

Expression Characteristics and Functional Analysis of the *ScWRKY3* Gene from Sugarcane

Ling Wang ¹, Feng Liu ¹, Xu Zhang ¹, Wenju Wang ¹, Tingting Sun ¹, Yufeng Chen ¹, Mingjian Dai ¹, Shengxiao Yu ¹, Liping Xu ^{1,2}, Yachun Su ^{1,2,*} and Youxiong Que ^{1,2,*}

- ¹ Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; lingw2017@126.com (L.W.); 18359162091@163.com (F.L.); zahngxuqq7@126.com (X.Z.); wwj1470665850@163.com (W.W.); sunting3221@163.com (T.S.); CYF9410@163.com (Y.C.); 18906071567@163.com (M.D.); dbzq666666@163.com (S.Y.); xlpmail@126.com (L.X.);
- ² Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- * Correspondence: syc2009mail@163.com, queyouxiong@126.com; Tel.: +86-591-8385-2547

Supplementary Materials

Tuble 01.1 Initially structure analysis of e	Jennario
Primary structure characteristics	Prediction results
Number of amino acids	236
Molecular weight	25979.45 Da
Theoretical isoelectric point (pI)	8.58
Grand average of hydropathicity (GRAVY)	-0.492
The instability index (II)	56.08

Table S1. Primary structure analysis of ScWRKY3

The primary structure of the ScWRKY3 protein was predicted by ProtParam (https://web.expasy.org/protparam/).

_

Primer name	Primer sequence (5'-3')	Usage
ScWRKY3-F	ACCACCACTAACCCCAAAGC	Full length amplification
ScWRKY3-R	CTGCGTCGTCAATGTATGCG	Full length amplification
ScWRKY3-QF	GCGACGTGGATGTACTGGATGA	qRT-PCR analysis
ScWRKY3-QR	CCTTGGATGGAGGCTGTTCTTG	qRT-PCR analysis
GAPDH-F	CACGGCCACTGGAAGCA	qRT-PCR analysis
GAPDH-R	TCCTCAGGGTTCCTGATGCC	qRT-PCR analysis
ScWRKY3-Gate-F	GGGGACAAGTTTGTACAAAAAGCAGGCTTCAT	Gateway entry vector construction
	GCAGGCATATATGGAGGG	and semi-quantitative PCR analysis
ScWRKY3-Gate-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCGAA	Gateway entry vector construction
	GGAGCTGAAGCAATCGG	and semi-quantitative PCR analysis
ScWRKY4-Gate-F	GGGGACAAGTTTGTACAAAAAGCAGGCTTCAT	Gateway entry vector construction
	GGAGGGGAGCAGCCAGCT	
ScWRKY4-Gate-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCGAG	Gateway entry vector construction
	CGACGTGAAAGCGCAGC	
ScWRKY3-BD-F	GGAATTCCATATGATGCAGGCATATATGGAGGG	Bait vector construction
ScWRKY3-BD-R	<u>CGGGATCC</u> GAAGGAGCTGAAGCAATCGG	Bait vector construction
ScWRKY3-AD-F	GGAATTCCATATGATGCAGGCATATATGGAGGG	Prey vector construction
ScWRKY3-AD-R	<u>CGGGATCC</u> GAAGGAGCTGAAGCAATCGG	Prey vector construction
ScWRKY4-BD-F	GGAATTCCATATGATGGAGGGGGGGGGGGGCAGCCAGCT	Bait vector construction
ScWRKY4-BD-R	<u>CGGGATCC</u> GAGCGACGTGAAAGCGCAGC	Bait vector construction
ScWRKY4-AD-F	<u>CCGGAATTC</u> ATGGAGGGGAGCAGCCAGCT	Prey vector construction
ScWRKY4-AD-R	<u>CCGCTCGAG</u> GAGCGACGTGAAAGCGCAGC	Prey vector construction
NtH201-F	CAGCAGTCCTTTGGCGTTGTC	qRT-PCR analysis
NtH201-R	GCTCAGTTTAGCCGCAGTTGTG	qRT-PCR analysis
NtH203-F	TGGCTCAACGATTACGCA	qRT-PCR analysis
NtH203-R	GCACGAAACCTGGATGG	qRT-PCR analysis
NtH515-F	TTGGGCAGAATAGATGGGTA	qRT-PCR analysis
<i>NtH515-</i> R	TTTGGTGAAAGTCTTGGCTC	qRT-PCR analysis
NtNPR1-F	GGCGAGGAGTCCGTTCTTTAA	qRT-PCR analysis
NtNPR1-R	TCAACCAGGAATGCCACAGC	qRT-PCR analysis
NtPR1a/c-F	AACCTTTGACCTGGGACGAC	qRT-PCR analysis
NtPR1a/c-R	GCACATCCAACACGAACCGA	qRT-PCR analysis
NtPR2-F	TGATGCCCTTTTGGATTCTATG	qRT-PCR analysis
NtPR2-R	AGTTCCTGCCCCGCTTT	qRT-PCR analysis
NtPR3-F	CAGGAGGGTATTGCTTTGTTAGG	qRT-PCR analysis
NtPR3-R	CGTGGGAAGATGGCTTGTTGTC	qRT-PCR analysis
NtEFE26-F	CGGACGCTGGTGGCATAAT	qRT-PCR analysis
NtEFE26-R	CAACAAGAGCTGGTGCTGGATA	qRT-PCR analysis
NtAccdeaminase-F	TCTGAGGTTACTGATTTGGATTGG	qRT-PCR analysis
NtAccdeaminase-R	TGGACATGGTGGATAGTTGCT	qRT-PCR analysis
NtEF-1α-F	TGCTGCTGTAACAAGATGGATGC	qRT-PCR analysis
NtEF-1a-R	GAGATGGGGACAAAGGGGATT	qRT-PCR analysis

