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Abstract: Worldwide, hypertension still represents a serious health burden with nine million
people dying as a consequence of hypertension-related complications. Essential hypertension
is a complex trait supported by multifactorial genetic inheritance together with environmental
factors. The heritability of blood pressure (BP) is estimated to be 30–50%. A great effort was
made to find genetic variants affecting BP levels through Genome-Wide Association Studies
(GWAS). This approach relies on the “common disease–common variant” hypothesis and led to
the identification of multiple genetic variants which explain, in aggregate, only 2–3% of the genetic
variance of hypertension. Part of the missing genetic information could be caused by variants too
rare to be detected by GWAS. The use of exome chips and Next-Generation Sequencing facilitated
the discovery of causative variants. Here, we report the advances in the detection of novel rare
variants, genes, and/or pathways through the most promising approaches, and the recent statistical
tests that have emerged to handle rare variants. We also discuss the need to further support rare
novel variants with replication studies within larger consortia and with deeper functional studies to
better understand how new genes might improve patient care and the stratification of the response to
antihypertensive treatments.

Keywords: essential hypertension; blood pressure; genome-wide association studies; exome
microarray; next-generation sequencing; rare variants; rare-variants association testing; burden
test; sequence kernel association test

1. Introduction

Systemic hypertension is a consistently elevated systolic or diastolic blood pressure in the systemic
arteries. Systolic blood pressure (SBP) is generated by the contraction of the ventricles and represents
the highest blood pressure (BP) level. Diastolic blood pressure (DBP) is the BP remaining during the
relaxation of the ventricles and represents the lowest BP level. The term Pulse Pressure (PP) refers
to the difference (in mmHg) between the systolic and diastolic pressures, while the Mean Arterial
Pressure (MAP) is the average BP during a single cardiac cycle [1–3]. Clinicians consider 140 mmHg
as the maximum normal adult SBP value, and 90 mmHg as the upper limit for normal DBP value,
as suggested by the World Health Organization (WHO) [4]. Usually, high SBP is caused by the
narrowing of the arterioles. This narrowing raises the peripheral resistance to blood flow, which
requires a greater workload for the heart and raises arterial pressure [1]. Elevated BP levels still
represent a huge public health issue worldwide, being the major risk factor for cardiovascular disease,
including coronary heart disease, stroke, and heart failure. Each year, 17 million people prematurely
die because of cardiovascular disease, and, among these, nine million deaths occur as a consequence
of hypertension-related complications [5].
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Ninety-five percent of hypertensive patients presents a type lacking an obvious identifiable cause
(Essential or Primary Hypertension). Investigations of twin and family studies revealed a moderate
heritability ranging between 30% and 50% [6,7]. Hypertension is a heterogeneous disease; besides
genetic variation, several factors such as age, sex, and ethnicity influence this trait, in addition to other
environmental factors (e.g., lipid levels and obesity).

So far, the study of hypertension has mostly been based on Genome-Wide Association Studies
(GWAS). GWAS represent a valuable approach to type hundreds of thousands of Single Nucleotide
Polymorphisms (SNPs) in very large cohorts. During the last ten years, many studies have been published
thanks to the setting of very large consortia, including the International Consortium for Blood Pressure
Genome-Wide Association Studies, Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) and Global BPgen, the Wellcome Trust Case Control Consortium Studies, the UK Biobank, the
PBCHARGE-EchoGen consortium, the CHARGE-HF consortium [8–12], leading to the identification of
more than 100 SNPs implicated in BP levels, as recently reviewed by Seidel and Scholl [13].

The cause of a complex trait, like essential hypertension, remains elusive if examined in the light
of the GWAS results. There has been a step forward compared to the classic GWAS analyses thanks to
system genetics approaches and related statistical methods [14]. These approaches use intermediate
phenotypes, such as transcript, protein, or metabolite levels, and quantify and integrate them with
several traits of interest. Several genes pathways and networks underlying common human diseases
have been discovered using systems genetics studies.

For example, data derived from GWAS were integrated with expression data to provide a measure
of functional variation, i.e., the expression Quantitative Trait Loci (eQTL). When one of these loci
is located within ≤1 Mb from the gene encoding the transcript, it is termed a cis-eQTL. When an
eQTL affects the expression level of a distal gene, it is called trans-eQTL. Disease susceptibility
can be regulated by a plethora of genes controlled by trans-eQTLs which, for this reason, are very
informative [15].

Thanks to studies based on rat, mouse, or human cells and tissues, it has been calculated that
about 30% of mammalian genes are under the control of eQTLs and they heavily contribute to complex
disease susceptibility [16]. Moreover, using comparative genomics between established rat models of
hypertension and humans, several studies have shown that human genes found to be associated with
hypertension through GWAS, when conserved in the rat, are likely to form both cis- and trans-acting
eQTLs in multiple tissues [17]. These studies have also taken advantage of a statistical methods known
as Weighted Gene Co-Expression Network Analysis (WGCNA) that studies biological networks based
on pairwise correlations between variables and is often used to highlight clusters (modules) of highly
correlated genes [18].

At the heart of the GWAS-based approaches lies the “common variant–common disease”
hypothesis. However, when considering all the detected high-frequency variants in aggregate, the
percentage of BP variability explained by genetic variants accounts for only 2–3%. Moreover, blood
pressure changes related to different genotypes at these loci are estimated to be modest, approximately
1.0 and 0.5 mmHg for SBP and DBP, respectively [19]. Considering the moderate effects and the scarce
genetic control ascribable to high-frequency variants, two possible scenarios came forward: a wrong
heritability was estimated, or alleles are more likely to be heterogeneous and uncommon. Furthermore,
array-based technologies were infrequently conducted for the detection of causal polymorphisms.
These observations implicated strong limits in exploiting GWAS to identify druggable targets with
high confidence and supported the idea that rare (frequency < 1%) and uncommon (frequency between
1% and 5%) functional variants may explain a greater fraction of hypertensive individuals. The arrival
of Next-Generation Sequencing (NGS) technologies facilitated a shift in focus from common to rare
variants and provided the opportunity to unravel the genomic architecture underlying hypertension
risk. Along with the development of even more advanced laboratory methodologies, statistical genetic
models must also evolve to meet the challenge of using rare variants to link previously unidentified
genome loci to BP changes [20,21].
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In this review, we first present an overview of the most recent findings regarding the role of
rare and uncommon variants in BP alteration identified through the currently available technologies,
moving from the candidate-gene approach to the high-throughput exome chips, and then to NGS
solutions; next, we report the statistical methods proposed so far for rare variants analysis. Finally, we
draw conclusions on the contribution ascribable to rare and low-frequency variants in the improvement
of cardiovascular risk assessment.

2. Results

2.1. Results from Studies on Selected Single Nucleotide Variants and Genes

Conducting studies based on a candidate-gene approach is the easiest and cheapest way to
investigate genetic variation. FBN1, a gene that is thought to be causative of vascular damage and
whose mutations have been previously detected only in relation to Marfan syndrome, was selected by
Jeppesen and colleagues [22] as their research focus. A sample of 4839 Danish subjects was genotyped
for the rs11856553 rare variant (Minor Allele Frequency, MAF, of A allele = 0.2%, 1000 Genomes)
using a PCR-based method. In the Health 2006 study, an unadjusted risk of hypertension of 2.67 (95%
Confidence Interval, CI, 1.14–6.18) for the G/A genotype was reported. The adjusted risk of moderate
to severe hypertension (grade 3) for the A/A–G/A genotypes (homozygous and heterozygous carriers
were grouped) was 8.01 (95% CI, 3.27–19.58), p < 0.0001). No significant differences in BP between
G/A and G/G variant carriers were described within the MONICA10 study, however, the adjusted
risk of moderate to severe hypertension (grade 2) for A/A-G/A variants was 6.54 (2.12–20.2); p < 0.01.
It is still undefined how this intronic mutation could functionally affect hypertension [22].

The cytokine Interleukin-6 (IL-6) is a fundamental mediator of the acute-phase response to
endothelial injury and regulates the production of C Reactive Protein (CRP) in hepatocytes [23];
therefore, both IL-6 and CRP genetic variants have been evaluated in relation to hypertension [2,20].
In the paper from Karaman et al. [24], IL-6 rs1800795 and rs1800796 SNPs (MAF = 14.12% and 31.39%,
respectively, 1000 Genomes) were genotyped in a Turkish sample of 108 controls and 111 hypertension
patients. Both SNPs genotypes were not significantly related to hypertension or to IL-6 and CRP
plasma levels. The CC genotype of the rs1800796 SNP is very rare in the examined population and large
frequency differences among different populations and geographic regions have been reported [25].

Endothelial nitric oxide synthase (eNOS) produces Nitric Oxide, a vasodilator of vascular smooth
muscles, and thus plays a crucial role in regulating BP. A four-SNP haplotype, comprising the
uncommon variant rs11699009 in the BPIFB4 gene, has been associated with notable longevity [26].
In the study of Vecchione et al. [27], 416 individuals were genotyped to determine their haplotypes.
The rare variant-haplotype carriers showed a significantly increased DBP (p = 0.013) and a borderline
increased SBP (p = 0.067). The authors demonstrated that the overexpression of the BPIFB4 uncommon
variant in mice impaired eNOS signaling and increased BP, opening the way for the development of
new therapeutic strategies.

2.2. Results from Exome Chips-Based Studies

When the 1000 Genomes Project became publicly available, data from NGS technology allowed the
development, from Affymetrix (Santa Clara, CA, USA) and Illumina (San Diego, CA, USA) companies,
of array-based genotyping platforms which offer the possibility to capture a greater range of single
nucleotide variability compared to GWAS. In Table 1, studies investigating common and rare variants
in association with hypertension andBP phenotypes and through exome array approaches are listed.
Most publications [28–38]; (Table 1) took advantage of the Illumina HumanExome BeadChip (Exome
Chip; Illumina, Inc., San Diego, CA, USA).
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Table 1. Results from Exome Chips-Based Studies.

N Technology Design Population BP Trait Statistical Analysis Main Results References

Discovery: 517
Replication: 57,234

Infinium
OmniExpress
Exome-Illumina

Linkage analysis in 130 families from
CFS to identify rare, coding variants Whites SBP, DBP, PP Family-based burden;

SKAT

Linkage peak observed on Chr. 16p13 (MLOD =
2.81) for SBPMultiple rare, coding variants in
RBFOX1 associated with reduced SBP

He et al. [35]

14,028 Illumina ExomeChip Pleiotropic effects of lipid-associated loci
on 10 cardiometabolic traits Korean SBP, DBP GLM 3 SNPs associated with SBP and DBP. Effect sizes

(se): −1.5 ± 0.3–−0.78 ± 0.20; p < 1.09 × 10−4 Kim et al. [38]

~475,000

Affymetrix UK
Biobank Axiom Array
and Affymetrix UK
BiLEVE Axiom Array

Meta-analysis of CHARGE,
European-led, and UK Biobank Exome
Consortia to identify BP-associated SNVs

~423,000 European SBP, DBP, PP EPACTS; EMMA
eXpedited; GEMMA

21 SNVs associated with at least 1 BP trait with
p < 5 × 10−8; βs(se): −1.14(0.19)−0.42(0.06) Kraja et al. [36]

Discovery: 146,562.
Follow-up: 180,726.
Meta-analysis: 327,288

Illumina ExomeChip

Meta-analysis of CHARGE+, CHD
Exome+, ExomeBP, T2D-Genes,
GoT2DGenes consortia to identify
functional coding variants

All ancestries SBP, DBP, PP, MAP,
HTN SKAT; Burden test

31 new loci associated with BP (p < 3 × 10−7;
28 common and 3 low-frequency variants)
explaining 0.7% and 1.3% of interindividual
variation in SBP and DBP, respectivelyPTPMT1,
DBH, NPR1 genes had aggregated rare and
low-frequency variants associated with BP
(p < 9 × 10−7)

Liu et al. [33]

15,914 Illumina ExomeChip

Meta-analysis of AADM, ARIC,
CARDIA, GenNet, GENOA, HUFS,
HyperGEN, LUC cohorts to identify new
genes and SNVs across the full frequency
spectrum

African ancestry SBP, DBP SKAT; T1 burden test;
burden-T1-del

9 rare SNVs (mostly missense) within 8 genes
(SLC28A3, KRBA1, SEL1L3, YOD1, COL6A1,
CRYBA2, GAPDHS, and AFF1) associated with
SBP or DBP (Betasst:1.16-3.97; p < 5 × 10−7)2
significant genes (CCDC13, QSOX1) for SBP and
DBP were also described (Betassm: 54.38 (10.68)
and 32.93 (7.13), respectively; p < 9.95 × 10−6)

Nandakumar et al.
[34]

5453 Illumina ExomeChip Identifying stop-coding variants Swedish SBP, DBP GLM
19 SNVs associated with SBPPDE11A R307X
mutation: 7 mmHg higher SBP-4.6 mmHg
higher DBP

Ohlsson et al. [31]

2045 Illumina ExomeChip 79,578 low-frequency variants analysis
within the HyperGEN cohort African Americans SBP

CAST; CMC; w-SUM;
SST; VT; C-alpha;
SKAT; SKAT-O;
Minimum P; Fisher’s
statistic; RBS; FPCA;
Higher criticism

No genome-wide significant results Sung et al. [28]

Discovery: 192,763
Replication: 155,063 Illumina ExomeChip

Meta-analysis of CHD Exome+,
ExomeBP, and GoT2D/T2D-GENES
consortia with independent replication
within CHARGE + consortium to
identify novel coding variants

European: 290,989,
South Asian:
27,487, African
American,
Hispanics and SAS
ancestries: 29,350

SBP, DBP, PP, HTN SKAT; Burden test

Discovery: 51 loci associated with at least one
BP traits with p < 5 × 10−8

Replication: 30 novel SNVs (p < 6 × 10−4; βs:
−1.43−2.70)
Rare putative functional variants were identified
within A2ML1, COL21A1, RRAS, RBM47, and
ENPEP genes

Surendran et al.
[32]
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Table 1. Cont.

