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Abstract: Oligodendrocyte progenitor cells (OPCs) constitute one of the main populations of
dividing cells in the central nervous system (CNS). Physiologically, OPCs give rise to mature,
myelinating oligodendrocytes and confer trophic support to their neighboring cells within the
nervous tissue. OPCs are known to be extremely sensitive to the influence of exogenous clues
which might affect their crucial biological processes, like survival, proliferation, differentiation,
and the ability to generate a myelin membrane. Alterations in their differentiation influencing their
final potential for myelinogenesis are usually the leading cause of CNS dys- and demyelination,
contributing to the development of leukodystrophic disorders. The evaluation of the mechanisms that
cause oligodendrocytes to malfunction requires detailed studies based on designed in vitro models.
Since OPCs readily respond to changes in local homeostasis, it is crucial to establish restricted
culture conditions to eliminate the potential stimuli that might influence oligodendrocyte biology.
Additionally, the in vitro settings should mimic the physiological conditions to enable the obtained
results to be translated to future preclinical studies. Therefore, the aim of our study was to investigate
OPC differentiation in physiological normoxia (5% O2) and a restricted in vitro microenvironment.
To evaluate the impact of the combined microenvironmental clues derived from other components
of the nervous tissue, which are also influenced by the local oxygen concentration, the process of
generating OPCs was additionally analyzed in organotypic hippocampal slices. The obtained results
show that OPC differentiation, although significantly slowed down, proceeded correctly through its
typical stages in the physiologically relevant conditions created in vitro. The established settings were
also conducive to efficient cell proliferation, exerting also a neuroprotective effect by promoting the
proliferation of neurons. In conclusion, the performed studies show how oxygen tension influences
OPC proliferation, differentiation, and their ability to express myelin components, and should be
taken into consideration while planning preclinical studies, e.g., to examine neurotoxic compounds
or to test neuroprotective strategies.

Keywords: oligodendrocyte progenitor cells; myelinogenesis; hippocampal organotypic slices;
cell proliferation; oligodendrocyte maturation myelin; myelin protein amounts; physiological normoxia;
culture density; serum-free culture

1. Introduction

Oligodendrocyte progenitor cells (OPCs) are one of the major cell populations within the central
nervous system (CNS). They were shown to constitute about 7–9% of cells in the white matter and
2–3% in the gray matter [1,2]. After undergoing a multistage differentiation process orchestrated by
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a number of exogenous stimuli, they acquire the ability to myelinate axons within the CNS, assuring
a fast and efficient signal propagation [3,4]. However, apart from being the precursors of the mature
myelinating oligodendrocytes, OPCs, which are also recognized as neural/glial antigen 2 (NG2+)
cells, are known to play additional roles in the nervous tissue. They confer a trophic support to
their neighboring cells, stimulating neurogenesis and the differentiation of neurons by releasing
neurotrophins (BDNF, NT-3), as well as exert an immunomodulatory effect in a pathophysiological
environment [5–7]. The myelinating oligodendrocytes supply neurons with metabolic substrates,
like glycogen-derived pyruvate and lactate, via the monocarboxylate transporter 1, and enwrap axons
with multilayered myelin sheaths to protect them from exogenous noxious stimuli [8–10].

To gain the ability to generate the highly specified proteolipid myelin membrane, oligodendrocyte
progenitors undergo a complex maturation process, comprising numerous molecular and
morphological changes. During the subsequent steps of differentiation, a number of long and branched
cell processes are elaborated, and myelin components are expressed and intracellularly transported to
be incorporated into the emerging membrane. The entire process is known to be precisely guided by
extracellular clues present in the local microenvironment, among many other signals derived from the
neurons that are to be myelinated [11–14]. Actually, one of the most important features of OPCs is their
susceptibility to the influence of local alterations in tissue homeostasis [15–17]. Depending on the type
and intensity of the received stimuli, OPCs respond either by limiting their survival or by increasing
their rate of proliferation [18–20]. Furthermore, it is also hypothesized that, at least in in vitro studies,
the fate of OPCs could also be regulated by local soluble paracrine signals, and finally the cells can
give rise to neurons [21,22].

Taking the above into consideration, OPCs exhibit an extreme sensitivity to the influence of
exogenous signals which could trigger various cell responses, like, for instance, apoptosis, an increase
in the rate of proliferation, or an arrest in the process of their differentiation. In this context, oxygen
tension, which is one of the most important physiological parameters of tissue homeostasis, might have
a significant impact on cell biology [23–25]. It has also been hypothesized that a temporal limitation
in oxygen supply and a subsequent tissue reoxygenation affect OPC survival and differentiation and
actually underlie leukodystrophic disorders resulting from perinatal asphyxia [26–28].

Contrary to the ambient oxygen level (approximately 21%), typical for a majority of studies which
have been conducted to date, the physiological oxygen tension in the nervous tissue has been reported
to vary between 2% and 5%, so it is several-fold lower than in standard laboratory conditions [29,30].
Keeping in mind the great number of neurological diseases with a confirmed pathology resulting
from CNS hypo- or demyelination [31,32], extensive in vitro studies are to be planned and performed
to estimate disease mechanisms and to test novel potential therapeutics. In this context, strictly
defined and controlled culture conditions should be established for expanding and maintaining
oligodendroglial cells in vitro, in an environment relevant to the physiological parameters.