attB1 and *attB2* adapters are underlined in the forward primers and in the reverse primers for gateway entry vector construction, respectively. The added restriction enzyme sites of *Eco*R I (GAATTC), *Xho* I (CTCGAG), *Nde* I (CATATG)

and *Bam*H I (GGATCC) are underlined in the primers for bait or prey vectors construction, and the double underlined areas in these primers indicate protective bases.

Tissues 2-ΔΔC _T		Standard error
R	1.02874	0.17959
В	4.70889	1.64113
L	1.13441	0.35043
SP	29.17377	4.75581
SE	2.50973	0.36618

Table S3. Raw calculations of tissue-specific expression of ScWRKY3 in different 10-month-old ROC22

The tissues (root, bud, leaf, stem pith, and stem epidermis) are represented by R, B, L, SP, and SE, respectively. Data are normalized to the glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) expression level. All data points are means \pm standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

Table S4. Raw calculations of gene expression patterns of ScWRKY3 in 4-month-old ROC22 plantlets under

		abiotic stress		
Treatment time	NaCl		PEG	
	$2^{-\Delta\Delta C}$ T	Standard error	2 -ΔΔ <i>C</i> _T	Standard error
0 h	1.02248	0.15162	1.00235	0.04850
0.5 h	1.12695	0.03042	0.67118	0.05745
3 h	1.10801	0.06703	38.57182	10.9277
6 h	0.63938	0.08744	1.27614	0.22401
24 h	3.27612	0.26971	1.11389	0.12550

NaCl, sodium chloride (simulating salt stress) (250 mM); PEG, polyethylene glycol (simulating drought treatment) (25.0%). Data are normalized to the glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) expression level. All data points are means \pm standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

Table S5. Raw calculations of gene expression of ScWRKY3 in 4-month-old ROC22 plantlets under plant

	hormone stress					
Treatment time	SA		MeJA		ABA	
	$2^{-\Delta\Delta C_{\mathrm{T}}}$	Standard error	$2^{-\Delta\Delta C_{T}}$	Standard error	$2^{-\Delta\Delta C_{\mathrm{T}}}$	Standard error
0 h	1.00130	0.00001	1.00217	0.00011	1.00515	0.08640
3 h	0.39460	0.01486	0.55133	0.00048	0.80955	0.04149
6 h	0.59523	0.10924	0.42110	0.05784	1.66832	0.15545
24 h	0.49914	0.00962	0.33474	0.08544	0.80563	0.11352

SA, salicylic acid (5 mM); MeJA, methyl jasmonate (25 μ M); ABA, abscisic acid (100 μ M). Data are normalized to the glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) expression level. All data points are means ± standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

