

β, nd
M >0
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Figure A1. Procedure of five-fold-stratified-cross-validation for Single Task Learning (STL) and 

Multitask Learning (MTL) (showing one-fold as an example). Using �� = 3 as an example, the 

specific procedure of the cross-validation procedure is shown. First, the subjects were randomly 

allocated to five folds, stratified for diagnosis per dataset. Subsequently, different strategies were 

specified for MTL and STL. For MTL, the training datasets were trained in parallel, and the three 

Figure A1. Procedure of five-fold-stratified-cross-validation for Single Task Learning (STL) and
Multitask Learning (MTL) (showing one-fold as an example). Using nd = 3 as an example, the
specific procedure of the cross-validation procedure is shown. First, the subjects were randomly
allocated to five folds, stratified for diagnosis per dataset. Subsequently, different strategies were
specified for MTL and STL. For MTL, the training datasets were trained in parallel, and the three
models (M1, M2, and M3) were tested on each test dataset by averaging the prediction score. The
average across all accuracies was used as the final accuracy for the current fold. In contrast, for STL, the
training datasets were combined to train a single algorithm that was then predicted on the combined
test datasets.
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Figure A2. Illustration of model consistency calculation. Consistency quantified the robustness of an
algorithm against the cross-dataset variability. To test this, we trained models using each subset of all
five expression datasets and then categorized these models according to the number of training sets
(nd). Different models were rendered as colored circles, categorized by nd. For vertical consistency,
(a) the similarity was determined between the models learned on nd = 2 to nd = 4 and the model
trained on nd = 5. The resulting values were then averaged for a given category, nd. For horizontal
consistency, (b) the model similarity was calculated in each category, nd, and then averaged.

Int. J. Mol. Sci. 2018, 19, 3387 12 of 15 

 

models (M1, M2, and M3) were tested on each test dataset by averaging the prediction score. The 

average across all accuracies was used as the final accuracy for the current fold. In contrast, for STL, 

the training datasets were combined to train a single algorithm that was then predicted on the 

combined test datasets. 

 

Figure A2. Illustration of model consistency calculation. Consistency quantified the robustness of an 

algorithm against the cross-dataset variability. To test this, we trained models using each subset of all 

five expression datasets and then categorized these models according to the number of training sets 

(��). Different models were rendered as colored circles, categorized by ��. For vertical consistency, 

(a) the similarity was determined between the models learned on �� = 2 to �� = 4 and the model 

trained on �� = 5. The resulting values were then averaged for a given category,  ��. For horizontal 

consistency, (b) the model similarity was calculated in each category,  ��, and then averaged. 

 

Figure A3. Illustration of model stability calculation. Stability quantified the robustness of an 

algorithm against sampling variability. This metric was computed by performing 

100-fold-stratified-bootstrapping. In the left panel, five expression datasets are shown as colored 

boxes. Using �� = 2 as an example, two out of five datasets were combined for training in each 

bootstrapping sample. Thus, a series of models were obtained as illustrated as the colored circles in 

the right panel. The stability was determined as the average pairwise similarity for each model, 

calculated across all pairs of bootstrapping samples. 

  

Figure A3. Illustration of model stability calculation. Stability quantified the robustness
of an algorithm against sampling variability. This metric was computed by performing
100-fold-stratified-bootstrapping. In the left panel, five expression datasets are shown as colored
boxes. Using nd = 2 as an example, two out of five datasets were combined for training in each
bootstrapping sample. Thus, a series of models were obtained as illustrated as the colored circles in the
right panel. The stability was determined as the average pairwise similarity for each model, calculated
across all pairs of bootstrapping samples.
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