To address this issue, we performed studies on the impact of the oxygen level and cell culture
density on neonatal rat progenitor cells proliferation, differentiation, and ability to express myelin
components when cultured in vitro in restricted conditions. Taking into consideration that other
components of the nervous tissue are also supposed to be influenced by the concentration of oxygen in
the local milieu, and in this way might also contribute to modulating the investigated processes,
cultures of organotypic hippocampal slices were additionally used to mimic the physiological
tissue environment.

2. Results

To examine the influence of physiological normoxia on oligodendrocyte progenitor proliferation
and their differentiation into mature cells capable of expressing myelin components, the isolated
OPCs (≥98% of homogeneity) were cultured either under ambient oxygen tension or in conditions
mimicking the extracellular oxygen concentration (5%) present in vivo in the nervous tissue.
Since oligodendrocytes are neural cells of complex morphology characterized by multibranched
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cell processes useful in searching the axons to be myelinated, cell culture density is also supposed
to influence the process of cell differentiation. The third prerequisite of the experimental scheme
was to apply strictly controlled culture conditions (by using a culture media with no added
supplements) to eliminate the factors potentially influencing the processes of cell proliferation and
differentiation. Therefore, the scheme of the planned investigation (Figure 1) was based on collating
the effects of various culture conditions on the maturation process of oligodendroglial cells: i.e., low
(1.5 × 104 cells/cm2) versus high (5 × 104 cells/cm2) initial culture density, the influence of ambient
(21%) versus physiological (5%) oxygen concentration, and the application of serum-free versus
low-serum (1% fetal bovine serum, FBS) culture media.
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Figure 1. Establishing the monocultures of oligodendroglial progenitors in vitro. (A) A scheme of
oligodendrocyte progenitor cells (OPC) isolation from the primary mixed glial culture (blue timeline)
and their subsequent differentiation in four variants of cell culture conditions (green timeline); (B) live
image of a mixed primary glial cell culture obtained from the brains of neonatal rats; (C) the cell culture
after shaking off the microglial fraction; (D) OPC monoculture 24 h after cell seeding. The scale bar
corresponds to 50 µm.

2.1. The Cell Culture Density Influences Oligodendrocyte Differentiation

The first assessed parameter tested for its effects on the growth of oligodendrocytes in vitro was
cell culture density. To address this issue, cells were seeded at either low or high density, then cultured
in serum-free medium under physiological normoxia (5% O2) for 2 days.

The proliferating cells were identified by the presence of Ki67 protein in their nuclei, while the
progress in the differentiation process was verified by visualizing GalC in the cell membrane.
The results of the immunocytochemical analysis showed that if OPCs were plated sparsely, they divided
significantly (p = 0.0001) less frequently than in high cell density (4.37 ± 1.07% versus 19.25 ± 1.54%
of the total cell fraction) (Figure 2A). However, the availability of space among sparsely plated cells
turned out to be much more permissive for cell maturation, resulting in a significantly (p = 0.0001)
increased number of GalC-positive cells (median 13.17 ± 0.76%) compared with cells cultured in high
density (median 2.17 ± 0.38%) (Figure 2B). Moreover, cell morphology in low-density cultures was
characterized by more complex, ramified processes (Figure 2B).
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Figure 2. The influence of the cell seeding density on OPC proliferation (revealed by Ki67
immunostaining, green) and differentiation (estimated by GalC expression, green) determined after
culturing the cells for 48 h in serum-free conditions in physiological normoxia. (A) Cells seeded at
a high density (5 × 104/cm2) divide approximately five-fold more frequently than those cultured in
low density (1.5 × 104/cm2), as indicated by Ki67 presence in the cell nuclei; (B) cell differentiation,
verified by the presence of GalC+ oligodendrocytes, is highly influenced by the cell culture density.
When cultured in low density, GalC+ cells are significantly more numerous and they are characterized
by a much more complex, branched morphology. The cell nuclei were labelled with Hoechst
33258 (blue). The scale bar is the equivalent to 100 µm. The calculated differences were considered
statistically significant when ** p < 0.05; *** p < 0.001.

2.2. Normoxic Conditions Promote Cell Proliferation and Support the Abundancy of the Progenitor Fraction in
In Vitro Oligodendroglial Primary Monocultures