Treatment time	Yacheng05-179		ROC22	
	$2^{-\Delta\Delta C}$ T	Standard error	$2^{-\Delta\Delta C}$ T	Standard error
0 h	1.02011	0.25922	1.00740	0.08826
24 h	1.26167	0.47474	0.50795	0.06088
48 h	1.13023	0.09219	0.95991	0.00450
72 h	1.05532	0.10303	0.79783	0.03618

Table S6. Raw calculations of expression of the ScWRKY3 gene after infection with smut pathogen

Yacheng05-179 is a smut-resistant *Saccharum* hybrid cultivar, and ROC22 is a smut-susceptible *Saccharum* hybrid cultivar. Data are normalized to the glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) expression level. All data points are means \pm standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

Table S7. Raw calculations of the transcript level of nine immunity-associated marker genes in the *Nicotiana benthamiana* leaves after one day of agroinfiltration

Concentration	35::00		35::ScWRKY3	
Gene name	$2^{-\Delta\Delta C}$ T	Standard error	$2^{-\Delta\Delta C}$ T	Standard error
NtHSR201	1.00035	0.01878	0.31325	0.01010
NtHSR203	1.02856	0.16092	5.55995	0.26401
NtHSR515	1.01574	0.12341	3.05449	0.03158
NtPR1	1.02067	0.15147	14.15632	0.80030
NtPR-1a/c	1.00025	0.01561	0.83799	0.01543
NtPR2	1.00014	0.01178	0.99941	0.02160
NtPR3	1.00096	0.03072	8.79463	0.34939
NtEFE26	1.00027	0.01638	1.46628	0.01135
NtAccdeaminase	1.00442	0.06553	2.35996	0.06627

Data are normalized to the *NtEF-1a* expression level. All data points are means \pm standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

	T ()	35::00		35::ScWRKY3	}
Gene name	l reatment time	2 -ΔΔ <i>C</i> _T	Standard error	2 -ΔΔ <i>C</i> _T	Standard error
	0 d	1.00035	0.01878	1.03671	0.18533
NtH201	1 d	23.83326	0.44415	1.00248	0.05525
	7 d	21.64681	0.79454	1.00289	0.04423
	0 d	1.02856	0.16092	1.00226	0.04759
NtH203	1 d	8.47359	0.08132	2.51027	0.04509
	7 d	1.13105	0.03165	3.32439	0.10266
	0 d	1.01574	0.12341	1.00011	0.01034
NtH515	1 d	23.12115	0.75118	2.70385	0.15356
	7 d	7.13494	0.12217	2.65545	0.04517
	0 d	1.02067	0.15147	1.00310	0.05671
NtNPR1	1 d	48.32176	3.78460	24.73383	3.91994
	7 d	26.22899	0.03695	12.70940	1.69010
NtPR1a/c	0 d	1.00025	0.01561	1.00087	0.02918
	1 d	2.69564	0.19104	2.23772	0.04028
	7 d	7.34399	0.43130	1.03147	0.03602
NtPR2	0 d	1.00014	0.01178	1.43645	0.85614
	1 d	0.00540	0.00130	0.00003	0.00001
	7 d	6.91943	1.35432	5.07464	0.76171
	0 d	1.00096	0.03072	1.00158	0.03979
NtPR3	1 d	1.17475	0.02933	0.78957	0.29541
	7 d	4.22494	0.65946	1.95949	0.16057
	0 d	1.00027	0.01638	1.00006	0.00774
NtEFE26	1 d	0.80520	0.01612	0.29558	0.00401
	7 d	0.20565	0.00213	0.07477	0.00183
	0 d	1.00442	0.06553	1.00078	0.02811
NtAccdeaminase	1 d	0.60119	0.01118	0.63861	0.02083
	7 d	0.29504	0.01311	0.63590	0.00549

Table S8. Raw calculations of the transcripts of nine immunity-associated marker genes in the *Nicotiana benthamiana* leaves after inoculation with *Ralstonia solanacearum* for one day and seven days

Data are normalized to the *NtEF-1* α expression level. All data points are means ± standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