N Technology Design Population BP Trait Statistical Analysis Main Results References

3165

AffymetrixGenome-
WideHumanSNP6.0
Array and Illumina
ExomeChip

Analysis of common and rare variants in
PCSK9 gene within HyperGEN study
and REGARDS population

African-American SBP, DBP, HTN SKAT; Joint effect

GWAS: rs12048828 and rs9730100 marginally associated
with DBP (βs = 1.8 and 1.0; p = 0.05). No significant
associations with SBPRare variants: higher median SBP
and DBP for carriers of non-synonymous SNPs
compared to non-carriers (median SBP and DBP for
non-carriers: 127 mmHg and 73 mmHg)
Significant cumulative effect of rare variants with DBP
(p = 0.04) but not with SBP (p = 0.14) in HyperGEN
Significant cumulative effect of non-synonymous or
stop-gain SNPs (p = 0.02) but not synonymous SNPs
(p = 0.73)
The joint effect of rs12048828, rs9730100, and 19 rare
variants was not statistically significantly associated
with DBP (p = 0.07) or SBP (p = 0.53)
The joint effect of the 2 GWAS SNPs and 16
non-synonymous SNPs was significant for DBP
(p = 0.03) but not for SBP (p = 0.41)
PCSK9 rare variants had a cumulative significant
association with SBP (p = 0.04) but not with DBP
(p = 0.36) in REGARDS data. Same results when
restricted to 15 non-synonymous SNPs (p = 0.04 for SBP,
p = 0.40 for DBP)

Tran et al. [29]

Discovery: 140,886
Replication: >330,000

Customized array
with genome-wide
imputation based on
1000 Genomes and
UK10K sequence data

Analysis of SNVs with MAF ≥ 1% and
MAF ≥ 0.01% within UK Biobak European SBP, DBP, PP Linear regression

107 loci validated with p < 5 × 10−8

The impact of the combination of all loci accounts for
9.3 mmHg higher SBP and over 2-fold higher risk
of HTN

Warren et al. [37]

6026

Infinium
HumanExome-12 ver.
1.2 BeadChip and
Infinium Exome-24
ver. 1.0-Illumina

Longitudinal EWAS for HTN Japanese SBP, DBP GEE model

7 HTN-related SNVs detected, 6 of these variants were
located at 12q24.1, creating an East Asian-specific
haplotype comprising five derived alleles
People carrying the East Asian-specific haplotype
displayed a HTN prevalence significantly lower than
those individuals carrying a common haplotype. A SNV
in COL6A5 gene was significantly associated with SBP

Yasukochi et al.
[30]

Sample number (N), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Pulse Pressure (PP), Mean Artery Pressure (MAP), Hypertension (HTN), Single Nucleotide
Polymorphism (SNP), Genome-Wide Association Studies (GWAS), Single Nucleotide Variant (SNV), Minor Allele Frequency (MAF), Exome-Wide Association Studies (EWAS), Cleveland
Family Study (CFS), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), Atherosclerosis Risk in Communities (ARIC), Coronary Artery Risk Development
in Young Adults (CARDIA), Africa America Diabetes Mellitus (AADM), The Genetic Epidemiology Network of Arteriopathy (GENOA), Howard University Family Study (HUFS),
Hypertension Genetic Epidemiology Network (HyperGEN), Loyola University Chicago (LUC), Congenital heart disease (CHD) Exome+, The Genetics of Type 2 Diabetes Consortium
(GoT2D)/Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES), REasons for Geographic And Racial Differences in Stroke
(REGARDS), Framingham Heart Study (FHS), Standard Error (se), Beta as standardized mean difference (Betasst), SeqMeta Beta (Betassm), Efficient and Parallelizable Association Container
Toolbox (EPACTS), Efficient Mixed-Model Association eXpedited (EMMA eXpedited), Genome-Wide Efficient Mixed Model Association (GEMMA), Sequence Kernel Association Test
(SKAT), Optimal Unified Test (SKAT-O), SKAT-Combined (SKAT-C), Cohort Allelic Sums Test (CAST), Combined Multivariate and Collapsing (CMC), Weighted-Sum (w-SUM), Simple
Sum Test (SST), Variable-Threshold (VT), Replication-Based Weighted-Sum Statistic (RBS), Functional Principal Components Analysis (FPCA), Generalized Estimating Equation model
(GEE model), burden test on deleterious variants (burden-T1-del).
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This chip was produced in order to meet the need of moving from relatively frequent variants
derived from GWAS to functional variants located in coding regions. The array constitutes an
intermediate choice between GWAS and NGS of large number of samples in terms of both cost
and practical issues. The Exome Chip was designed on genome and exome sequencing data of
16 contributing studies, reaching a total of 12,031 subjects. In the array, 247,039 markers were
assayed including 84% rare variants, 9.2% low-frequency variants, and only 5.8% common variants
which were identified more than three times in at least two different datasets. Most variants
(>90%) are non-synonymous or splicing variants that were absent in previously available chips.
Genotyped individuals were mostly of European American ancestry which led to some concerns about
the evolutionary young age of variants and population-specific results. The Exome Chip consortia
provided information on several common diseases, including cardiovascular disease (Available online:
http://genome.sph.umich.edu/wiki/Exome_Chip_Design) [39].

In 2015, Sung and colleagues [28] reported the results of rare and low-frequency single variants
and four sets of gene-based analyses using Exome Chip data on 2045 African-American subjects from
the HyperGEN cohort. Neither Single Nucleotide Variants (SNVs) nor gene level analyses reached
genome-wide Bonferroni-corrected thresholds (p < 6.4 × 10−7 for SNVs; p < 2 × 10−6 with MAF < 1%
and p < 3.9 × 10−6 with MAF < 5%) [28].

The same cohort was used for analyses focused on both rare (through the Exome Chip) and
common (using the AffymetrixGenome-WideHumanSNP6.0 Array) variants within the PCSK9 gene in
relation to BP traits. PCSK9 is a protease able to interact with the three subunits of the renal epithelial
sodium channel (ENaC). This interaction consequently increases proteasomal degradation of the ENaC
which regulates sodium reabsorption [40]. Among the 31 SNPs identified, none of the associations
were statistically significant (p > 0.05). The cumulative effect of rare variants (mostly non-synonymous
or stop-gain SNVs) detected in PCSK9 was significantly associated with DBP in HyperGEN (p = 0.04)
and to SBP in REGARDS data (p = 0.04). The disparity in the associated phenotypes was probably due
to differences in the age of populations [29].

Alteration in lipid levels is strongly related to hypertension [41], and a pleiotropic effect
of lipid-associated loci on hypertension could be speculated. To investigate this, the group of
Kim et al. [38] interrogated 135 Exome Chip SNVs for associations with ten cardiometabolic traits in
14,028 Korean individuals. Three new common variants in the BRAP, ACAD10, and ALDH2 genes
within the 12q24.12 locus were significantly associated with both SBP and DBP (p < 1.09 × 10−4; effect
sizes between −1.53 ± 0.32 and −0.78 ± 0.20). The locus was also associated with High-Density
Lipoprotein (HDL), Low-Density Lipoprotein (LDL), triglycerides, fasting plasma glucose, body mass
index, and waist–hip ratio (p < 1.06 × 10−2; effect sizes between −7.60 ± 1.72 and 2.55 ± 0.53) [38].
Successively, a longitudinal Exome-Wide Association Study (EWAS), which is a genotyping method
restricted to exonic SNVs using Illumina exome chips, allowed the detection of six hypertension-related
SNVs at the 12q24.1 locus, creating an East Asian-specific haplotype comprising five derived alleles.
The study was conducted in 6026 Japanese individuals whose disease progression and physiological
changes were traced for several years during annual health check-ups. The rationale of this study
was the observation that SBP, DBP, and the prevalence of hypertension are significantly correlated
with age, while conventional GWAS have commonly been conducted in a cross-sectional manner
measuring traits at a single point in time. People carrying the East Asian-specific haplotype displayed
a hypertension prevalence significantly lower than those individuals carrying a common haplotype
(mean Odds Ratio (OR) = 0.78, p < 1.0 × 10−8). Furthermore, using a recessive model, an SNV located
within the COL6A5 gene, was significantly associated with SBP (Estimate: −2.93; p = 2.3 × 10−8) [30].

Stop codons are highly likely to alter protein function affecting BP-related traits, and, for this
reason, Ohlsson et al. [31] focused the aim of their work on the relationship between BP and protein
truncating variants in the genotypes of 5453 Swedish people. They reported 19 SNVs associated
with SBP with a p value < 0.05. The PDE11A R307X mutation conferred a 7 mmHg higher SBP and
a 4.6 mmHg higher DBP (β coefficients = 7.0 (1.8–12) for SBP corrected, p = 0.009 and 4.6 (1.8–7.4)

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
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for DBP corrected, p = 0.001) and was previously described as a loss-of-function mutation linked to
familial hypertension and Cushing’s syndrome [42]. The stop codon mutation caused a three-fold
increased risk of hypertension in female carriers (OR = 3.1 (95% CI, 1.3–7.4), p = 0.009).

Two very large meta-analyses were then published at the same time to identify novel coding
variants and loci influencing BP traits and hypertension. In the first meta-analysis, Surendran et al. [32]
genotyped 192,763 subjects, mostly of European descent, in the discovery phase. Fifty-one genomic
regions were found to be significantly associated with at least one of the following BP traits: SBP,
DBP, PP, and hypertension in the discovery analysis (p < 5 × 10−8). Thirty novel SNVs replicated
in 155,063 multiethnic populations (p < 6.2 × 10−4; βs: −1.43−2.70). Among these, rare putative
functional variants were identified within A2ML1, COL21A1, RRAS, RBM47, and ENPEP genes.
Interestingly, intersecting previous GWAS data with Exome Chip data revealed five out 35 known
loci which likely had rare coding functional variants. The second large meta-analysis was conducted
on all ancestry subjects from the same five consortia described in Surendran et al. [32], reaching a
total sample number of 327,288. Here, the authors identified 31 additional new loci with statistically
significant associations with one of the BP traits (p < 3.4 × 10−7). Three variants had frequencies
between 1% and 5% and were non-synonymous substitutions in NPR1 (already established), SVEP1,
and PTPMT1 (novel genes) with a p value less than 3.4 × 10−7 when corrected for multiple testing.
To note, the BP increment attributable to any of these low-frequency variants (>1.5 mmHg) was
higher than any of the novel common SNPs described here. Low-frequency and frequent SNVs with
non-synonymous, stop-coding, and splicing effects were aggregated using burden tests to identify
new gene-based associations. These analyses showed significant results for NPR1 (p = 4.4 × 10−5)
and marginally for PTPMT1 and DBH genes (p = 0.019 and 0.053, respectively). Considering that an
overlap between cardiovascular-specific pathways and metabolic disease-related factors was observed,
the authors suggested a shared origin between the phenotypes that could be exploited for new drugs
discovery [33].