After determining the optimal cell culture density, oligodendrocyte differentiation in distinct
oxygen conditions was analyzed by immunostaining with a panel of developmental stage-specific
antibodies. Firstly, the total number of oligodendroglial progenitors, recognized by their characteristic
markers, namely, by the presence of chondroitin sulfate proteoglycan (NG2) in the cell membrane
and by the expression of the lineage-specific transcription factor Olig1, was assessed. As indicated
by the immunocytochemical analysis, the number of progenitors in a cell culture strongly depends
on both the oxygen tension and the trophic support provided by a very low concentration of
serum. Since oligodendrocyte differentiation from progenitor cells proceeds relatively quickly in vitro,
the abundancy of the progenitor fraction was examined on both the 2nd and the 5th day in vitro (DIV).
The obtained data indicated that the expression of the lineage-specific transcription factors Olig-1
(Figure 3A) and Olig-2 (Figure 3B) was highly dependent on the oxygen level and was significantly
upregulated under normoxic conditions at both the analyzed time points. Conversely, the number
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of cells expressing NG2, which is an integral component of the cell membrane, increased during cell
culturing in ambient oxygen concentration (34.42 ± 2.6% versus 51.17 ± 8.43% on the 2nd DIV and
57.81 ± 2.9 versus 72.95 ± 1.87% on 5th DIV) which could indicate an acceleration in cell differentiation
(Figure 3C). Normoxic conditions were also shown to exert a considerable effect on the rate of cell
proliferation (8.33± 1.14% in 5% O2 versus 1.57± 0.19% in 21% O2, on the 5th DIV in serum-free medium,
p < 0.0001) as indicated by the expression of Ki67 protein in the nuclei of the dividing cells (Figure 3D).
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Figure 3. Quantification of immunolabeled oligodendrocyte progenitors in different cell culture conditions.
Cell cultures were fixed either after 2 or 5 days in vitro. Blue bars show cells maintained in physiological
normoxia (5% O2) and green bars represent cells kept at the standard oxygen level (21% O2). (A) Expression
of the lineage-specific transcription factor Olig1 (green), which is detected in the cell cytoplasm on the
2nd DIV (white arrows) and gradually decreases during cell maturation; (B) Expression of the transcription
factor Olig2 (green), which is relevant for the early stages of oligodendrocyte differentiation (white arrows);
(C) Progenitor cells recognized by the presence on their surface of the NG2 marker; (D) Proliferating cells
characterized by the presence of the Ki67 marker in the cell nuclei. The cell nuclei were visualized with
Hoechst 33258 solution (blue). The scale bar is equivalent to 20 µm. The calculated differences were marked
as the significant if: * p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001.

2.3. The Ambient Oxygen Tension Accelerates the Maturation of Oligodendrocytes

After examining a number of progenitors and measuring their proliferation rate in different
cell culture conditions, the progress in differentiation was evaluated by staining the cells with an
antibody directed against galactocerebroside (GalC), a protein characteristic of cells elaborating a net
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of cell processes. However, for this membrane component found in cells during the middle stage of
their maturation, a significant (p = 0.02) influence of the oxygen level was noted on the 2nd DIV in
serum-free media (3.82 ± 0.38% of GalC+ cells in 5% O2 versus 5.38 ± 0.53% in 21% O2) (Figure 4A).
Therefore, the next marker analyzed for its expression at the two time points under distinct oxygen
conditions was the enzyme 2′,3′-cycling nucleotide 3′-phosphodiesterase (CNPase). Although the
anti-CNP staining allowed the visualization of well-elaborated and highly ramified cell processes,
which indicated advanced cell differentiation, the number of cells in all the investigated experimental
groups was approximately similar (Figure 4B). The only increase (approximately 3-fold) in the number
of CNP+ cells was observed when a low serum concentration was present in the culture media.
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Figure 4. Quantification of maturating oligodendrocytes maintained in different culture conditions
for either 2 or 5 DIV. The cells were cultured either in 5% (blue bars) or 21% O2 (green bars).
(A) Differentiating, multiprocessed cells are characterized by the presence of the GalC antigen on
the cell surface; (B) Expression of CNP (2′,3′-Cyclic-nucleotide 3′-phosphodiesterase), the characteristic
marker of the oligodendroglial lineage; (C) Detection of myelin basic proteins (MPB) in differentiated
oligodendrocytes with branched cell processes; (D) Presence of proteolipid protein (PLP) in mature
cells. The cell nuclei were labelled with Hoechst 33258 (blue). The scale bar corresponds to 20 µm.
The calculated differences were considered statistically significant if: * p < 0.05, ** p < 0.01.
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The most relevant indicator of cell maturation is, however, the presence of myelin components.
Their expression confirms that an oligodendrocyte is capable of myelinogenesis, which is the end-point
of the maturation process. Therefore, antibodies against the most typical myelin-associated proteins
were applied to estimate the progress in cell differentiation. While myelin basic proteins (MBP)
are embedded in the myelin layers, the proteolipid protein (PLP) is the major myelin constituent,
characterized by four transmembrane domains. The expression of MBP under normoxic conditions
varied significantly compared to that observed under ambient oxygen tension (p = 0.0009 and p = 0.0029,
respectively) (Figure 4C), which was most visible on the 5th DIV in both the 1% serum-containing
media and the serum-free conditions. Such significance was not observed in the case of PLP detection
(Figure 4D).

Taking into consideration that the ability for myelinogenesis is a major determinant of cell maturity,
the results obtained by the immunocytochemical methods were verified biochemically by performing
quantitative measurements by ELISA tests. Accordingly, the amount of MBP in the oligodendroglia
on the 5th DIV varied between approximately 4.707 ± 0.47 pg/mg of total proteins under normoxic
conditions and 6.28 ± 0.61 pg/mg of total proteins under ambient conditions (p = 0.001) (Figure 5).
The content of PLP, which is an abundant compound of mature oligodendroglia, was higher and its
quantities were estimated as 28.34± 3.97 pg/mg of total proteins in physiological oxygen concentration
and 26.23 ± 4.74 pg/mg of total proteins when the cells were cultured at an oxygen level typical of the
surrounding environment (21%).