<u></u>	Treatment		35::00	35	::ScWRKY3
Gene name	time	2 -ΔΔ <i>C</i> _T	Standard error	2 -ΔΔ <i>C</i> _T	Standard error
	0 d	1.00195	0.04430	1.00045	0.02137
NtH201	1 d	0.27135	0.01817	0.53091	0.01105
	7 d	0.05003	0.00352	0.14749	0.00262
	0 d	1.00208	0.04575	1.00036	0.01894
NtH203	1 d	0.67138	0.03458	0.42983	0.03520
	7 d	0.11990	0.00492	0.26738	0.00426
	0 d	1.01527	0.11926	1.02883	0.16165
NtH515	1 d	13.54125	0.28097	0.00261	0.00001
	7 d	1.19530	0.00971	0.00024	0.00002
	0 d	1.00195	0.05101	1.02043	0.16589
NtNPR1	1 d	6.91331	0.45229	1.99066	0.30924
	7 d	3.44026	0.03078	0.20613	0.02542
	0 d	1.00025	0.01561	1.00054	0.02319
NtPR1a/c	1 d	0.22801	0.04156	0.10524	0.00300
	7 d	0.99548	0.02271	0.27953	0.00774
	0 d	1.00542	0.07383	1.02190	0.14310
NtPR2	1 d	1.40590	0.24153	1.22961	0.13109
	7 d	0.04811	0.00295	0.64970	0.12044
	0 d	1.00096	0.03072	1.00158	0.03979
NtPR3	1 d	0.04353	0.00743	0.27462	0.03474
	7 d	0.80819	0.09846	2.35022	0.14629
	0 d	1.00077	0.02752	1.00006	0.00774
NtEFE26	1 d	0.00036	0.00002	0.00126	0.00006
	7 d	0.00021	0.02002	0.00032	0.00004
	0 d	1.00442	0.06553	1.00078	0.02811
NtAccdeaminase	1 d	0.13969	0.03101	1.68063	0.04270
	7 d	0.04792	0.00090	0.15812	0.03980

Table S9. Raw calculations of the transcripts of nine immunity-associated marker genes in the *Nicotiana benthamiana* leaves after inoculation with *Fusarium solani* var. *coeruleum* for one day and seven days

Data are normalized to the *NtEF-1* α expression level. All data points are means ± standard error (n = 3). Bars superscripted by different lowercase letters indicate significant differences, as determined by Duncan's new multiple range test (p-value < 0.05).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW

ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	ACCACCACTAACCCCAAAGCATCATCGTCATCGTCAACCTTATCGTGCACAGTTATTGACACCAAAAGGAGAGAGA	80 80
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	TTCCGATCCATCCTGCGAATTTTCTGCCCCGGCCGCCCAACCAA	160 160
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	TATGCAGGCATATATGGAGGGAGGCCAGTTGAGTGCTTGCCTTGCTCCTTGTGCCGGATCACTACGCCGGCTTCC TATGCAGGCATATATGGAGGGAGGCCAGTTGAGTGCTTGCCTTCCTAGCTTCCTTGTGCCGGATCACTACGCCGGCTTCC tatgcaggcatatatggagggaggccagttgagtgcttgccttcctagcttccttgtgccggatcactacgccggcttcc	240 240
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	CCCTTCCTCTCCCGCTACAACTTCCTAGCCAACCAAACAACAAGCTTTTCCAGATGCCGTTTGTAGTTAACCAGGAAGAG CCCTTCCTCTCCCGCTACAACTTCCTAGCCAACCAACAACAAGCTTTTCCAGATGCCGTTTGTAGTTAACCAGGAAGAG cccttcctctcccgctacaacttcctagccaaccaacaacaagcttttccagatgccgtttgtagttaaccaggaagag	320 320
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	ACAGAGAACCATGGCGGCATGCTCTCCCCGACCATTGTGGTGGACTATACCCGCTGCCGGCACTGCCCTTCGGCAGCTG ACAGAGAACCATGGCGGCATGCTCTCCCTCCGACCATTGTGGTGGACTATACCCGCTGCCGGCACTGCCCTTCGGCAGCTG acagagaaccatggcggcatgctctcctccgaccattgtgggggactatacccgctgccggcactgcccttcggcagctg	400 400
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	CTCCGGCGCCGCCGCAACAGCATGCGGTGGGAAGCCGACGGCCGGTTTCATGCCCAGTGCTATTGGCGCTGAGGAGG CTCCGGCGCCGCCGCCAACAGCATGCGGTGGGAAGCCGACGGCCGGTTTCATGCCCAGTGCTATTGGCGCTGAGGAGG ctccggcgccgccgccacagcatgcggtgggaagccgacggccggtttcatgcccagtgctattggcgctgaggagg	480 480
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	TCTGCACCTCGGTGGCTACTAAACTAGGTTGCAACGAGAGTAATAGCACATGGTGGAAGGGCTCAGCAGCTACGACTGCG TCTGCACCTCGGTGGCTACTAAACTAGGTTGCAACGAGAGTAATAGCACATGGTGGAAGGGCTCAGCAGCTACGACTGCG tctgcacctcggtggctactaaactaggttgcaacgagagtaatagcacatggtggaaggggctcagcagctacgactgcg	560 560
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	GAGAGAGGGAAGATGAAGGTGAGGAGGAAGATGAGGGAACCGAGGTTTTGCTTCCAGACCAGAAGCGACGTGGATGTACT GAGAGAGGGGAAGATGAAGGTGAGGAGGAAGATGAGGGAACCGAGGTTTTGCTTCCAGACCAGAAGCGACGTGGATGTACT gagagaggggaagatgaaggtgaggaagatgagggaaccgaggttttgcttccagaccagaagcgacgtggatgtact	640 640
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	GGATGATGGCTACAAGTGGAGGAAGTACGGGCAGAAGGTTGTCAAGAACAGCCTCCATCCA	720 720
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	CTCACAGCAACTGCCGCGTGAAGAAACGGGTGGAGCGGCTGTCGACGGACTGCCGCATGGTGATGACCACGTACGAGGGC CTCACAGCAACTGCCGCGTGAAGAAACGGGTGGAGCGGCTGTCGACGGACTGCCGCATGGTGATGACCACGTACGAGGGC ctcacagcaactgccgcgtgaagaaacgggtggagcggctgtcgacggactgccgcatggtgatgaccacgtacgagggc	800 800
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	CGCCACACGCACTCTCCCTGCAGCGACGACGCTTCCTCCGCCGACCACACCGATTGCTTCAGCTCCTTCTGAATCTATCT	880 880
ROC22-ScWRKY3 YC05-179-ScWRKY3 Consensus	ATCCCACGACCGCATACATTGACGACGCAG ATCCCACGACCGCATACATTGACGACGCAG atcccacgaccgcatacattgacgacgcag	910 910

Figure S1. Nucleic acid sequences alignment of *ScWRKY3* in ROC22 and Yacheng05-179. The black color indicates the homology level of conservation of the nucleic acid sequences in the alignment at 100%.

7 of 11

Figure S2. Secondary structure prediction of ScWRKY3. NPS@ server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html) is used to predict this structure.

Figure S3. Signal peptide and transmembrane domain prediction of ScWRKY3. (A) SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/) is used to predict the signal peptide of ScWRKY3. (B) TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) is used to predict the transmembrane domain of ScWRKY3.

FigureS4.SubcellularlocalizationpredictionofScWRKY3.Euk-mPLoc2.0Server(http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/) is used to predict the subcellular localization of ScWRKY3.ServerServer