In the most recent meta-analysis on Exome Chip data, Nandakumar et al. [34] screened 15,914
individuals of African ancestry to detect novel genes and BP-related SNVs considering the full spectrum
frequency. Nine rare SNVs (mostly missense) within eight genes (SLC28A3, KRBA1, SEL1L3, YOD1,
COL6A1, CRYBA2, GAPDHS, and AFF1) exhibited Bonferroni-corrected associations with SBP or DBP
(SeqMeta βs (βssm): 21.10 (4.12)–73.65 (13.19); p < 4.6 × 10−7) and the CCDC13, QSOX1 genes were also
described through burden test including only predicted damaging variants (Betassm: 54.38 (10.68) and
32.93 (7.13), respectively; p < 3.86 × 10−6). By contrast, no significant results were obtained considering
common and low-frequency variations.

Linkage analysis can have good power to detect multiple rare or lower frequency BP variants in
a gene or region with relatively larger effect sizes [43]. However, the identified linkage regions from
well-designed linkage family studies [44–46] did not overlap with many BP loci identified by large BP
GWAS of mostly unrelated individuals. Therefore, He and colleagues [35] applied variance-component
linkage analysis to the Cleveland Family Study (CFS) to identify candidate genomic regions related to
SBP, DBP, and PP. Since the region identified (16p13) showed no overlapping with any SNPs derived
from previous GWAS, 517 individuals from the CFS who had been genotyped using the Illumina
OmniExpress Exome array [39], were screened for variants within the 16p13 locus. At a gene-based
level, the association between the aggregation of five rare variants within the RBFOX1 gene and SBP as
well as PP traits replicated in the meta-analysis of a large sample of 57,234 participants (p < 1.71 × 10−2).
This gene encodes for the Ataxin-2 Binding Protein 1 whose genetic variations were suggested to have a
protective effect on BP levels, although the underlying mechanisms remain to be clarified [35].

The UK Biobank is a huge prospective cohort including 500,000 individuals of European ancestry
recruited to investigate genetic and non-genetic factors underlying diseases that takes advantage
of many phenotypes and biological samples [47]. Genotypes obtained through a customized array
in addition to genome-wide imputation based on 1000 Genomes and UK10K sequence data, and
information related to BP traits, were retrieved for 140,886 participants included in the discovery
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phase of the study conducted by Warren and colleagues [37]. Both GWAS and exome analyses were
performed to identify SNVs with MAF ≥ 1% and MAF ≥ 0.01%. Among the 240 loci derived from the
discovery phase, 102 GWAS and five exome variants with p < 5 × 10−8 were reported. Noteworthy, a
9.3 mmHg higher SBP was observed after comparing subjects with the highest genetic risk score
(estimated on the basis of all the loci identified) and above 50 years old with those with the lowest
genetic risk score (95% CI: 6.9–11.7, p = 1 × 10−13) [37]. In the recently published paper from Pazoki and
coauthors [48], the 267 SNPs identified by Warren et al. [37] were combined with the 47 BP-associated
loci reported by Hoffman et al. [11] to calculate a genetic risk score for high BP in 277,005 subjects
belonging to the prospective UK Biobank cohort. A healthy lifestyle score was also constructed for all
the individuals in order to investigate whether the adherence to a favorable lifestyle could counteract
the high genetic susceptibility to develop hypertension and cardiovascular diseases. The authors
reported an association between healthy lifestyle and lower SBP and DBP within each tertile of genetic
risk. In particular, at low genetic risk, the estimated mean SBP was 140 mmHg (95% CI, 102–177)
among subjects with an unhealthy lifestyle and 134 mmHg (95% CI, 95–172) among those with a
healthy lifestyle.

To date, the largest meta-analysis on exome chips data was conducted on 475,000 individuals
(mostly European) genotyped using the UK BiLEVE array and the UK Biobank Axiom Array.
These arrays are closely related new next-generation microarrays (95% identical content) designed from
the Affymetrix Company. More than 800,000 markers were included to comprehensively cover beyond
common SNPs, rare and low-frequency coding variants, copy number variants, pharmacogenomics
markers, Human Leukocyte Antigen (HLA), inflammation, and eQTL variants. Among rare variants,
in addition to primarily missense mutations, protein truncating variants resulting in premature
stop codons, frameshifts, and loss of start mutations were included as loss-of-function variants.
The genomic coverage was optimized for European and British populations. The array provided the
opportunity to test the association between a wide range of genetic variations and many frequent
human diseases, including cardiovascular disease and cardiometabolic traits such as BP (Available
online: http://www.ukbiobank.ac.uk); [49]. In the paper from Kraja and colleagues [36], 21 SNVs
showed significant associations with at least one BP trait, after correcting for multiple testing
(p < 5 × 10−8; βs(se): −1.14 (0.19)–0.42 (0.06)). Moreover, all variants had concordant directions
across all the datasets. Only one SNV (in the DBH gene) had a MAF less than 1% and exhibited the
lowest effect estimate (βs(se): −1.14 (0.19); p = 1.23 × 10−9). Four novel associations of common SNPs
within SLC4A1AP, AFAP1, STAB1, and SYNPO2L genes were reported [36].

2.3. Results from DNA Sequencing Studies

Large-scale genotyping through high-throughput platforms opened the way to great efforts aimed
at discovering the causative variants explaining the associations described.

2.3.1. Pre-Next-Generation Sequencing Era

Direct sequencing represented an easy way to characterize hypertension-related genes embedding
SNPs found through GWAS. Okuda et al. [50] validated 143 SNPs identified in a small Japanese
population. Among these SNPs, most had frequencies higher than 5% and caused amino acid
substitutions, whereas almost all novel variants were rare (13 out of 16).

Genetic Epidemiology Network of Salt Sensitivity (GenSalt) study participants were recruited to
evaluate SBP, DBP, and MAP responses to a dietary sodium intervention. The renin-angiotensin
-aldosterone system (RAAS) is a hormonal cascade essential for the control of homeostasis, BP,
and vascular tone [51,52]. In the first re-sequencing study focused on the RAAS pathway, Kelly
and coauthors [53] analysed seven genes for putative associations with BP salt-sensitivity among
participants of the GenSalt study. Carriers of 124 rare variants had 1.55-fold increased odds (95%
CI: 1.15, 2.10) of salt sensitivity compared to non-carriers (p = 0.004). No genes showed significant
associations with salt sensitivity after Bonferroni correction. No significant common and low-frequency

http://www.ukbiobank.ac.uk
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single markers were detected when the analyses were corrected for multiple comparisons [53].
The reabsorption of sodium in epithelial cells located in the renal tubule is carried out by the renal
epithelial sodium channel (ENaC) whose activity is fundamental for BP control [54]. SCNN1A, SCNN1B,
and SCNN1G genes encode the three ENaC subunits [55]. These genes were targeted by Gu et al. [56]
to identify novel common, low-frequency, and rare variants in 300 GenSalt participants with the
highest MAP response to the high-sodium intervention and 300 GenSalt participants with the lowest
MAP response to the high-sodium intervention. No significant associations with salt sensitivity were
observed. In gene-based analyses, SCNN1A gene showed a significant association with salt sensitivity
(p = 0.009). Individuals carrying rare variants in SCNN1A gene had an odds ratio of 0.52 (95% CI:
0.32–0.85). Neither SCNN1G nor SCNN1B associated with salt sensitivity in rare variant analyses.
Three common variants in SCNN1A associated with salt sensitivity of BP (p < 1.3 × 10−3; 1.23-fold
increased odds and 0.68–0.69-fold decreased odds of salt sensitivity) [56].

Another suggested candidate gene for hypertension is represented by the Cadherin-13 gene
(CDH13). CDH13 encodes a cell adhesion molecule involved in the protection of vascular
endothelial cells from apoptosis following oxidative stress, survival, proliferation, and endothelial
cells migration [57–59]. The promoter region was re-sequenced and subjected to methylation QTL
(meQTL) analysis within the HYPertension in ESTonia (HYPEST) and Coronary Artery Disease in
Czech (CADCZ) studies. The meQTL rs8060301 (a frequent variant) showed a pleiotropic effect on
HDL and DBP (nominal p < 0.005), which was unconfirmed after multiple testing correction [60].

2.3.2. Results from Next-Generation Sequencing Studies

GWAS identified more than 100 genetic variants influencing BP [13]. However, the causal variants
underlying the majority of genetic associations remained unknown. In recent years, three different
NGS approaches have been proposed to study rare variants in hypertension and BP (Table 3).

The first approach is to check GWAS signals and describe novel associations by performing a
re-sequencing of only a few genes previously indicated by GWAS. This approach, commonly called
target re-sequencing, is cheaper and allows one to highlight the variations within the whole frequency
spectrum in a precise genomic locus. The strategy was adopted by the CHARGE Consortium. In the
frame of this consortium, the signals identified by precedent GWAS were re-sequenced with the aim of
describing novel variations with large effects on several common diseases [74]. Concerning BP, within
the CHARGE Targeted Sequencing Study, target re-sequencing of 4178 Europeans was performed
on six BP genes identified by GWAS (ATP2B1, CACNB2, CYP17A1, JAG1, PLEKHA7, and SH2B3),
however, neither common nor rare variants were consistently associated with the trait with large effect
sizes, independently of the original GWAS signals [63].

Regarding hypertension, an association with rs3918226 in the eNOS gene promoter was described
in the GWAS from Salvi et al. [75] (OR for minor allele T = 1.34 (95% CI, 1.25–1.44); p = 1.03 × 10−14).
In 2013, a 140 kb genomic area encompassing the eNOS gene was re-sequenced from the same group.
The study identified 338 variants, including 61 novel variants, and rs3918226 still appeared as the SNP
most closely associated with hypertension. Moreover, if compared with the C major allele, the T risk
allele was associated with lower eNOS transcriptional activity when tested in HeLa cells [64].

A second approach is whole exome sequencing (WES) in which only the coding portions of the
genome, (about 2%), estimated to harbor 85% of disease-causing mutations, are sequenced [76]. A WES
study was performed on DNA samples from 17,956 individuals of European and African ancestries,
included in the CHARGE, National Heart, Lung, and Blood Institute GO Exome Sequencing Project,
Rotterdam Study, and the Erasmus Rucphen Family cohorts. These findings implicated the effect of the
aggregation of 95 rare coding variants in CLCN6 on decreasing BP levels of 3–4 mmHg, independently
of the tagging SNP rs17367504 previously reported. The effect size described here was about four- to
six-fold larger than previous common BP variants from GWAS [66].



Int. J. Mol. Sci. 2018, 19, 688 10 of 21

Table 2. Results from Next-Generation Sequencing Studies.