Taken together, these results suggest that the cells were still actively maturating on the 5th DIV.
Moreover, when taking a close look at the cell morphology visualized by immunostaining with a panel
of various cell markers, a variation in the complexity of the cell processes was noticed. To verify if there
was any significant diversity, the length and ramification of extended processes were measured by
means of the Sholl analysis (Figure 6A,B). Accordingly, the means of intersections (12.14–13.5 µm) and
maximum of intersections (28.8 µm) were similar for both culture conditions, indicating an advanced
process branching, resulting in a complex cell morphology (Figure 6C,D).

However, the analysis of additional advanced quantitative descriptors (like the radius of the
highest count of intersections, enclosing the radius and the Sholl regression coefficient) pointed to
compelling differences in the length of the elaborated cell arbors. Namely, the cells cultured under
standard oxygen conditions were characterized by longer processes (122 ± 31.2 µm) in comparison to
the cells grown in physiological normoxia (99.2 ± 11.45 µm). The performed morphometric analysis
supported the observation that standard oxygen conditions accelerated cell maturation, which could
be noticed even during a relatively short, 5-day long in vitro culture.
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Figure 5. Quantitative analysis of the major myelin components in oligodendrocytes cultured in
distinct oxygen concentrations (physiologically relevant 5% O2 versus standard 21% O2) on the 5th
DIV. Statistical significance is ** p < 0.01.
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Figure 6. Evaluation of the influence of environmental oxygen concentration on oligodendrocyte
(CNP+ cells) differentiation, based on Sholl analysis of cell morphology on the 2nd DIV. The comparison
of the length and complexity of the elaborated cell projections indicates that physiological normoxia
(5% O2) is permissive for the elongation of oligodendroglial processes, which is necessary for searching
axons to be myelinated. (A) Original, 8-bit image of the cell; (B) Black and white masks of cells prepared
by means of the NeuronJ software. A series of concentric circles around the cell bodies allowing for
marking the intersections by application of the Sholl plugin to ImageJ is shown; (C) Concentric circles
around the cell bodies drawn with Sholl plugin to Fiji; the yellow dots mark the intersections of the
cell process with consecutive circles; (D) Sholl metrics based on samples’ data; (E) The linear profile
presents the average number of intersections versus the distance from the cell body; (F) The semilog
plot shows the average number of intersections normalized to the perimeter of the circles. The slope of
the linear regression (Sholl’s Regression Coefficient—k) is the measure of the change in density of the
branches with respect to their distance from the center.

2.4. The Supplementation with a Low Serum Concentration Significantly Affects Oligodendroglial Differentiation

While the most significant differences between culture conditions were observed for the initial
markers of OPC maturation (Olig1, Olig2, NG2), the later markers stained cells with well-elaborated
cell processes, as well as those whose morphology changed just before they detached and underwent
cell death (for instance, in Figure 4C, the MBP+ cell in the right upper corner). The addition of even low
(1%) amounts of serum enhanced the rate of cell proliferation (Table 1), as well as their differentiation
(based on the number of MBP+ cells) in both oxygen conditions and time points (Figure 4C). However,
taken together, the results show that oligodendrocytes proliferate, differentiate, and could be cultured
in vitro for several days in restricted, serum-free conditions.
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Table 1. Impact of the culture conditions on OPCs proliferation and differentiation into mature cells
capable of myelinogenesis.

Impact of Different Culture Conditions on OPCs Proliferation Maturation

OPCs and OHC in serum-free medium

5% O2 ↑ ↓
21% O2 ↓ ↑
OPCs in medium supplemented with 1% FBS

5% O2 − ↑
21% O2 ↑ ↑
OPCs in serum-free medium, 5% O2

high density of culture ↑ ↓
low density of culture ↓ ↑

Abbreviations—OPCs: oligodendrocyte progenitor cells; OHC: organotypic hippocampal slice culture; FBS: fetal
bovine serum; ↑: upregulation of the process; ↓: downregulation of the process; −: no significant changes observed.

2.5. Cell Proliferation and Differentiation under Normoxic Conditions in Organotypic Hippocampal Slices

The in vitro differentiation of cells in monocultures has many advances, like, for instance,
the possibility to test the influence of various parameters on cell biology, or the possibility to precisely
visualize and subsequent analyze all cell extensions. These advances were very useful for the planned
experiments and allowed to answer the main question concerning the impact of oxygen conditions
on oligodendrocyte maturation. In the nervous tissue, however, the cells are interdependent, and,
in particular, the signals derived from neurons are known to regulate oligodendrocyte maturation.
Moreover, taking into account the obtained results concerning the dependence of oligodendrocyte
differentiation on oxygen concentration, a similar effect could be hypothesized for neuronal physiology.