A	ScWRKY3 SbWRKY57 Consensus	MQAYMEGGQLSACLE <mark>S</mark> FLVPDHYA <mark>G</mark> FPLPLPLQLPS <mark>QPN</mark> NKLFQMPFVVNQE.ETENHGGMLSSDHCG <mark>C</mark> LYPLPALPFGSCSGAA.A MQAYMEGGQLSACLE <mark>G</mark> FLVPDHYA.FPLPLPLQLPSSQ.NKLFQMPFVVD <mark>QEAETENHGGGGM</mark> LSSDHCG.LYPLPALPFGSCSGAA <mark>G</mark> AA mqaymeggqlsaclpgflvpdhyagfplplplqlpsqpnnklfqmpfvvdqeaetenhggggmlssdhcgglyplpalpfgscsgaagaa	86 87
	ScWRKY3 SbWRKY57 Consensus	TACGGKPTAGFMPSAI <mark>G</mark> AEEVCTSV <mark>A</mark> TKLGCN <mark>ESNS</mark> TWWKGSAATT <mark>.</mark> AERGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVK TACGGKPTAGFMPSAIVAEEVCTSVT <mark>F</mark> KLGCN <mark>P</mark> SNGTWWKGSAATT <mark>T</mark> AERGKMKVRRKWREPRFCFQTRSDVDVLDDGYKWRKYGQKVVK tacggkptagfmpsaigaeevctsvatklgcndsngtwwkgsaattiaergkmkvrrkmreprfcfqtrsdvdvlddgykwrkygqkvvk	175 177
	ScWRKY3 SbWRKY57 Consensus	$\label{eq:stress} NSLHPRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASSADHTDCFSSF\\ NSLHPRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASSADHTDCFSSF\\ nslhprsyfrcthsncrvkkrverlstdcrmvmttyegrhthspcsddassadhtdcfssf$	236 238
B	ScWRKY3 MlWRKY12 Consensus	MQAYMEGGQLSACLE <mark>SFLVPDHYA</mark> GFPLPLPLQLPSQPNNKLFQMPFVVN <mark>Q</mark> BETENHGGMLSSDHCGGLYPLPALPF <mark>GS</mark> OSGAA <mark>A</mark> ATACG MEGGQLSACLE <mark>GFFVPDHYAA</mark> FPLPLPLQLPSQPNNKLFQMPFVVD <mark>Q</mark> BETENHGGMLSSDHCGGLYPLPALPFV <mark>S</mark> SGAATATACG mqaymeggqlsaclpgffvpdhyaafplplplqlpsqpnnklfqmpfvvdqeetenhggmlssdhcgglyplpalpfgscsgaaatacg	90 86
	ScWRKY3 MlWRKY12 Consensus	GKPTAGFMES <mark>A</mark> IGAEEVCTSV <mark>A</mark> TKLGCNESNSTWWKGSAA <mark>TT</mark> AERGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKNSLH GKPTAGFMPS <mark>T</mark> IGAEEVCTSV <mark>T</mark> TKLGCNESNSTWWKGSAA <mark>ATT</mark> AERGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKNSLH gkptagfmpsaigaeevctsvatklgcnesnstwwkgsaaatiaergkmkvrrkmreprfcfqtrsdvdvlddgykwrkygqkvvknslh	179 176
	ScWRKY3 MlWRKY12 Consensus	PRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASS <mark>R</mark> DHTDCFSSF PRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASS <mark>C</mark> DHTDCFSSF prsyfrcthsncrvkkrverlstdcrmvmttyegrhthspcsddassadhtdcfssf	236 233
С	ScWRKY3 ZmWRKY51 Consensus	MQAYMEGGQLS.A.CLPSFLVPDHYACFPLPLPLQLPSQPN <mark>NK</mark> .LFQMPF <mark>VVNQ</mark> EETENHGGMLSSDHCGGLYPLPALPEGSCSGAAAAT MQAYMEGGQ <mark>LLCAC</mark> CLPSFLVPDHYAAFPLFLPLQLPSQPNDNRLFQMP5DQEEAENHGGMLYSDCC.GLYPLPAFGSCSAAAGAT mqaymeggqllgacclpgflvpdhyaafplplqlqpsqpndkrlfqmpfdvnqeeaenhggmlssdhcgglyplpalpfgscsaaaat	87 85