N Technology Design Population BP Trait Statistical Analysis Main Results References

1851 WES
Haplotype association analysis for
ULK4 and MAP4 genes within the
GAW19 data set

Mexican American SBP, DBP, HTN SKAT; SKAT-O;
SKAT-C

• 36 rare haplotype blocks associated with
BP in ULK4 gene and 10 in MAP4 gene

Datta et al. [61]

1985 unrelated subjects and
1140 relatives WES

Screening of SLC12A3, SLC12A1 and
KCNJ1 genes exons to identify rare
variants within FHS offspring cohort

Largely whites of
European descent SBP, DBP Two-tailed paired

t-test

• 30 different mutations observed
• Mean long-term SBP among mutation

carriers was 6.3 mmHg lower than the
mean of the cohort (p = 0.0009). For DBP,
mean effect was −3.4 mmHg (p = 0.003)

Ji et al. [62]

4178 Target-re-sequencing
Case-cohort study design within the
CHARGE Targeted Sequencing Study
on 6 BP loci

European SBP, DBP, PP, MAP Kernel association test

• None of the common variants reached
statistical significance threshold of
p = 0.0001

• Rare variation was not significantly
associated with any of the BP measures

Morrison et al. [63]

92 (HYPERGENES
study)2722 (BP cohort)2013
(HTN cohort)

Target-re-sequencing

Target re-sequencing of a 140-Kb
DNA region of Chr. 7 to identify
causal or functional variants tagged
by the rs3918226 SNP

Flemish SBP, DBP, HTN Multivariable-adjusted
models

• 61 novel variants detected by DNA
sequencing and confirmed by
array-based genotyping

• rs3918226 remained the SNP most closely
associated with HTN

• The risk allele was associated with lower
transcriptional activity of the eNOS gene

Salvi et al. [64]

103 WGS
Case-control study on rare variants
in unrelated subjects within GAW18
data set

Mexican American SBP, DBP, HTN qMSAT; C-alpha;
CMC

• Rare variants in SETX gene intronic region
were significantly associated, as aggregate,
with hypertension (OR = 9.5, 95% CI (3.43,
28.70); p = 8.8 × 10−7)

Wang and Wei.
[65]

Discovery: 14,497 in first
stage and 3459 in second
stage

WES

To examine the impact of rare
variants in CHARGE and ESP studies
with meta-analysis of two-stage
discovery cohorts

European and
African ancestry SBP, DBP, PP, MAP T1; SKAT

• 95 rare coding variants identified in CLCN6
associated, in aggregate, with decreased BP
(3–4 mmHg), independent of the tagging
SNP rs17367504 previously identified

• The effect size was about four- to six-fold
larger than previous common BP variants
from GWAS

Yu et al. [66]

142 WGS

Test for the effects of both rare and
common variants across the whole
genome of unrelated individuals
within the GAW18 study

Mexican American SBP, DBP, HTN FBAT; GCTA; SKAT
• Significant windows within Chr. 3 were

reported for associations with SBP and DBP.
The most represented gene was MAP4

Zhao et al. [67]

1509 unrelated subjects; 256
individuals in 47 families WGS and WES

To apply CAPL-burden and
CAPL-SKAT tests to the GAW19 data
set using the combined family and
case–control data for HTN (GAW19)

Mexican American SBP, DBP, HTN CAPL-burden;
CAPL-SKAT

• None of the tests for the top 10 genes
passed the multiple testing correction
threshold (p = 3.4 × 10−6)

Lin et al. [68]

142 WGS
WGS and gene expression joint
analysis in relation to SBP, DBP, and
HTN (GAW19)

Mexican American SBP, DBP, HTN Weighted U approach • No gene reached statistical significance
after adjusting for multiple testing

Tong et al. [69]
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Table 3. Results from Next-Generation Sequencing Studies.

N Technology Design Population BP Trait Statistical Analysis Main Results References

1509 unrelated subjects; 256
individuals in 47 families WGS and WES

To apply CAPL-burden and
CAPL-SKAT tests to the GAW19 data
set using the combined family and
case–control data for HTN (GAW19)

Mexican American SBP, DBP, HTN CAPL-burden;
CAPL-SKAT

• None of the tests for the top 10 genes
passed the multiple testing correction
threshold (p = 3.4 × 10−6)

Lin et al. [68]

142 WGS
WGS and gene expression joint
analysis in relation to SBP, DBP, and
HTN (GAW19)

Mexican American SBP, DBP, HTN Weighted U approach • No gene reached statistical significance
after adjusting for multiple testing

Tong et al. [69]

1851 WES To apply W-test on real NGS data set
of hypertensive disorder (GAW19) Mexican American SBP, DBP, HTN W-test

• MACROD1/LRP16 locus was associated
with HTN after Bonferroni correction (OR
= 3.8; p = 6.1 × 10−7)

Sun et al. [70]

275 trios WGS
To analyse rare variants within
ADCY5 and UBE2E2 genes in
parent-child trios (GAW18)

Mexican American SBP, DBP, HTN Trio-SVM

• ADCY5 and UBE2E2 genes showed
marginal association with HTN with
p = 3.2 × 10−4 for ADCY5 and p = 0.035 for
UBE2E2

Lu and Cantor.
[71]

103 unrelated individuals WGS To analyse rare variants from Chr. 3
(GAW18) Mexican American SBP, DBP, HTN SKAT-O

• No significant results in the analysis of real
phenotype data (p = 5.6 × 10−5 for coding
variants; p = 6.9 × 10−5 for changing
variants; p = 1.1 × 10−4 for
damaging variants)

Derkach et al. [72]

783 (GWAS); 506 (WGS) WGS To apply USR algorithm to data from
GAW18 Mexican American SBP, DBP, HTN USR algorithm

• 23 promising genes and 3 significant
pathways relevant to HTN identified
(p < 5.28 × 10−3)

Cao et al. [73]

Sample number (N), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Pulse Pressure (PP), Mean Artery Pressure (MAP), Hypertension (HTN), Single Nucleotide Polymorphism
(SNP), Genome-Wide Association Studies (GWAS), Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES), Genetic Analysis Workshop (GAW), Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE), Exome Sequencing Project (ESP), Sequence Kernel Association Test (SKAT), Optimal Unified Test (SKAT-O), SKAT-Combined (SKAT-C),
Quality-based Multivariate Score Association Test (qMSAT), Combined Multivariate and Collapsing (CMC), Family-based Association Test (FBAT), Genome-wide Complex Trait Analysis
(GCTA), Combined Association in the Presence of Linkage (CAPL), support vector machine (SVM), Unified Sparse Regression (USR), Odds Ratio (OR).
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Two additional studies exploited WES data to focus on selected genes. Loss-of-function mutations
in SLC12A3, SLC12A1, and KCNJ1 genes, essential for normal renal NaCl reabsorption, cause Bartter’s
and Gitelman’s syndromes. Their exons were screened to search for rare heterozygous variants within
the Framingham Heart Study offspring cohort. Thirty different mutations were observed. The mean
long-term SBP among mutation carriers was 6.3 mmHg lower than the mean of the cohort (p = 0.0009).
For DBP, the mean effect was −3.4 mmHg (p = 0.003) [62]. Findings from previous GWAS indicated
ULK4 and MAP4 genes, encoding, respectively, a Serine/Threonine-Protein Kinase and a non-neuronal
microtubule-associated protein, as related to BP and hypertension [8,77]. Thirty-six rare haplotype
blocks were found to be significantly associated with BP in ULK4 gene, and ten in MAP4 gene [61].
The study described above was conducted in the frame of the Genetic Analysis Workshops (GAWs).
Since 1982, GAWs were held by a group of multidisciplinary scientists to deal with the role of genetics
in complex diseases. For GAW18, GT2D-GENES Consortium and the San Antonio Family Heart
Study provided data on the whole genome, systolic and diastolic BP, and related covariates in two
Mexican American samples. In the GAW19, new data were included reaching a collection of WGS,
WES, and gene expression data from 20 large families in addition to a set of 1943 unrelated subjects
whose exome sequences were available. Simulated phenotypes were also included for each sample
on the basis of the real sequence data [78]. Several papers have been published so far, mostly on
methodological approaches (see the following paragraph “Statistical analysis of rare variants”) to
handle rare variations in relation to hypertension.

The third and most comprehensive NGS approach to examine the effect of rare variants is
represented by WGS. Until now, to the best of our knowledge, only studies published within the
GAWs analysed WGS data (Table 3) to search for genetic variations associated to hypertension, likely
because a very large sample is needed to highlight rare variants, and this feature heavily affects the
costs of the study. Three studies failed to identify significant associations after correction for multiple
testing [68,69,72]. In the frame of the GAW18, Zhao et al. used novel sliding window approaches
and a simulated dataset to analyse 142 unrelated individuals focusing on chromosome 3. The most
significant windows fell into the known MAP4 gene, considering both SBP and DBP. Other windows
were reported within SUMF and ARHGF3 genes in relation to DBP, and in FLNB and BTD for SBP [67].
Wang and Wei performed a gene-based genome-wide scan of 103 unrelated individuals to search for
hypertension-associated genes. After using three different methods, only the SETX gene exhibited
significant association. This gene consists of large intronic regions; indeed, most of the rare variants
detected fall in intronic regions. The risk of hypertension, estimated after collapsing all the intronic
variants, was 9.5 (OR = 9.5, 95% CI (3.43, 28.70); p = 8.8 × 10−7) [65]. Other significant findings were
reported within the MACROD1/LRP16 locus [70], ADCY5, and UBE2E2 genes [71], and in an additional
23 genes [73] using different statistical approaches.

3. Statistical Analysis of Rare Variants

Gene-based association tests evaluate the relationship of rare variants enrichment in genes and
phenotype or Mendelian and common diseases [79]. Region-based analysis has become the standard
approach for analyzing rare variants, since standard individual variant tests are underpowered to
detect rare variant effects because of the low allele frequencies. Statistical methods to test for rare
variants can be categorized as burden approach [80–82] and SKAT (Sequence Kernel Association
Test) approach [74,83]. Burden tests assume all rare variants in the target region have effects on the
phenotype in the same direction and of similar magnitude [84,85], but they undergo a considerable
loss of power in the presence of a large number of non-causal variants or in the presence of protective,
deleterious, and null variants [86,87]. SKAT aggregates genetic information across the region
using a kernel function and uses a computationally efficient variance component test to test for
association. CMC (Combined Multivariate and Collapsing Method) collapses variants in subgroups
according to allele frequencies and combines these subgroups using a T1 test [66,88]. Compared with
population-based methods, family-based methods have more power and can prevent bias induced by
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population substructure [89]. The optimal weight was first proposed by Sha and coauthors in 2012 [90]
in a population-based test called TOW (Test for the effect of an Optimally Weighted combination of
variants) by assuming the independence among rare variants. FamSKAT [91], which accounts for
familial correlation based on kinship coefficients in a linear mixed model, may be able to use both
family and unrelated samples (developed for quantitative traits). Wang and coauthors in 2016 [92]
proposed four weighting schemes for the family-based rare variants test (FBAT-v) [93]. Lee and
coauthors in 2012 [94] derived the optimal test SKAT-O by estimating the correlation parameter in
the kernel matrix to maximize the power, which corresponds to the estimated weight in the linear
combination of the burden test and SKAT test statistics that maximizes power. Lin and coauthors
in 2016 [68] extended the CAPL (Combined Association in the Presence of Linkage) [95] test, using
both case-control and family data for testing from common variants to rare variant associations.
A similarity-based weighted U approach is used to model the joint association analysis of sequencing
variants and gene expression [69]. Sun and coauthors in 2016 [70] introduced a W-test collapsing
method to evaluate rare variant associations by measuring the distributional differences between cases
and controls through combined log of odds ratio within a genomic region. Wang and coauthors in
2016 [96] developed SKAT+, an estimation method that uses only control subjects; it has superior
power over SKAT, while maintaining control over the type I error rate. Lu and coauthors in 2014 [71]
reported the development and application of Trio-SVM (Support Vector Machine) approach that
aggregates and evaluates the transmission of rare variants. The focus of Derkach and coauthors in
2014 [72] confirmed that Fisher’s method is not only robust but can also improve power over individual
pooled linear and quadratic tests and is often better than other robust tests such as SKAT-O. Cao and
coauthors in 2014 [73] developed a USR (Unified Sparse Regression) to incorporate prior information
and jointly adjust for cryptic relatedness, population structure, and other environmental covariates;
qMSAT (Quality-based Multivariate Score Association Test) [97] and SSU (Sum of Squared U) statistic
tests [98] were equivalent to the SKAT.

4. Conclusions and Perspectives

Thanks to the introduction of exome arrays technologies, great efforts have been conducted to
extend association analyses to rare and coding variants. Recently, the joint work of large consortia
allowed the interrogation of hundreds of thousands of SNVs in up to 475,000 individuals [28–38];
(Table 1). Some new low-frequency and rare variants have been reported that are consistently associated
with BP traits, with size effects higher than 1.5 mmHg, and that should undergo deep functional testing.
Considering the single variant analyses described here, the largest effect, to date, was observed for a
rare missense SNV in the KLH3 gene in relation to SBP (8.2 mmHg with se = 4.1) [37]. Despite the large
sample size (up to 422,604 subjects for the exome analysis), the study from Warren and coauthors was
still underpowered to identify rare variants with statistical significance. When considering the joint
impact of 107 mostly common variants, a 9.3 mmHg higher SBP was reported for subjects >50 years
and carrying the highest genetic risk score [37]. This finding has potential implications concerning
early lifestyle interventions in high-risk individuals. In summary, although several complex networks
of interacting pathways controlling BP have been established (e.g., RAAS and ENaC-related pathways),
the current efforts on rare variants analysis have not yet provided a clear answer on where the missing
heritability lies.