To address this issue, hippocampal organotypic slices were used to assess oligodendrocyte
differentiation in ex vivo nervous tissue cultures under normoxic conditions. The hippocampus,
distinguished by its characteristic neurogenic regions, is an area of intense neuronal derivation and
maturation. Culturing hippocampal slices ex vivo enables the preservation of the tissue architecture
and integrity. To estimate the number of oligodendroglial progenitors and their proliferation
under both tested oxygen concentration, a double-labeling of cells was performed after 7 days in
serum-free media (Figure 7A–D). The newly generated cells were identified by BrdU incorporation
into the newly synthesized DNA of the dividing cells. A statistical analysis indicated a significantly
increased number of oligodendroglial progenitors in cultures at the physiological oxygen concentration
(153.2 ± 6.97 of NG2+ cells per 606.3 µm × 606.3 µm area) compared to cultures at the ambient oxygen
concentration (118.5 ± 7, significant at p = 0.0019). Furthermore, the fraction of proliferating progenitors
(NG2+/BrdU+) was increased by 30% under normoxic condition (p = 0.0014). Similarly, when the
generation of neurons in the hippocampal slices was estimated by visualizing the colocalization of Tuj1
marker and BrdU, it turned out that normoxic conditions strongly supported neuronal proliferation
(Figure 8). While, in standard conditions, approximately 4.31 ± 0.8 cells were dividing, their number
increased by as much as 250% in a corresponding area in normoxic conditions (p < 0.0001).
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Figure 7. Hippocampal organotypic slices cultured either in standard (A–F) or physiologically
normoxic (G–L) conditions. Oligodendroglial progenitors were stained with anti-NG2 antibody (red),
while proliferating cells were visualized by BrdU (5-bromo-2′-deoxyuridine) incorporation (green).
Double-labelled cells (white arrows) indicate the newly generated oligodendrocytes in the slices during
a 7 day long culture in serum-free medium. The scale bar is equivalent of 50 µm.
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Figure 8. Proliferating neurons within hippocampal slices cultured for 7 DIV, visualized by TuJ1
antibody (red) and BrdU (green) in the cell nuclei of the dividing cells. (A–C) The tile scan of an
entire hippocampal slice cultured in standard oxygen conditions (21% O2); (D–F) Magnification
of the hippocampal slice, allowing to distinguish the double-labelled (TuJ1+/BrdU+) dividing cells
(white arrows); (G–I) Tile scan of an hippocampal slice cultured in physiologically normoxic conditions
(5% O2); (J–L) Enlargement of the slice, showing the colocalization of the neuronal marker (Tuj1) and
BrdU, staining the newly derived cells (whithe arrows). The scale bar is equivalent of 50 µm.

The evaluation of the total content of differentiating oligodendrocytes in the hippocampal slices
after 7 days in distinct oxygen concentrations also revealed significant differences. While CNP+

cells accounted for approximately 132 ± 21.65 per 606.3 µm × 606.3 µm area in physiological
normoxia, their amount was elevated to 202.7 ± 63.51 in standard conditions (p = 0.0274) (Figure 9A,B).
In summary, the data coming from the immunohistochemical examination indicate that the normoxic
conditions support the abundancy and proliferation of the progenitor fraction, while the standard
conditions accelerate oligodendrocyte differentiation (Figure 9B).
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Figure 9. The influence of distinct oxygen conditions on oligodendrocyte proliferation and
differentiation. (A) The CNP-positive oligodendrocytes (green) visible in hippocampal slices after
7 DIV; The cell nuclei were labelled with Hoechst 33258 (blue); (B) The diagram shows the total number
of OPCs, dividing progenitors, and differentiating oligodendrocytes in hippocampal slices cultured in
distinct oxygen concentrations. The scale bar is equivalent to 20 µm. The calculated differences were
regarded as statistically significant if * p < 0.05, ** p < 0.01.

3. Discussion

To acquire the ability to express myelin components and to form the highly specialized myelin
membrane which is the end-point of oligodendrocyte maturation, precursor cells undergo a precise
and multistage differentiation process. In vivo, this process is known to be instructed by a plethora
of extracellular signals present in the local microenvironment. Among many others, the instructive
clues include the presence of extracellular matrix components (laminin, fibronectin) affecting the
formation of cell extensions and their elongation [33], hormones (like triiodothyronine, T3) promoting
cell maturation [34–36], and trophic factors released by neighboring neural cells Platelet-Derived
Growth Factor-AA (PDGF-AA, Fibroblast Growth Factor 2 (FGF2), Leukemia Inhibitory Factor (LIF),
Ciliary neurotrophic factor (CNTF). The process of myelinogenesis is also enhanced by the electric
activity of neurons providing signals about targets to be enwrapped with myelin sheaths [37–39].
Interestingly, although strongly influenced by the environmental clues, oligodendrocytes are able
to complete their differentiation process both in vitro and in vivo in the absence of neurons to be
myelinated [40,41]. This ability of oligodendrocytes to terminally maturate even when maintained as
monocultures, enables their use as in vitro models for various applications, like, for instance, testing
drugs and neurotoxicants, or disease modelling [42–45].
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However, to consider them in preclinical investigations, the planned studies have to be performed
in conditions maximally resembling the physiological environment. The discrepancies between
laboratory and in vivo conditions aroused many controversies [46]. One of them concerns culturing
cells and tissue slices in atmospheric oxygen tension (close to 21%), while physiological normoxia
(physioxia) is known to range between 2–9% O2 [47].