	ScWRKY3 ZmWRKY51 Consensus	A <mark>CGG</mark> KPTAGFMPS <mark>A</mark> IGAB <mark>E</mark> .VCTS <mark>VATKL</mark> GCNESNSTWWKGSAAT <mark>T</mark> AERGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKN AKPTAGFMPS <mark>TIGAB</mark> TKVCTS <mark>LT</mark> FK.GCNESNSTWMKGSAAT <mark>T</mark> AERGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKN acggkptagfmpsaigaeekvctslatklgcnesnstwwkgsaatiaergkmkvrrkmreprfcfqtrsdvdvlddgykwrkygqkvvkn	176 171
	ScWRKY3 ZmWRKY51 Consensus	$SLHPRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASSADHTDCFSSF\\SLHPRSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDASSADHTDCFSSF\\slhprsyfrcthsncrvkkrverlstdcrmvmttyegrhthspcsddassadhtdcfssf$	236 231
D	ScWRKY3 SiWRKY12 Consensus	MQAYMEGGQL <mark>S</mark> ACLPSFLVPDHYA <mark>GFPLPLPLQLPSQPNNKLFQMPPVVNQBETENHGE</mark> MLSSDHCEGLY <mark>FLPALPFGS</mark> CSGAA <mark>AAT</mark> ACG MQAYMEGGQL <mark>S</mark> ACLPSFLVPDHYA.FPLPLPLQLPSQPNNKLFQMPFD.OBESENHGYMLSSDHCEGLYFLPALPIC.CSGAASAYACG mqaymeggqlgaclpsflvpdhyagfplplplqlpsqpnnklfqmpfdvnqeesenhgqmlssdhcgglyplpalpfgscsgaaatacg	90 84
	ScWRKY3 SiWRKY12 Consensus	GKPTAGFMPSAIGADEVCTS <mark>VATKLGCNESN</mark> STWWKGSA <mark>ATIA</mark> DRGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKNSLHP GKPTADEMESTVGADEVCTSLTKGCNDSASTWWKGSAPTWADRGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQKVVKNSLHP gkptadfmpsaigadevctslakklgcndsastwwkgsaatmadrgkmkvrrkmreprfcfqtrsdvdvlddgykwrkygqkvvknslhp	180 172
	ScWRKY3 SiWRKY12 Consensus	RSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDAS <mark>S</mark> ADHTDCFSSF RSYFRCTHSNCRVKKRVERLSTDCRMVMTTYEGRHTHSPCSDDA <mark>SS</mark> CDHTDCFSSF rsyfrcthsncrvkkrverlstdcrmvmttyegrhthspcsddaasadhtdcfssf	236 228
E	ScWRKY3 OsWRKY12 Consensus	.M <mark>QAYMEGGQLSACLFSELVPDHYAC</mark> FPLELPLQLFSC <mark>ENNKLF</mark> QMPFVVNQEETENHCGMLSSDHC <mark>G</mark> GLYPLPALP <mark>FGSCSC</mark> AAAAT <mark>A</mark> C MHTCMECGQQLCTCLPNFYLLPDHHCMPLFPLQLPCHFKLLQMPFDQEDQPGI.HCVMLSSDHC.GLYPLPALPLSNSAAAAATVA mhqameeggqlgaclpnflllddhagfplplplqlpchpnnklfqmpfdqedeegenhggmlssdhcgglyplpalpfgncaaaaaataa	89 86
	ScWRKY3 OsWRKY12 Consensus	GGKPT.,AGFMES <mark>AICAEEVCTSVATKLGCNESNSTMMKGSA</mark> PTTA <mark>BRGKMKVRRKMREPRFCFQTRSD</mark> VDVLDDGYKWRKYGQK IGK <mark>HSAAACSMENIGCAEEVATTV.TKACNESTTCNCS</mark> TTW <mark>MRGSTWAAMGEKGKMKIRRKMREPRFCFQTRSE</mark> VDVLDDGYKWRKYGQK ggkhsaaagfmpnaggaeevatsvatkagceettcngsnstwrggsaaamaekgkmkirrkmreprfcfqtrsdvdvlddgykwrkygqk	172 175
	ScWRKY3 OsWRKY12 Consensus	VVKNSLHPRSYFRCTHSNCRVKKRVERLSTDCRMVWTTYEGRHTHSPG <mark>SDDASSADHTD</mark> CFSS VVKNSLHPRSYFRCTHSNCRVKKRVERLSTDCRMV <mark>I</mark> TTYEGRHTHSPG.DDN <mark>SSGBHTN</mark> CFSS vvknslhprsyfrcthsncrvkkrverlstdcrmvittyegrhthspcsddassadhtdcfss	235 237
F	ScWRKY3 ScWRKY4 Consensus	MQAYMEGGQISACLESFIVPDHYAGFFLEIPIQLESQPNNKLFQMEFVYNQEETENHGGMLSSDHCCGLYPIPA.IPFGSCSCAAAATAC MEGSSQIJETCLEASIYALSPCAPEHE.PILAPLPNQHKLIQMEL.WQEPAANNHGVMIFSDHHQHGCPLYPIJIPGIPFCPSAAPAT mqaegegglleaclpaflvadhpaafphplpllaplpnnhklfqmpfvvneeaaenhggmlfsdhcgggggplpalllfgicfcaaaapac	89 86