The advent of NGS provided the opportunity to detect, in a high-throughput way, the entire
spectrum of genomic variation ranging from rare to common variants and from SNVs to insertions,
deletions, and copy number variants. Despite the undeniable advantages, few studies have been
conducted so far using NGS technologies in relation to hypertension and/or BP [61–67]; (Table 3).
WES and, more so, WGS costs are still too high to analyse the large sample size required to identify
rare variants. Target re-sequencing allows the cutting of laboratory costs and increases the statistical
power by reducing multiple signals testing, therefore, this approach could be useful to detect causative
variants underlying the trait by deeply analysing BP-associated loci described by GWAS. However, the
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studies reported here failed to identify new rare variants, likely because of the reduced sample size
compared to GWAS [63,64]. The joint effort of large consortia with available sequencing data would be
helpful to meet the need of a larger sample size.

Novel statistical approaches have been developed to overcome the limit imposed by the extremely
low frequencies. Also, these tests attempt to take into account the high heterogeneity of the genetic
regions in which both common and rare as well as causative and non-causative variants are more
likely to occur [99]. However, detecting the few true causative variants among the large number of
non-coding variants arising from NGS still represents a big challenge, and additional improvements to
better annotate and filter the variants are required.

Another main limitation of rare variants analysis is the study of gene-gene and gene-environment
interactions at a population level, which can be investigated only in terms of burden and collapsing
tests, with environmental factors playing, anyway, an important role in systemic hypertension.
Functional in vitro and in vivo models should further support the statistical interactions.

Rodent models represent an attractive genetic resource to functionally evaluate previously
identified rare variants overlapped with human loci. Several rat and mouse strains have been developed
for complex phenotypes, including hypertension, and exploited to perform QTL analysis and genome
sequencing [100–104]. Here, we reported the study of Vecchione et al. [27], in which, thanks to
experimental models, the authors clarified how a rare variant within the BPIFB4 gene, a possible genetic
risk factor for high BP, was implicated in the BP homeostasis by altering eNOS signaling.

It should also be considered that, as hypertension is an age-related condition, additional
longitudinal studies incorporating repeated measures of BP would be advantageous. Lastly, most
findings should be treated as trait-specific (SBP, DBP, PP, MAP, or hypertension) and population-specific.
The majority of studies reported findings deriving from European populations. Allele frequencies and
hypertension risk may differ among different geographic regions because of a selective pressure that
occurred during the Out-of-Africa Expansion [105].

In conclusion, as sequencing costs will sufficiently decrease to ensure the proper sample size, and
novel bioinformatic and biostatistical tools will be available for appropriate analyses, the identification
of functional rare and low-frequency variants could really contribute to solving the high complexity of
the genetics of hypertension and to elucidate whether new genes might improve patients care and the
stratification of patients to distinguish those who will respond best to antihypertensive treatments.
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Abbreviations

SBP Systolic Blood Pressure
DBP Diastolic Blood Pressure
PP Pulse Pressure
MAP Mean Artery Pressure
HTN Hypertension
SNV Single Nucleotide Variant
SNP Single Nucleotide Polymorphism
MAF Minor Allele Frequency
EWAS Exome Wide Association Studies
GWAS Genome-Wide Association Studies



Int. J. Mol. Sci. 2018, 19, 688 15 of 21

NGS Next Generation Sequencing
WGS Whole Genome Sequencing
WES Whole Exome Sequencing
CFS Cleveland Family Study
CHARGE Cohorts for Heart and Aging Research in Genomic Epidemiology
ARIC Atherosclerosis Risk in Communities
CARDIA Coronary Artery Risk Development in Young Adults
AADM Africa America Diabetes Mellitus
GENOA The Genetic Epidemiology Network of Arteriopathy
HUFS Howard University Family Study
HyperGEN Hypertension Genetic Epidemiology Network
CHD Congenital heart disease Exome+

T2D-GENES
The Genetics of Type 2 Diabetes Consortium (GoT2D)/Type 2 Diabetes Genetic
Exploration by Next-generation sequencing in multi-Ethnic Samples

REGARDS REasons for Geographic And Racial Differences in Stroke
FHS Framingham Heart Study
GAW Genetic Analysis Workshop
ESP Exome Sequencing Project
Betasst Beta as standardized mean difference
Betassm SeqMeta Beta
EPACTS Efficient and Parallelizable Association Container Toolbox
EMMA eXpedited Efficient Mixed-Model Association eXpedited
GEMMA Genome-Wide Efficient Mixed Model Association
SKAT Sequence Kernel Association Test
SKAT-O Optimal Unified Test
SKAT-C SKAT-Combined
CAST Cohort Allelic Sums Test
CMC Combined Multivariate and Collapsing
w-SUM Weighted-Sum
SST Simple Sum Test
VT Variable-Threshold
RBS Replication-Based Weighted-Sum Statistic
FPCA Functional Principal Components Analysis
FBAT Family-based Association Test
GEE model Generalized Estimating Equation model
burden-T1-del burden test on deleterious variants
qMSAT Quality-based Multivariate Score Association Test
GCTA Genome-wide Complex Trait Analysis
CAPL Combined Association in the Presence of Linkage
SVM support vector machine
USR Unified Sparse Regression
GLM Generalized Linear Model
OR Odds Ratio
N Sample number
se Standard Error
CI Confidence Interval

References

1. Oparil, S.; Zaman, M.A.; Calhoun, D.A. Pathogenesis of hypertension. Ann. Intern. Med. 2003, 139, 761–776.
[CrossRef] [PubMed]

2. Dart, A.M.; Kingwell, B.A. Pulse pressure—A review of mechanisms and clinical relevance. J. Am. Coll. Cardiol.
2001, 37, 975–984. [CrossRef]

http://dx.doi.org/10.7326/0003-4819-139-9-200311040-00011
http://www.ncbi.nlm.nih.gov/pubmed/14597461
http://dx.doi.org/10.1016/S0735-1097(01)01108-1


Int. J. Mol. Sci. 2018, 19, 688 16 of 21

3. Henry, J.B.; Miller, M.C.; Kelly, K.C.; Champney, D. Mean arterial pressure (MAP): An alternative and
preferable measurement to systolic blood pressure (SBP) in patients for hypotension detection during
hemapheresis. J. Clin. Apher. 2002, 17, 55–64. [CrossRef] [PubMed]

4. Shrout, T.; Rudy, D.W.; Piascik, M.T. Hypertension update, JNC8 and beyond. Curr. Opin. Pharmacol. 2017,
33, 41–46. [CrossRef] [PubMed]

5. Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.;
Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable
to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global
Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [CrossRef]

6. Luft, F.C. Twins in cardiovascular genetic research. Hypertension 2001, 37, 350–356. [CrossRef] [PubMed]
7. Padmanabhan, S.; Caulfield, M.; Dominiczak, A.F. Genetic and molecular aspects of hypertension. Circ. Res.

2015, 116, 937–959. [CrossRef] [PubMed]
8. Levy, D.; Ehret, G.B.; Rice, K.; Verwoert, G.C.; Launer, L.J.; Dehghan, A.; Glazer, N.L.; Morrison, A.C.;

Johnson, A.D.; Aspelund, T.; et al. Genome-wide association study of blood pressure and hypertension.
Nat. Genet. 2009, 41, 677–687. [CrossRef] [PubMed]

9. Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.;
Verwoert, G.C.; Hwang, S.J.; et al. Genetic variants in novel pathways influence blood pressure and
cardiovascular disease risk. Nature 2011, 478, 103–109. [CrossRef] [PubMed]

10. Ehret, G.B.; Ferreira, T.; Chasman, D.I.; Jackson, A.U.; Schmidt, E.M.; Johnson, T.; Thorleifsson, G.; Luan, J.;
Donnelly, L.A.; Kanoni, S.; et al. The genetics of blood pressure regulation and its target organs from
association studies in 342,415 individuals. Nat. Genet. 2016, 48, 1171–1184. [CrossRef] [PubMed]

11. Hoffmann, T.J.; Ehret, G.B.; Nandakumar, P.; Ranatunga, D.; Schaefer, C.; Kwok, P.Y.; Iribarren, C.;
Chakravarti, A.; Risch, N. Genome-wide association analyses using electronic health records identify new
loci influencing blood pressure variation. Nat. Genet. 2017, 49, 54–64. [CrossRef] [PubMed]

12. The Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common
diseases and 3000 shared controls. Nature 2007, 447, 661.

13. Seidel, E.; Scholl, U.I. Genetic mechanisms of human hypertension and their implications for blood pressure
physiology. Physiol. Genom. 2017, 49, 630–652. [CrossRef] [PubMed]

14. Civelek, M.; Lusis, A.J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 2014,
15, 34–48. [CrossRef] [PubMed]

15. Fehrmann, R.S.; Jansen, R.C.; Veldink, J.H.; Westra, H.J.; Arends, D.; Bonder, M.J.; Fu, J.; Deelen, P.; Groen, H.J.;
Smolonska, A.; et al. Trans-eQTLs reveal that independent genetic variants associated with a complex
phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 2011, 7, e1002197.
[CrossRef] [PubMed]

16. Romanoski, C.E.; Lee, S.; Kim, M.J.; Ingram-Drake, L.; Plaisier, C.L.; Yordanova, R.; Tilford, C.; Guan, B.;
He, A.; Gargalovic, P.S.; et al. Systems genetics analysis of gene-by-environment interactions in human cells.
Am. J. Hum. Genet. 2010, 86, 399–410. [CrossRef] [PubMed]

17. Langley, S.R.; Bottolo, L.; Kunes, J.; Zicha, J.; Zidek, V.; Hubner, N.; Cook, S.A.; Pravenec, M.; Aitman, T.J.;
Petretto, E. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic
determinants of blood pressure in humans. Cardiovasc. Res. 2013, 97, 653–665. [CrossRef] [PubMed]

18. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.
2008, 9, 559. [CrossRef] [PubMed]

19. Burrello, J.; Monticone, S.; Buffolo, F.; Tetti, M.; Veglio, F.; Williams, T.A.; Mulatero, P. Is There a Role for
Genomics in the Management of Hypertension? Int. J. Mol. Sci. 2017, 18, 1131. [CrossRef] [PubMed]

20. Doris, P.A. The genetics of blood pressure and hypertension: the role of rare variation. Cardiovasc. Ther. 2011,
29, 37–45. [CrossRef] [PubMed]

21. Munroe, P.B.; Barnes, M.R.; Caulfield, M.J. Advances in blood pressure genomics. Circ. Res. 2013, 112, 1365–1379.
[CrossRef] [PubMed]

22. Jeppesen, J.; Berg, N.D.; Torp-Pedersen, C.; Hansen, T.W.; Linneberg, A.; Fenger, M. Fibrillin-1 genotype
and risk of prevalent hypertension: a study in two independent populations. Blood Press. 2012, 21, 273–280.
[CrossRef] [PubMed]

23. Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in
the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jca.10022
http://www.ncbi.nlm.nih.gov/pubmed/12210707
http://dx.doi.org/10.1016/j.coph.2017.03.004
http://www.ncbi.nlm.nih.gov/pubmed/28525818
http://dx.doi.org/10.1016/S0140-6736(12)61766-8
http://dx.doi.org/10.1161/01.HYP.37.2.350
http://www.ncbi.nlm.nih.gov/pubmed/11230299
http://dx.doi.org/10.1161/CIRCRESAHA.116.303647
http://www.ncbi.nlm.nih.gov/pubmed/25767282
http://dx.doi.org/10.1038/ng.384
http://www.ncbi.nlm.nih.gov/pubmed/19430479
http://dx.doi.org/10.1038/nature10405
http://www.ncbi.nlm.nih.gov/pubmed/21909115
http://dx.doi.org/10.1038/ng.3667
http://www.ncbi.nlm.nih.gov/pubmed/27618452
http://dx.doi.org/10.1038/ng.3715
http://www.ncbi.nlm.nih.gov/pubmed/27841878
http://dx.doi.org/10.1152/physiolgenomics.00032.2017
http://www.ncbi.nlm.nih.gov/pubmed/28887369
http://dx.doi.org/10.1038/nrg3575
http://www.ncbi.nlm.nih.gov/pubmed/24296534
http://dx.doi.org/10.1371/journal.pgen.1002197
http://www.ncbi.nlm.nih.gov/pubmed/21829388
http://dx.doi.org/10.1016/j.ajhg.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/20170901
http://dx.doi.org/10.1093/cvr/cvs329
http://www.ncbi.nlm.nih.gov/pubmed/23118132
http://dx.doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://dx.doi.org/10.3390/ijms18061131
http://www.ncbi.nlm.nih.gov/pubmed/28587112
http://dx.doi.org/10.1111/j.1755-5922.2010.00246.x
http://www.ncbi.nlm.nih.gov/pubmed/21129164
http://dx.doi.org/10.1161/CIRCRESAHA.112.300387
http://www.ncbi.nlm.nih.gov/pubmed/23661711
http://dx.doi.org/10.3109/08037051.2012.680750
http://www.ncbi.nlm.nih.gov/pubmed/22545955
http://dx.doi.org/10.1056/NEJM200003233421202
http://www.ncbi.nlm.nih.gov/pubmed/10733371


Int. J. Mol. Sci. 2018, 19, 688 17 of 21

24. Karaman, E.; Urhan Kucuk, M.; Bayramoglu, A.; Uzun Gocmen, S.; Ercan, S.; Guler, H.I.; Kucukkaya, Y.;
Erden, S. Investigation of relationship between IL-6 gene variants and hypertension in Turkish population.
Cytotechnology 2015, 67, 947–954. [CrossRef] [PubMed]

25. Gao, S.P.; Pan, M.; Chen, C.; Ge, L.J.; Jiang, M.H.; Luan, H.; Zheng, J.G.; Deng, X.T.; Pan, H.Y.; Zhu, J.H. The G
to A polymorphism at-597 of the interleukin-6 gene is extremely rare in southern Han Chinese. Cytokine
2011, 55, 1–3. [CrossRef] [PubMed]

26. Villa, F.; Carrizzo, A.; Spinelli, C.C.; Ferrario, A.; Malovini, A.; Maciag, A.; Damato, A.; Auricchio, A.;
Spinetti, G.; Sangalli, E.; et al. Genetic Analysis Reveals a Longevity-Associated Protein Modulating
Endothelial Function and Angiogenesis. Circ. Res. 2015, 117, 333–345. [CrossRef] [PubMed]

27. Vecchione, C.; Villa, F.; Carrizzo, A.; Spinelli, C.C.; Damato, A.; Ambrosio, M.; Ferrario, A.; Madonna, M.;
Uccellatore, A.; Lupini, S.; et al. A rare genetic variant of BPIFB4 predisposes to high blood pressure via
impairment of nitric oxide signaling. Sci. Rep. 2017, 7, 9706. [CrossRef] [PubMed]

28. Sung, Y.J.; Basson, J.; Cheng, N.; Nguyen, K.D.; Nandakumar, P.; Hunt, S.C.; Arnett, D.K.; Davila-Roman, V.G.;
Rao, D.C.; Chakravarti, A. The role of rare variants in systolic blood pressure: analysis of ExomeChip data in
HyperGEN African Americans. Hum. Hered. 2015, 79, 20–27. [CrossRef] [PubMed]

29. Tran, N.T.; Aslibekyan, S.; Tiwari, H.K.; Zhi, D.; Sung, Y.J.; Hunt, S.C.; Rao, D.C.; Broeckel, U.; Judd, S.E.;
Muntner, P.; et al. PCSK9 variation and association with blood pressure in African Americans: preliminary
findings from the HyperGEN and REGARDS studies. Front. Genet. 2015, 6, 136. [CrossRef] [PubMed]

30. Yasukochi, Y.; Sakuma, J.; Takeuchi, I.; Kato, K.; Oguri, M.; Fujimaki, T.; Horibe, H.; Yamada, Y. Longitudinal
exome-wide association study to identify genetic susceptibility loci for hypertension in a Japanese population.
Exp. Mol. Med. 2017, 49, e409. [CrossRef] [PubMed]

31. Ohlsson, T.; Lindgren, A.; Engstrom, G.; Jern, C.; Melander, O. A stop-codon of the phosphodiesterase 11A
gene is associated with elevated blood pressure and measures of obesity. J. Hypertens. 2016, 34, 445–451.
[CrossRef] [PubMed]

32. Surendran, P.; Drenos, F.; Young, R.; Warren, H.; Cook, J.P.; Manning, A.K.; Grarup, N.; Sim, X.; Barnes, D.R.;
Witkowska, K.; et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood
pressure and hypertension. Nat. Genet. 2016, 48, 1151–1161. [CrossRef] [PubMed]

33. Liu, C.; Kraja, A.T.; Smith, J.A.; Brody, J.A.; Franceschini, N.; Bis, J.C.; Rice, K.; Morrison, A.C.; Lu, Y.; Weiss, S.;
et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with
metabolic trait loci. Nat. Genet. 2016, 48, 1162–1170. [CrossRef] [PubMed]

34. Nandakumar, P.; Lee, D.; Richard, M.A.; Tekola-Ayele, F.; Tayo, B.O.; Ware, E.; Sung, Y.J.; Salako, B.;
Ogunniyi, A.; Gu, C.C.; et al. Rare coding variants associated with blood pressure variation in 15,914
individuals of African ancestry. J. Hypertens. 2017, 35, 1381–1389. [CrossRef] [PubMed]

35. He, K.Y.; Wang, H.; Cade, B.E.; Nandakumar, P.; Giri, A.; Ware, E.B.; Haessler, J.; Liang, J.; Smith, J.A.;
Franceschini, N.; et al. Rare variants in fox-1 homolog A (RBFOX1) are associated with lower blood pressure.
PLoS Genet. 2017, 13, e1006678. [CrossRef] [PubMed]

36. Kraja, A.T.; Cook, J.P.; Warren, H.R.; Surendran, P.; Liu, C.; Evangelou, E.; Manning, A.K.; Grarup, N.;
Drenos, F.; Sim, X.; et al. New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475,000
Individuals. Circ. Cardiovasc. Genet. 2017, 10. [CrossRef] [PubMed]

37. Warren, H.R.; Evangelou, E.; Cabrera, C.P.; Gao, H.; Ren, M.; Mifsud, B.; Ntalla, I.; Surendran, P.; Liu, C.;
Cook, J.P.; et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological
insights into cardiovascular risk. Nat. Genet. 2017, 49, 403–415. [CrossRef] [PubMed]

38. Kim, Y.K.; Hwang, M.Y.; Kim, Y.J.; Moon, S.; Han, S.; Kim, B.J. Evaluation of pleiotropic effects among
common genetic loci identified for cardio-metabolic traits in a Korean population. Cardiovasc. Diabetol. 2016,
15, 20. [CrossRef] [PubMed]

39. Grove, M.L.; Yu, B.; Cochran, B.J.; Haritunians, T.; Bis, J.C.; Taylor, K.D.; Hansen, M.; Borecki, I.B.;
Cupples, L.A.; Fornage, M.; et al. Best Practices and Joint Calling of the HumanExome BeadChip:
The CHARGE Consortium. PLoS ONE 2013, 8, e68095. [CrossRef] [PubMed]

40. Sharotri, V.; Collier, D.M.; Olson, D.R.; Zhou, R.; Snyder, P.M. Regulation of epithelial sodium channel
trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Biol. Chem. 2012, 287, 19266–19274.
[CrossRef] [PubMed]

41. Riserus, U.; Arnlov, J.; Berglund, L. Long-term predictors of insulin resistance: role of lifestyle and metabolic
factors in middle-aged men. Diabetes Care 2007, 30, 2928–2933. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10616-014-9732-1
http://www.ncbi.nlm.nih.gov/pubmed/24811130
http://dx.doi.org/10.1016/j.cyto.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21474330
http://dx.doi.org/10.1161/CIRCRESAHA.117.305875
http://www.ncbi.nlm.nih.gov/pubmed/26034043
http://dx.doi.org/10.1038/s41598-017-10341-x
http://www.ncbi.nlm.nih.gov/pubmed/28852218
http://dx.doi.org/10.1159/000375373
http://www.ncbi.nlm.nih.gov/pubmed/25765051
http://dx.doi.org/10.3389/fgene.2015.00136
http://www.ncbi.nlm.nih.gov/pubmed/25904937
http://dx.doi.org/10.1038/emm.2017.209
http://www.ncbi.nlm.nih.gov/pubmed/29217820
http://dx.doi.org/10.1097/HJH.0000000000000821
http://www.ncbi.nlm.nih.gov/pubmed/26820475
http://dx.doi.org/10.1038/ng.3654
http://www.ncbi.nlm.nih.gov/pubmed/27618447
http://dx.doi.org/10.1038/ng.3660
http://www.ncbi.nlm.nih.gov/pubmed/27618448
http://dx.doi.org/10.1097/HJH.0000000000001319
http://www.ncbi.nlm.nih.gov/pubmed/28234671
http://dx.doi.org/10.1371/journal.pgen.1006678
http://www.ncbi.nlm.nih.gov/pubmed/28346479
http://dx.doi.org/10.1161/CIRCGENETICS.117.001778
http://www.ncbi.nlm.nih.gov/pubmed/29030403
http://dx.doi.org/10.1038/ng.3768
http://www.ncbi.nlm.nih.gov/pubmed/28135244
http://dx.doi.org/10.1186/s12933-016-0337-1
http://www.ncbi.nlm.nih.gov/pubmed/26833210
http://dx.doi.org/10.1371/journal.pone.0068095
http://www.ncbi.nlm.nih.gov/pubmed/23874508
http://dx.doi.org/10.1074/jbc.M112.363382
http://www.ncbi.nlm.nih.gov/pubmed/22493497
http://dx.doi.org/10.2337/dc07-0360
http://www.ncbi.nlm.nih.gov/pubmed/17644620


Int. J. Mol. Sci. 2018, 19, 688 18 of 21

42. Horvath, A.; Boikos, S.; Giatzakis, C.; Robinson-White, A.; Groussin, L.; Griffin, K.J.; Stein, E.; Levine, E.;
Delimpasi, G.; Hsiao, H.P.; et al. A genome-wide scan identifies mutations in the gene encoding
phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat. Genet. 2006,
38, 794–800. [CrossRef] [PubMed]

43. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.;
Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases.
Nature 2009, 461, 747–753. [CrossRef] [PubMed]

44. Caulfield, M.; Munroe, P.; Pembroke, J.; Samani, N.; Dominiczak, A.; Brown, M.; Benjamin, N.; Webster, J.;
Ratcliffe, P.; O’Shea, S.; et al. Genome-wide mapping of human loci for essential hypertension. Lancet 2003,
361, 2118–2123. [CrossRef]

45. Province, M.A.; Kardia, S.L.; Ranade, K.; Rao, D.C.; Thiel, B.A.; Cooper, R.S.; Risch, N.; Turner, S.T.; Cox, D.R.;
Hunt, S.C.; et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung
and Blood Institute Family Blood Pressure Program. Am. J. Hypertens. 2003, 16, 144–147. [CrossRef]

46. Wu, X.; Kan, D.; Province, M.; Quertermous, T.; Rao, D.C.; Chang, C.; Mosley, T.H.; Curb, D.; Boerwinkle, E.;
Cooper, R.S. An updated meta-analysis of genome scans for hypertension and blood pressure in the NHLBI
Family Blood Pressure Program (FBPP). Am. J. Hypertens. 2006, 19, 122–127. [CrossRef] [PubMed]

47. Elliott, P.; Peakman, T.C. The UK Biobank sample handling and storage protocol for the collection, processing
and archiving of human blood and urine. Int. J. Epidemiol. 2008, 37, 234–244. [CrossRef] [PubMed]

48. Pazoki, R.; Dehghan, A.; Evangelou, E.; Warren, H.; Gao, H.; Caulfield, M.; Elliott, P.; Tzoulaki, I. Genetic
Predisposition to High Blood Pressure and Lifestyle Factors: Associations With Midlife Blood Pressure
Levels and Cardiovascular Events. Circulation 2018, 137, 653–661. [CrossRef] [PubMed]