Fluctuations of the oxygen level are known to influence in situ crucial cell functions by their
impact on microRNAs (miRNAs), which are short (19–24 nucleotides) RNA molecules regulating
gene expression by binding to the 3′-untranslated region (3′-UTR) of mRNA targets [48,49].
Another intracellular signaling pathway depending on the local oxygen concentration operates via
hypoxia inducible factors (HIFs) and is known to regulate cell survival and differentiation [50,51].
In the case of oligodendrocytes, activated HIFs promote angiogenesis through Wnt7 signaling pathway
and arrest cell differentiation unless the extracellular O2 level increases and deactivates HIF1α and
HIF2α by specific oxygen-dependent enzymes (asparaginyl and prolyl hydroxylases) [52,53]. When the
microvasculature is well developed and the trophic support from the circulating blood is provided,
the energy-consuming process of oligodendrocyte differentiation proceeds. Disturbances in oxygen
supply to the nervous tissue, especially during perinatal asphyxia, are thought to contribute to the
inhibition of oligodendrocyte differentiation and subsequently to the inefficient or aberrant myelination
of the brain, typical of leukodystrophic disorders.

Our studies based on cultivating neonatal rat oligodendrocytes in a physiologically relevant
oxygen tension revealed the influence of the oxygen concentration on cell proliferation and maturation.
To evaluate the progress in cell differentiation, we analyzed the cell markers attributed to the sequential
stages of oligodendrocyte differentiation [54]. Accordingly, the oligodendroglial commitment of the
neural stem cells could be verified by the expression of the lineage-specific basic helix-loop-helix
(bHLH) transcription factors Olig1 and Olig2 [55–58]. The progenitor cells were identified by the
presence on their surface the chondroitin sulfate proteoglycan (also known as neural/glial antigen 2,
NG2), which is a classic OPC marker. Interestingly, the progenitors are characterized by a different
morphology: from small and bipolar to multibranched cells with relatively long cellular extensions.
Because of their complex appearance, they have been named polydendrocytes [59,60]. However, even the
cells with fine developed cell processes are considered undifferentiated oligodendrocytes, since they
do not initiate myelinogenesis, but remain scattered in both the white and the grey matter without
proceeding to the next stage of oligodendroglial differentiation.

An advance in the maturation process is usually recognized by the expression of the GalC
marker, attributed to immature oligodendrocytes. The end-point of the differentiation process was
determined on the basis of both the cell morphology and the expression of major myelin constituents,
i.e., proteolipid protein (PLP) and myelin basic protein, which account for approximately 8% and 1% of
total myelin proteins, respectively. Although both components are expressed during oligodendrocyte
maturation, their intracellular trafficking is different. Namely, PLP is synthesized and transported
towards the emerging myelin membrane in recycling endosomes and lysosomes through transcytosis
pathway [61–63]. Conversely, the mRNA coding for MBP binds to ribonucleoprotein A2 (hnRNP A2)
and is then transported in granules containing components of the translation machinery even to the
distal ends of the oligodendroglial processes, where the myelin membrane is formed. In this way,
the translation of MBP mRNA occurs in situ during myelin biogenesis [64,65]. These two proteins
are known to stabilize myelin by zippering the apposed layers and contributing to its multilamellar
structure [66–69].

The in vitro recapitulation of the physiological functions of oligodendrocytes includes the
evaluation of cell proliferation. OPCs are known to be one of the major populations of cycling cells
within the CNS, readily responding to microenvironmental clues (including pathological signals
triggered by insults or neuroinflammation) by increasing their proliferation rate [2]. Therefore,
the preserved proliferation ability of the cells dividing in vitro confirms that OPCs functions are
maintained during cell culturing. The presented study shows that this cell feature is also highly
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influenced by the oxygen concentration in the milieu. Namely, the cell proliferation rate was nearly
2 times higher (for oligodendroglia) or even 5 times higher (in case of neurons) in physiological
normoxia than in atmospheric oxygen concentration. This observation is in line with a previous
study reporting that the normoxic oxygen concentration is permissive for sustaining the progenitor
fraction [70] and with another study describing the propagation of human neural progenitors in vitro
and the subsequent generation of the oligodendroglial lineage [71]. Accordingly, the standard oxygen
tension was shown to accelerate the process of cell maturation, resulting in a high yield of GalC+

oligodendrocytes. This disclosed dependence is important especially when studying in vitro cell
responses to specific conditions (selected biological factors, applied drugs, pathological signals).
The data indicate also that both the cell cycling and their differentiation are significantly influenced
by the addition of serum. Usually, the supplementation of culture media with low serum doses is
beneficial for maintaining primary cultures for a prolonged period of time. The undefined serum
composition precludes, however, any preclinical studies and, additionally, modifies cell biology. In the
present study, even 1% of FBS present in the milieu significantly promoted cell differentiation.

The in vitro generation of cells with myelinating potential is not only dictated by physical
parameters present in the cell incubator (usually enriched with 5% CO2 and 95% humidity), by also
by the seeding density of the cells. Contact inhibition of growing cells should be always considered,
especially in the case of cells with long or branched extensions.