	ScWRKY3 ScWRKY4 Consensus	G <mark>GKPHAGEMPSÄIGAD</mark> EVOTSVATKLOCNESNSTW <mark>MKGS2</mark> ATTA <mark>DRGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYG</mark> CEKTMTTCFT <mark>ALDAGEAGRTSAAKAAAEIASTTTTTCNGPSSCNM</mark> WK <mark>GFAAGEKGRMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYG</mark> cekptagffpaadaaeagctsaakaaaeiastttttcnepnscnwkggaaaaaekgkmkvrrkmreprfcfqtrsdvdvlddgykwrkyg	170 176
	ScWRKY3 ScWRKY4 Consensus	QKVVKNSLHPRSY <mark>F</mark> RCTHSNCRVKKRVERLSTDCRMV <mark>W</mark> TTYEGRHTHSPCSDDASS <mark>A</mark> DHT <mark>DCFSS</mark> QKVVKNSLHPRSY <mark>Y</mark> RCTHSNCRVKKRVERLS <mark>E</mark> DCRMY <mark>I</mark> TTYEGRHTHSPCSDDA <mark>DA<mark>AACD</mark>HTCS. qkvvknslhprsyfrcthsncrvkkrverlsedcrmvittyegrhthspcsddadaaagddcfss</mark>	235 240
G	ScWRKY3 Sc-WRKY Consensus	MQAYMBGGQLSACLPSFLVEDHYAGPPLELELQLPSQPNNKLFQMPFVVNQEETENHGGMLSSDHGGGLYPLPAPPE MAASLGLAHEACYAAYPPAAAASSYFPSPPEPEDLVAEFEFEAAATAMVDDYYBCFREEMGGARAPGCGGYCSPPAPVFDNGMNLUSYS maaslglaheacmaaymeaaaasacfpsflppdgdagaefplpaaapampddklfqfpeemggaeaegcggmcspdacgfdnglnalpfg	78 90
	ScWRKY3 Sc-WRKY Consensus	SCS <mark>EAAAATACE</mark> GKPT <mark>AEFMPS</mark> A <mark>IGAEEVCTSVATKLGCNESNSTWWKGSAATTAERGKMKVRRKMREPRFCE</mark> OTRSDVDVLDDGYKW S <mark>ADC</mark> DGRRLMS <mark>EPAGGNGGCRPASLIG</mark>	166 133
	ScWRKY3 Sc-WRKY Consensus	RKYCCKVVKNSLHPRS <mark>W</mark> PRGTHSNGRVKKRVERLSTDCRMVMTTYECRHTBSPCSDDASSBDHDCFSSF RKYCKKAVKSSPNPRNWYRCSAEG <mark>CVKKRVERDRDB</mark> PRYWITTYDCVENHAAPGAAYVCPPPRG <mark>2</mark> STDFGSPP YSASSAPLVAAPSWN rkygkkavknslhprnyfrcsaegcgvkkrverdrddcrmvittydgrhnhaacgaaascppprgadhtdcfspfysassaplvaapswn	236 223
	ScWRKY3 Sc-WRKY Consensus	AAFDAWKAQLHAAAAHSSESS aafdawkaqlhaaaahssess	236 244

Figure S5. Amino acid sequences alignment of ScWRKY3 and other WRKYs. A to G are showing the amino acid sequence alignment of ScWRKY3 and WRKY from *Sorghum bicolor* SbWRKY57 (XP_002452824.2), *Miscanthus lutarioriparius* MIWRKY12 (AGQ46321.1), *Zea mays ZmWRKY51* (XP_020393361.1), *Setaria italica* SiWRKY12 (XP_004953301.1), *Oryza sativa* OsWRKY12 (XP_015624962.1), *Saccharum* ScWRKY4 (AUV50355.1) and Sc-WRKY (ACT53875.1), respectively. All these accession numbers in brackets are from GenBank. The black and blue colors indicate the homology level of conservation of the amino acid residues in the alignment at 100 and \geq 50, respectively.

Figure S6. The logo of predicted conserved motifs in the WRKYs. The logos were predicted by the online software MEME Suite 5.0.2 (http://meme.sdsc.edu/meme/intro.html). On the y axis (measured in bits), the overall height of the stack indicating the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino acid at that position.