49. Hoffmann, T.J.; Zhan, Y.; Kvale, M.N.; Hesselson, S.E.; Gollub, J.; Iribarren, C.; Lu, Y.; Mei, G.; Purdy, M.M.;
Quesenberry, C.; et al. Design and coverage of high throughput genotyping arrays optimized for individuals
of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP
selection algorithm. Genomics 2011, 98, 422–430. [CrossRef] [PubMed]

50. Okuda, T.; Fujioka, Y.; Kamide, K.; Kawano, Y.; Goto, Y.; Yoshimasa, Y.; Tomoike, H.; Iwai, N.; Hanai, S.;
Miyata, T. Verification of 525 coding SNPs in 179 hypertension candidate genes in the Japanese population:
identification of 159 SNPs in 93 genes. J. Hum. Genet. 2002, 47, 387–394. [CrossRef] [PubMed]

51. Atlas, S.A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition.
J. Manag. Care Pharm. 2007, 13, 9–20. [CrossRef] [PubMed]

52. Scurrah, K.J.; Lamantia, A.; Ellis, J.A.; Harrap, S.B. Familial Analysis of Epistatic and Sex-Dependent Association
of Genes of the Renin-Angiotensin-Aldosterone System and Blood Pressure. Circ. Cardiovasc. Genet. 2017,
10, e001595. [CrossRef] [PubMed]

53. Kelly, T.N.; Li, C.; Hixson, J.E.; Gu, D.; Rao, D.C.; Huang, J.; Rice, T.K.; Chen, J.; Cao, J.; Li, J.; et al.
Resequencing Study Identifies Rare Renin-Angiotensin-Aldosterone System Variants Associated with Blood
Pressure Salt-Sensitivity: The GenSalt Study. Am. J. Hypertens. 2017, 30, 495–501. [CrossRef] [PubMed]

54. Rossier, B.C. Epithelial sodium channel (ENaC) and the control of blood pressure. Curr. Opin. Pharmacol.
2014, 15, 33–46. [CrossRef] [PubMed]

55. Rossier, B.C.; Baker, M.E.; Studer, R.A. Epithelial sodium transport and its control by aldosterone: The story
of our internal environment revisited. Physiol. Rev. 2015, 95, 297–340. [CrossRef] [PubMed]

56. Gu, X.; Gu, D.; He, J.; Rao, D.C.; Hixson, J.E.; Chen, J.; Li, J.; Huang, J.; Wu, X.; Rice, T.K.; et al. Resequencing
Epithelial Sodium Channel Genes Identifies Rare Variants Associated with Blood Pressure Salt-Sensitivity:
The GenSalt Study. Am. J. Hypertens. 2017, 31, 205–211. [CrossRef] [PubMed]

57. Joshi, M.B.; Philippova, M.; Ivanov, D.; Allenspach, R.; Erne, P.; Resink, T.J. T-cadherin protects endothelial
cells from oxidative stress-induced apoptosis. FASEB J. 2005, 19, 1737–1739. [CrossRef] [PubMed]

58. Ranscht, B.; Dourszimmermann, M.T. T-Cadherin, a Novel Cadherin Cell-Adhesion Molecule in the
Nervous-System Lacks the Conserved Cytoplasmic Region. Neuron 1991, 7, 391–402. [CrossRef]

59. Philippova, M.; Joshi, M.B.; Kyriakakis, E.; Pfaff, D.; Erne, P.; Resink, T.J. A guide and guard: The many faces
of T-cadherin. Cell. Signal. 2009, 21, 1035–1044. [CrossRef] [PubMed]

60. Putku, M.; Kals, M.; Inno, R.; Kasela, S.; Org, E.; Kozich, V.; Milani, L.; Laan, M. CDH13 promoter SNPs
with pleiotropic effect on cardiometabolic parameters represent methylation QTLs. Hum. Genet. 2015,
134, 291–303. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/ng1809
http://www.ncbi.nlm.nih.gov/pubmed/16767104
http://dx.doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
http://dx.doi.org/10.1016/S0140-6736(03)13722-1
http://dx.doi.org/10.1016/S0895-7061(02)03248-X
http://dx.doi.org/10.1016/j.amjhyper.2005.07.010
http://www.ncbi.nlm.nih.gov/pubmed/16461203
http://dx.doi.org/10.1093/ije/dym276
http://www.ncbi.nlm.nih.gov/pubmed/18381398
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030898
http://www.ncbi.nlm.nih.gov/pubmed/29254930
http://dx.doi.org/10.1016/j.ygeno.2011.08.007
http://www.ncbi.nlm.nih.gov/pubmed/21903159
http://dx.doi.org/10.1007/s100380200056
http://www.ncbi.nlm.nih.gov/pubmed/12181638
http://dx.doi.org/10.18553/jmcp.2007.13.s8-b.9
http://www.ncbi.nlm.nih.gov/pubmed/17970613
http://dx.doi.org/10.1161/CIRCGENETICS.116.001595
http://www.ncbi.nlm.nih.gov/pubmed/28506960
http://dx.doi.org/10.1093/ajh/hpx004
http://www.ncbi.nlm.nih.gov/pubmed/28199472
http://dx.doi.org/10.1016/j.coph.2013.11.010
http://www.ncbi.nlm.nih.gov/pubmed/24721652
http://dx.doi.org/10.1152/physrev.00011.2014
http://www.ncbi.nlm.nih.gov/pubmed/25540145
http://dx.doi.org/10.1093/ajh/hpx169
http://www.ncbi.nlm.nih.gov/pubmed/29036630
http://dx.doi.org/10.1096/fj.05-3834fje
http://www.ncbi.nlm.nih.gov/pubmed/16099944
http://dx.doi.org/10.1016/0896-6273(91)90291-7
http://dx.doi.org/10.1016/j.cellsig.2009.01.035
http://www.ncbi.nlm.nih.gov/pubmed/19399994
http://dx.doi.org/10.1007/s00439-014-1521-6
http://www.ncbi.nlm.nih.gov/pubmed/25543204


Int. J. Mol. Sci. 2018, 19, 688 19 of 21

61. Datta, A.S.; Zhang, Y.; Zhang, L.; Biswas, S. Association of rare haplotypes on ULK4 and MAP4 genes with
hypertension. BMC Proc. 2016, 10, 363–369. [CrossRef] [PubMed]

62. Ji, W.; Foo, J.N.; O’Roak, B.J.; Zhao, H.; Larson, M.G.; Simon, D.B.; Newton-Cheh, C.; State, M.W.; Levy, D.;
Lifton, R.P. Rare independent mutations in renal salt handling genes contribute to blood pressure variation.
Nat. Genet. 2008, 40, 592–599. [CrossRef] [PubMed]

63. Morrison, A.C.; Bis, J.C.; Hwang, S.J.; Ehret, G.B.; Lumley, T.; Rice, K.; Muzny, D.; Gibbs, R.A.; Boerwinkle, E.;
Psaty, B.M.; et al. Sequence analysis of six blood pressure candidate regions in 4178 individuals: the Cohorts
for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. PLoS ONE
2014, 9, e109155. [CrossRef] [PubMed]

64. Salvi, E.; Kuznetsova, T.; Thijs, L.; Lupoli, S.; Stolarz-Skrzypek, K.; D’Avila, F.; Tikhonoff, V.; De Astis, S.;
Barcella, M.; Seidlerova, J.; et al. Target sequencing, cell experiments, and a population study establish
endothelial nitric oxide synthase (eNOS) gene as hypertension susceptibility gene. Hypertension 2013,
62, 844–852. [CrossRef] [PubMed]

65. Wang, W.; Wei, Z. Collapsing singletons may boost signal for associating rare variants in sequencing study.
BMC Proc. 2014, 8, S50. [CrossRef] [PubMed]

66. Yu, B.; Pulit, S.L.; Hwang, S.J.; Brody, J.A.; Amin, N.; Auer, P.L.; Bis, J.C.; Boerwinkle, E.; Burke, G.L.;
Chakravarti, A.; et al. Rare Exome Sequence Variants in CLCN6 Reduce Blood Pressure Levels and
Hypertension Risk. Circ. Cardiovasc. Genet. 2016, 9, 64–70. [CrossRef] [PubMed]

67. Zhao, X.; Sha, Q.; Zhang, S.; Wang, X. Testing optimally weighted combination of variants for hypertension.
BMC Proc. 2014, 8, S59. [CrossRef] [PubMed]

68. Lin, P.-L.; Tsai, W.-Y.; Chung, R.-H. A combined association test for rare variants using family and case-control
data. BMC Proc. 2016, 10, 215–219. [CrossRef] [PubMed]

69. Tong, X.; Wei, C.; Lu, Q. Genome-wide joint analysis of single-nucleotide variant sets and gene expression
for hypertension and related phenotypes. BMC Proc. 2016, 10, 125–129. [CrossRef] [PubMed]

70. Sun, R.; Weng, H.Y.; Hu, I.C.; Guo, J.F.; Wu, W.K.K.; Zee, B.C.Y.; Wang, M.H. A W-test collapsing method for
rare-variant association testing in exome sequencing data. Genet. Epidemiol. 2016, 40, 591–596. [CrossRef]
[PubMed]

71. Lu, A.T.; Cantor, R.M. Identifying rare-variant associations in parent-child trios using a Gaussian support
vector machine. BMC Proc. 2014, 8, S98. [CrossRef] [PubMed]

72. Derkach, A.; Lawless, J.F.; Merico, D.; Paterson, A.D.; Sun, L. Evaluation of gene-based association tests
for analyzing rare variants using Genetic Analysis Workshop 18 data. BMC Proc. 2014, 8, S9. [CrossRef]
[PubMed]

73. Cao, S.; Qin, H.; Deng, H.W.; Wang, Y.P. A unified sparse representation for sequence variant identification
for complex traits. Genet. Epidemiol. 2014, 38, 671–679. [CrossRef] [PubMed]

74. Lin, H.; Wang, M.; Brody, J.A.; Bis, J.C.; Dupuis, J.; Lumley, T.; McKnight, B.; Rice, K.M.; Sitlani, C.M.;
Reid, J.G.; et al. Strategies to design and analyze targeted sequencing data: cohorts for Heart
and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.
Circ. Cardiovasc. Genet. 2014, 7, 335–343. [CrossRef] [PubMed]

75. Salvi, E.; Kutalik, Z.; Glorioso, N.; Benaglio, P.; Frau, F.; Kuznetsova, T.; Arima, H.; Hoggart, C.; Tichet, J.;
Nikitin, Y.P.; et al. Genomewide association study using a high-density single nucleotide polymorphism
array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter
region of endothelial NO synthase. Hypertension 2012, 59, 248–255. [CrossRef] [PubMed]

76. Choi, M.; Scholl, U.I.; Ji, W.; Liu, T.; Tikhonova, I.R.; Zumbo, P.; Nayir, A.; Bakkaloglu, A.; Ozen, S.;
Sanjad, S.; et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc.
Natl. Acad. Sci. USA 2009, 106, 19096–19101. [CrossRef] [PubMed]

77. Wain, L.V.; Verwoert, G.C.; O’Reilly, P.F.; Shi, G.; Johnson, T.; Johnson, A.D.; Bochud, M.; Rice, K.M.;
Henneman, P.; Smith, A.V.; et al. Genome-wide association study identifies six new loci influencing pulse
pressure and mean arterial pressure. Nat. Genet. 2011, 43, 1005–1012. [CrossRef] [PubMed]