In conclusion, the presented study describes the proliferation of oligodendrocyte progenitors
and their differentiation in optimal culture conditions, relevant in many aspects to the physiological
parameters in which the cells are functioning. This protocol enables broad applications of in vitro
primary oligodendroglial monocultures for both basic and preclinical studies. Physiological normoxia
was shown to exert a neuroprotective effect in vitro and ex vivo, in comparison to standard culture
conditions in terms of promoting neural cell proliferation and supporting the abundancy of progenitors,
which could serve as a cell reservoir for neurorestorative processes.

4. Materials and Methods

4.1. Primary Culture of Rat Oligodendrocyte Progenitors In Vitro

Mixed glial cultures were established from 2-day-old Wistar rats (n = 18) bred in the
Animal Care Facility of the Mossakowski Medical Research Centre. The detailed procedure
was described previously [22]. The protocol was approved by the Local Ethics Committee on
Animal Care and Use. Briefly, cerebral hemispheres were mechanically dispersed in Dulbecco’s
Modified Eagle’s Medium high-glucose (Gibco, Gaithersburg, MD, USA) supplemented with 10%
fetal bovine serum (FBS, Gibco, Gaithersburg, MD, USA) and 1% Antibiotic-Antimycotic Solution
(Sigma, Mendota Heights, MN, USA), using a Pasteur pipette and a 1.2 mm Luer-Lock needle.
Cells were then filtered through a Hydrophilic Nylon Net Filter (Millipore, Burlington, MA, USA)
with 41.0 µm pore size and plated onto 75 cm2 culture flasks (NUNC, Roskilde, Denmark) coated with
0.1 mg/mL poly-L-lysine (Sigma) (Figure 1A,B). The medium was changed every 2–3 days, and after
11–13 days the cells were ready to be shaken in a horizontal orbital shaker (Stuart) to obtain the
oligodendrocyte progenitor cells. First, the flasks were preshaken for 1 h at 180 rpm to remove microglia,
and, after replacing the medium, OPCs were detached during additional 18–20 h of shaking (180 rpm)
(Figure 1C). After the collected suspension was spun down (1500× g, 10 min) and filtered (41.0 µm
pore size filter, Millipore), OPCs were seeded onto 24-well plates containing poly-L-lysine-coated glass
coverslips (Figure 1D) for immunocytochemistry and onto 6-well plates coated with poly-L-lysine
for further quantitative biochemical measurements. To evaluate the influence of the culture density
on cell proliferation and maturation, OPCs were plated either at a low (1.5 × 104 cells/cm2) or high
(5 × 104 cells/cm2) density. The cells were grown in medium supplemented with either 1% FBS or 1%
the Insulin-Transferrin-Selenium-A Solution (ITS) (Invitrogen, Carlsbad, CA, USA) and either under
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5% (physiological normoxia) or 21% (standard laboratory conditions) O2, as presented on the scheme
of the experimental design (Figure 1A).

4.2. In Vitro Culture of Organotypic Hippocampal Slices (OHC)

The culture of hippocampal organotypic slices was established on the basis of a protocol described
in detail elsewhere [6]. Briefly, 7-day-old Wistar rats (n = 12) were used for brain hemispheres
isolation and subsequent hippocampal slice preparation, according to the procedure approved by
the IV Local Ethics Committee on Animal Care and Use (affiliated to the Ministry of Science and
Higher Education). At the very beginning of the procedure, a deep hypothermia was applied to
the experimental animals. The extracted hippocampi of both hemispheres, chilled on ice, were cut
into 400 µm-thick slices by a McIlwain apparatus. Placed on Millicell-CM (Millipore) membranes,
the slices were cultured initially in Dulbecco’s Modified Eagle Medium (DMEM) medium (Gibco)
containing horse serum (25%), HBSS (25%), glucose (2 mmol/L), HEPES (5 mg/mL), B27 supplement,
and an antibacterial-antimycotic solution. Starting from the second day in vitro (DIV), the serum
content was gradually lowered, and, finally, from the 5th DIV onwards, the slices were cultured for
the following seven days in serum-free conditions (DMEM supplemented with ITS and antibiotic
solution) and in normoxic oxygen conditions (5% oxygen). To assess cell proliferation, a 5 µM solution
of 5-bromo-2′-deoxyuridine (BrdU, Sigma) was added for 24 h to the slice cultures. To evaluate the
incorporation of BrdU into the newly synthesized DNA of the replicating cells, on the 7th DIV of culture
in serum-free and normoxic conditions, the hippocampal slices were fixed with 4% paraformaldehyde
(PFA), then gently washed 3 times with an extensive amount of PBS, and finally incubated with
95% methanol for 10 min. After three additional washes with PBS, the cells were permeabilized
with 2 N HCl for 10 min. In the next step, the acid was neutralized with 0.1 M sodium borate
for 5 min (RT). After selecting slices with a well-preserved, characteristic tissue cytoarchitecture,
immunolabeling with a set of specific antibodies recognizing subsequent stages of oligodendrocyte
maturation was performed

4.3. Immunofluorescent Staining of Differentiating Oligodendrocytes

Oligodendrocytes cultured for either 2 or 5 DIV were washed with PBS for 5 min, then fixed with
4% paraformaldehyde in PBS for 20 min and rinsed three times for 5 min with PBS. The unspecific
binding of antibodies was prevented by incubating the fixed cells with 10% normal goat serum (Sigma)
in PBS containing 0.1% Triton X-100 (Serva, Heidelberg, Germany) for 1 h at room temperature.
Selected primary antibodies, diluted in PBS supplemented with 5% normal goat serum, were applied
overnight at 4 ◦C. The list of primary antibodies used for the immunolabeling procedure included
those recognizing the proliferating cells, i.e., anti-Ki67 protein (Novocastra-Leica Biosystems, Nussloch,
Germany, 1:100) and anti-BrdU (Santa Cruz Biotechnology, Dallas, TX, USA, 1:100), as well as those
recognizing specific markers of oligodendrocyte maturation, i.e., NG2 (Chemicon, Tokyo, Japan,
1:100), Olig1 (Merck, Kenilworth, NJ, USA, 1:1000), Olig2 (Merck, 1:500), CNP (Chemicon, 1:100),
GalC (Chemicon, 1:200, Triton not used), MBP (Merck, 1:100), and PLP (Chemicon, 1:200). To visualize
neurons within hippocampal slices, the TuJ1 antibody (recognizing β-tubulin III, 1:100, Sigma) was used.
After washing the immunostained cells in primary cultures or hippocampal slices with PBS (3 × 5 min),
the appropriate FITC-conjugated secondary antibodies (AlexaFluor, Invitrogen) were applied for 1 h RT
in the dark. All the secondary antibodies used were either diluted 1:1000 for the cells or 1:500 for the slices
in PBS containing 5% normal goat serum. Then, the cells and the slices were washed three times with PBS
and incubated with 5 µM Hoechst 33258 (Sigma) for 15 min to visualize the cell nuclei. After covering
with the Fluoromount™ reagent (Sigma), the slides were subjected to a detailed analysis using the LSM
780/ELYRA PS.1 superresolution confocal system (Carl Zeiss, Jena, Germany).
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4.4. Biochemical Analysis of Myelin Protein Expression in Differentiating Oligodendrocytes

Cell lysates for the quantification of the selected proteins were obtained by applying the CellLytic
solution (Sigma) containing a Protease Inhibitor Cocktail (Sigma, 1:100). Briefly, on the 5th DIV,
oligodendrocytes cultured in serum-free medium either in 5% or 21% O2 were washed with PBS,
and 0.4 mL of extraction reagent was added per well. The plates were incubated for 15 min on
a shaker, and the lysates were then scrapped from the plates and centrifuged for 15 min, at 14,000× g.
Total protein concentrations in the lysates were determined by DC Protein Assay (Bio-Rad, Hercules,
CA, USA) according to the manufacturer’s manual. To quantify the amounts of major myelin proteins,
the Sandwich ELISA kit for measuring either PLP or MBP (Abbexa, Cambridge, UK) was used
according to the manufacturer’s instructions. The plates were inserted in the spectrophotometric plate
reader Fluorostar Omega (BMG LabTech, Ortenberg, Germany), and the intensity of the colorimetric
reaction was measured at 450 nm wave length.

4.5. Estimation of the Differentiating Cell Morphology

The complexity of the elaborated oligodendroglial processes was estimated by means of the
ImageJ software allowing for Sholl analysis (Sholl Analysis vs. 3.7.0, available online: https://imagej.
net/Sholl) [72,73]. The most representative CNP-stained cells cultured either under 5% or 21% oxygen
were chosen for a subsequent examination. The size, length, and radius of the cells were assessed by
converting the typical fluorescent picture into binary 8-bit images by means of the NeuronJ software
(Available online: https://imagej.net/NeuronJ). A number of quantitative descriptors was recorded,
including the maximum and mean of intersections. The measurements were performed on the basis of
the following parameters: starting radius, 10 µm and radius step size 2 µm. The slope of the linear
regression (Sholl’s Regression Coefficient—k) is the measure of the change in density of the branches
with the distance from the center.

4.6. Statistical Analysis

The immunofluorescently labeled cells were counted on randomly selected 5–10 visual fields
on each of at least five slides from each of the three experiments. A statistical analysis of the
obtained results was performed with the use of the GraphPad PRISM 5.0 La Jolla, CA, USA
software. For comparing all the examined experimental variants (i.e., 0% FBS/5% O2, 0% FBS/21%
O2, 1% FBS/5% O2, 1% FBS/21% O2) an one-way analysis of variance (ANOVA) followed by the
Bonferroni’s Multiple Comparison Test was done. A statistical comparison of two groups was made
by application of Mann–Whitney test (two-tailed with Gaussian approximation). The collected data
from cell counting in in vitro cultures and their statistical analysis are presented as box and whisker
charts, where the bottom and top of the box correspond to the first and the third quartile, the band
inside the box is the median, while the ends of the whiskers represent the minimal and the maximal
values, respectively. All data were expressed as mean ± SEM. The calculated differences were marked
as significant if: * p < 0.05, ** p < 0.01; *** p < 0.001.
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Abbreviations

BrdU 5-Bromo-2′-Deoxyuridine

CNP
2′,3′-Cyclic-nucleotide
3′-phosphodiesterase

DIV days in vitro
FBS fetal bovine serum
HIFs hypoxia inducible factors
MBP myelin basic proteins
NG2 chondroitin sulfate proteoglycan
OPC oligodendrocyte progenitor cell
PLP Myelin proteolipid protein
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