78. Blangero, J.; Teslovich, T.M.; Sim, X.; Almeida, M.A.; Jun, G.; Dyer, T.D.; Johnson, M.; Peralta, J.M.;
Manning, A.; Wood, A.R.; et al. Omics-squared: human genomic, transcriptomic and phenotypic data
for genetic analysis workshop 19. BMC Proc. 2016, 10, 71–77. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s12919-016-0057-2
http://www.ncbi.nlm.nih.gov/pubmed/27980663
http://dx.doi.org/10.1038/ng.118
http://www.ncbi.nlm.nih.gov/pubmed/18391953
http://dx.doi.org/10.1371/journal.pone.0109155
http://www.ncbi.nlm.nih.gov/pubmed/25275628
http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01428
http://www.ncbi.nlm.nih.gov/pubmed/24019403
http://dx.doi.org/10.1186/1753-6561-8-S1-S50
http://www.ncbi.nlm.nih.gov/pubmed/25519331
http://dx.doi.org/10.1161/CIRCGENETICS.115.001215
http://www.ncbi.nlm.nih.gov/pubmed/26658788
http://dx.doi.org/10.1186/1753-6561-8-S1-S59
http://www.ncbi.nlm.nih.gov/pubmed/25519394
http://dx.doi.org/10.1186/s12919-016-0033-x
http://www.ncbi.nlm.nih.gov/pubmed/27980639
http://dx.doi.org/10.1186/s12919-016-0017-x
http://www.ncbi.nlm.nih.gov/pubmed/27980623
http://dx.doi.org/10.1002/gepi.22000
http://www.ncbi.nlm.nih.gov/pubmed/27531462
http://dx.doi.org/10.1186/1753-6561-8-S1-S98
http://www.ncbi.nlm.nih.gov/pubmed/25519420
http://dx.doi.org/10.1186/1753-6561-8-S1-S9
http://www.ncbi.nlm.nih.gov/pubmed/25519417
http://dx.doi.org/10.1002/gepi.21849
http://www.ncbi.nlm.nih.gov/pubmed/25195875
http://dx.doi.org/10.1161/CIRCGENETICS.113.000350
http://www.ncbi.nlm.nih.gov/pubmed/24951659
http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.181990
http://www.ncbi.nlm.nih.gov/pubmed/22184326
http://dx.doi.org/10.1073/pnas.0910672106
http://www.ncbi.nlm.nih.gov/pubmed/19861545
http://dx.doi.org/10.1038/ng.922
http://www.ncbi.nlm.nih.gov/pubmed/21909110
http://dx.doi.org/10.1186/s12919-016-0008-y
http://www.ncbi.nlm.nih.gov/pubmed/27980614


Int. J. Mol. Sci. 2018, 19, 688 20 of 21

79. Higasa, K.; Ogawa, A.; Terao, C.; Shimizu, M.; Kosugi, S.; Yamada, R.; Date, H.; Matsubara, H.; Matsuda, F.
A burden of rare variants in BMPR2 and KCNK3 contributes to a risk of familial pulmonary arterial
hypertension. BMC Pulm. Med. 2017, 17, 57. [CrossRef] [PubMed]

80. Lee, S.; Wu, M.C.; Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics
2012, 13, 762–775. [CrossRef] [PubMed]

81. Morgenthaler, S.; Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for
common diseases: A cohort allelic sums test (CAST). Mutat. Res. Fund. Mol. Mech. Mutagen. 2007, 615, 28–56.
[CrossRef] [PubMed]

82. Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies
involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785. [CrossRef] [PubMed]

83. Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-variant association testing for sequencing data
with the sequence kernel association test. Am. J. Hum. Genet. 2011, 89, 82–93. [CrossRef] [PubMed]

84. Madsen, B.E.; Browning, S.R. A Groupwise Association Test for Rare Mutations Using a Weighted Sum
Statistic. PLoS Genet. 2009, 5, e1000384. [CrossRef] [PubMed]

85. Morris, A.P.; Zeggini, E. An Evaluation of Statistical Approaches to Rare Variant Analysis in Genetic
Association Studies. Genet. Epidemiol. 2010, 34, 188–193. [CrossRef] [PubMed]

86. Basu, S.; Pan, W. Comparison of Statistical Tests for Disease Association With Rare Variants. Genet. Epidemiol.
2011, 35, 606–619. [CrossRef] [PubMed]

87. Neale, B.M.; Rivas, M.A.; Voight, B.F.; Altshuler, D.; Devlin, B.; Orho-Melander, M.; Kathiresan, S.;
Purcell, S.M.; Roeder, K.; Daly, M.J. Testing for an Unusual Distribution of Rare Variants. PLoS Genet.
2011, 7, e1001322. [CrossRef] [PubMed]

88. Li, B.; Leal, S.M. Methods for Detecting Associations with Rare Variants for Common Diseases: Application
to Analysis of Sequence Data. Am. J. Hum. Genet. 2008, 83, 311–321. [CrossRef] [PubMed]

89. De, G.; Yip, W.K.; Ionita-Laza, I.; Laird, N. Rare Variant Analysis for Family-Based Design. PLoS ONE 2013,
8, e48495. [CrossRef] [PubMed]

90. Sha, Q.Y.; Wang, X.X.; Wang, X.L.; Zhang, S.L. Detecting Association of Rare and Common Variants by
Testing an Optimally Weighted Combination of Variants. Genet. Epidemiol. 2012, 36, 561–571. [CrossRef]
[PubMed]

91. Chen, H.; Meigs, J.B.; Dupuis, J. Sequence Kernel Association Test for Quantitative Traits in Family Samples.
Genet. Epidemiol. 2013, 37, 196–204. [CrossRef] [PubMed]

92. Wang, X.; Zhao, X.; Zhou, J. Testing rare variants for hypertension using family-based tests with different
weighting schemes. BMC Proc. 2016, 10, 233–237. [CrossRef] [PubMed]

93. Ionita-Laza, I.; Lee, S.; Makarov, V.; Buxbaum, J.D.; Lin, X.H. General Class of Family-based Association
Tests for Sequence Data, and Comparisons with Population-based Association Tests. Genet. Epidemiol. 2012,
36, 720.

94. Lee, S.; Emond, M.J.; Bamshad, M.J.; Barnes, K.C.; Rieder, M.J.; Nickerson, D.A.; Christiani, D.C.;
Wurfel, M.M.; Lin, X. Optimal unified approach for rare-variant association testing with application to
small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 2012, 91, 224–237. [CrossRef]
[PubMed]

95. Chung, R.H.; Schmidt, M.A.; Morris, R.W.; Martin, E.R. CAPL: A Novel Association Test Using Case-Control
and Family Data and Accounting for Population Stratification. Genet. Epidemiol. 2010, 34, 747–755. [CrossRef]
[PubMed]

96. Wang, K. Boosting the Power of the Sequence Kernel Association Test by Properly Estimating Its Null
Distribution. Am. J. Hum. Genet. 2016, 99, 104–114. [CrossRef] [PubMed]

97. Daye, Z.J.; Li, H.; Wei, Z. A powerful test for multiple rare variants association studies that incorporates
sequencing qualities. Nucleic Acids Res. 2012, 40, e60. [CrossRef] [PubMed]

98. Pan, W. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol. 2009,
33, 497–507. [CrossRef] [PubMed]

99. Pritchard, J.K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 2001,
69, 124–137. [CrossRef] [PubMed]

100. Atanur, S.S.; Diaz, A.G.; Maratou, K.; Sarkis, A.; Rotival, M.; Game, L.; Tschannen, M.R.; Kaisaki, P.J.;
Otto, G.W.; Ma, M.C.; et al. Genome sequencing reveals loci under artificial selection that underlie disease
phenotypes in the laboratory rat. Cell 2013, 154, 691–703. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s12890-017-0400-z
http://www.ncbi.nlm.nih.gov/pubmed/28388887
http://dx.doi.org/10.1093/biostatistics/kxs014
http://www.ncbi.nlm.nih.gov/pubmed/22699862
http://dx.doi.org/10.1016/j.mrfmmm.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/17101154
http://dx.doi.org/10.1038/nrg2867
http://www.ncbi.nlm.nih.gov/pubmed/20940738
http://dx.doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21737059
http://dx.doi.org/10.1371/journal.pgen.1000384
http://www.ncbi.nlm.nih.gov/pubmed/19214210
http://dx.doi.org/10.1002/gepi.20450
http://www.ncbi.nlm.nih.gov/pubmed/19810025
http://dx.doi.org/10.1002/gepi.20609
http://www.ncbi.nlm.nih.gov/pubmed/21769936
http://dx.doi.org/10.1371/journal.pgen.1001322
http://www.ncbi.nlm.nih.gov/pubmed/21408211
http://dx.doi.org/10.1016/j.ajhg.2008.06.024
http://www.ncbi.nlm.nih.gov/pubmed/18691683
http://dx.doi.org/10.1371/journal.pone.0048495
http://www.ncbi.nlm.nih.gov/pubmed/23341868
http://dx.doi.org/10.1002/gepi.21649
http://www.ncbi.nlm.nih.gov/pubmed/22714994
http://dx.doi.org/10.1002/gepi.21703
http://www.ncbi.nlm.nih.gov/pubmed/23280576
http://dx.doi.org/10.1186/s12919-016-0036-7
http://www.ncbi.nlm.nih.gov/pubmed/27980642
http://dx.doi.org/10.1016/j.ajhg.2012.06.007
http://www.ncbi.nlm.nih.gov/pubmed/22863193
http://dx.doi.org/10.1002/gepi.20539
http://www.ncbi.nlm.nih.gov/pubmed/20878716
http://dx.doi.org/10.1016/j.ajhg.2016.05.011
http://www.ncbi.nlm.nih.gov/pubmed/27292111
http://dx.doi.org/10.1093/nar/gks024
http://www.ncbi.nlm.nih.gov/pubmed/22262732
http://dx.doi.org/10.1002/gepi.20402
http://www.ncbi.nlm.nih.gov/pubmed/19170135
http://dx.doi.org/10.1086/321272
http://www.ncbi.nlm.nih.gov/pubmed/11404818
http://dx.doi.org/10.1016/j.cell.2013.06.040
http://www.ncbi.nlm.nih.gov/pubmed/23890820


Int. J. Mol. Sci. 2018, 19, 688 21 of 21

101. Feng, M.J.; Deerhake, M.E.; Keating, R.; Thaisz, J.; Xu, L.F.; Tsaih, S.W.; Smith, R.; Ishige, T.; Sugiyama, F.;
Churchill, G.A.; et al. Genetic Analysis of Blood Pressure in 8 Mouse Intercross Populations. Hypertension
2009, 54, 802–809. [CrossRef] [PubMed]

102. Pravenec, M.; Churchill, P.C.; Churchill, M.C.; Viklicky, O.; Kazdova, L.; Aitman, T.J.; Petretto, E.; Hubner, N.;
Wallace, C.A.; Zimdahl, H.; et al. Identification of renal Cd36 as a determinant of blood pressure and risk for
hypertension. Nat. Genet. 2008, 40, 952–954. [CrossRef] [PubMed]

103. Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.;
da Costa, J.; Zhang, L.Y.; Pei, Y.; et al. Angiotensin-converting enzyme 2 is an essential regulator of heart
function. Nature 2002, 417, 822–828. [CrossRef] [PubMed]

104. Zimdahl, H.; Kreider, T.; Gosele, C.; Ganten, D.; Hubner, N. Conserved synteny in rat and mouse for a blood
pressure QTL on human chromosome 17. Hypertension 2002, 39, 1050–1052. [CrossRef] [PubMed]

105. Young, J.H.; Chang, Y.P.C.; Kim, J.D.O.; Chretien, J.P.; Klag, M.J.; Levine, M.A.; Ruff, C.B.; Wang, N.Y.;
Chakravarti, A. Differential susceptibility to hypertension is due to selection during the out-of-Africa
expansion. PLoS Genet. 2005, 1, e82. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.134569
http://www.ncbi.nlm.nih.gov/pubmed/19652078
http://dx.doi.org/10.1038/ng.164
http://www.ncbi.nlm.nih.gov/pubmed/18587397
http://dx.doi.org/10.1038/nature00786
http://www.ncbi.nlm.nih.gov/pubmed/12075344
http://dx.doi.org/10.1161/01.HYP.0000018909.50074.45
http://www.ncbi.nlm.nih.gov/pubmed/12052840
http://dx.doi.org/10.1371/journal.pgen.0010082
http://www.ncbi.nlm.nih.gov/pubmed/16429165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Results from Studies on Selected Single Nucleotide Variants and Genes 
	Results from Exome Chips-Based Studies 
	Results from DNA Sequencing Studies 
	Pre-Next-Generation Sequencing Era 
	Results from Next-Generation Sequencing Studies 


	Statistical Analysis of Rare Variants 
	Conclusions and Perspectives 
	References

