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Abstract: The daily rhythm of mammalian energy metabolism is subject to the circadian clock system,
which is made up of the molecular clock machinery residing in nearly all cells throughout the
body. The clock genes have been revealed not only to form the molecular clock but also to function
as a mediator that regulates both circadian and metabolic functions. While the circadian signals
generated by clock genes produce metabolic rhythms, clock gene function is tightly coupled to
fundamental metabolic processes such as glucose and lipid metabolism. Therefore, defects in the
clock genes not only result in the dysregulation of physiological rhythms but also induce metabolic
disorders including diabetes and obesity. Among the clock genes, Dec1 (Bhlhe40/Stra13/Sharp2),
Dec2 (Bhlhe41/Sharp1), and Bmal1 (Mop3/Arntl) have been shown to be particularly relevant to the
regulation of energy metabolism at the cellular, tissue, and organismal levels. This paper reviews
our current knowledge of the roles of Dec1, Dec2, and Bmal1 in coordinating the circadian and
metabolic pathways.
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1. Introduction

The supply and demand of cellular bioenergy vary across the 24 h light-dark cycle in mammals.
This phenomenon is subject to the circadian clock system [1–6], which comprises the central clock in
the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks that reside in extra-SCN
areas of the brain and in peripheral tissues. Both the central and peripheral clocks are made up of
similar clock machinery, the so-called molecular clock, which consists of a series of clock genes [7–10].
Since their discovery as components of a circadian oscillator, the clock genes have been shown to
regulate cellular energy metabolism and body energy homeostasis through the transcriptional control
of metabolic genes, whose function has a great influence on cellular redox and bioenergy [1,3–6].
Of interest, it has also been shown that the function of clock genes is in turn altered by changes in
energy balance [2,4,11,12], suggesting the mutual regulation of the circadian and metabolic systems.
Here, we offer a description of the interplay between the circadian and metabolic systems, focusing
especially on the key clock genes Dec1, Dec2, and Bmal1, which have been shown to be linked to
energy metabolism, and insights into their emerging roles in the understanding of circadian and
metabolic disorders.
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2. The Circadian Clock Machinery

Circadian clock genes are defined as genes that are required to regulate circadian rhythms of
physiology at the cellular, tissue, and organismal levels. Clock genes form the molecular clock
which is composed of interconnected feedback loops of gene transcription and translation (Figure 1).
In mammals, two core clock genes, Clock and Bmal1, encode proteins that are members of the
basic helix-loop-helix (bHLH)-PAS transcription factor family [13–16]. Through protein-protein
interactions involving their PAS domains, CLOCK and BMAL1 form a heterodimeric complex in
the cytoplasm, which then translocates to the nucleus and binds to E-box enhancer sequences to
activate the transcription of repressor clock genes [13,17]. These include the Period (Per1 and Per2)
and Cryptochrome genes (Cry1 and Cry2), whose protein products lower their own transcription by
repressing CLOCK:BMAL, thus composing an autoregulatory feedback loop. Since the discovery
of this “core” feedback loop, additional feedback loops have also been described. By binding to
E-box enhancers, CLOCK:BMAL1 activates the transcription of another core clock gene, Rev-erbα,
which codes for an orphan nuclear receptor [18,19]. The REV-ERBα protein in turn inhibits Bmal1
transcription by direct binding to the ROREs (retinoic acid-related orphan receptor response elements)
residing in the Bmal1 gene promoter, thereby forming another feedback loop [18,19].
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Figure 1. The core molecular mechanism of the circadian clock. The molecular clock is composed of
diverse autoregulatory feedback loops. The core components of the molecular clock, CLOCK and
BMAL1, activate the transcription of repressor clock genes such as Per, Cry, Rev-erbα, and Dec. CLOCK
and BMAL1 also activate the transcription of inducer Rorα. The protein products of these repressor
or inducer genes inhibit or promote their own transcription in distinct ways, thus forming various
feedback loops that create a coordinated circadian rhythm at the gene expression level.

The Dec1 and Dec2 genes, which encode bHLH transcription factors, have also been proposed as clock
genes that comprise an additional autoregulatory feedback loop [20–23]. Dec1 and Dec2, similar to the
Rev-erbα gene, are transactivated by CLOCK:BMAL1 through E-box elements in their promoters [21–23].
However, unlike the REV-ERBα protein, which inhibits its own expression by repressing the transcription of
one of its activators, Bmal1, DECs repress their own transcription by directly binding to the BMAL1 protein
and/or by competing with CLOCK:BMAL1 for the occupancy of E-box sequences in their promoters [20–25].
As repressors of CLOCK:BMAL1-induced transactivation, DECs also inhibit the transcription of other
clock and clock-controlled genes, such as Per1 and Dbp (albumin D-element binding protein) [20,22,26].
Collectively, the molecular clock is composed of a complex network of autoregulatory feedback loops of
gene transcription and translation, thus generating circadian rhythms at the molecular level.
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3. The Diurnal Rhythm of Energy Metabolism and Its Significance

The function of a wide range of metabolic processes, such as the synthesis and breakdown of
carbohydrates, lipids, and proteins varies across the sleep/wake cycle in mammals. For instance,
glycogen synthesis in the muscle and liver occurs during the waking period, whereas glycogenolysis
in the liver peaks during sleep [27,28]. An increase in lipoprotein lipase activity, which promotes
lipid absorption from the blood-stream into tissues, also occurs during the fed (i.e., waking) state [29].
One benefit of these metabolic rhythms is that it enables metabolic tissues to anticipate supply and
demand of energy in the body and optimize both energy storage and utilization. Therefore, it is
conceivable that uncoupling the energy supply from its demand in each metabolic organ results in a
malfunction of body energy metabolism in mammals. Indeed, both clinical and experimental studies
have long suggested that disruption of behavioural rhythms such as sleep/wake and fasting/feeding
cycles leads to defects in glucose and lipid metabolism. Best known are the epidemiological
findings that sleep disturbances and shift work are highly associated with the development of
obesity, dyslipidaemia, and type 2 diabetes in humans [30–38]. Similarly, in rodents, it has also
been reported that a shift in meal time not only disturbs the behavioural rhythm but also induces
insulin resistance [39,40]. Dec1 knockout mice showed behavioral rhythm with longer circadian
period and affected the circadian phase of Per1 [26]. In addition, double mutant mice of Per1 and
Dec revealed synergistic effects of circadian disturbance [41]. We demonstrated that DECs have the
strongest suppressive effects on CLOCK:BMAL1-induced transactivation among negative regulators
DECs, PERs and CRYs [20–22]. Recent our reports using Dec knockout mice showed regarding the
role of Dec in metabolism. First, Dec1 knockout mice decreased lipid levels and oxidative stresses,
increasing fibroblast growth factor 21 (FGF21) levels [42]. Second, we revealed dominant energy sensor
phosphorylation AMP-activated protein kinase (pAMPK), which mention at later Section 6, is markedly
increased in Dec2 knockout mice livers [43]. These evidences suggest that Dec play important roles in
the regulation of circadian rhythm and metabolism.

It has been proven that Clock mutant mice disturbed diurnal feeding rhythm and developed a
metabolic syndrome [44]. It has also been reported that DEC2 amino-acid mutation P385R is associated
with short sleep [45]. On the other hand, Dec2 knockout mice did not reveal the sleep phenotype [46].
It seems that DEC2 P385R works as a dominant negative fashion. We also revealed that human
DEC1 amino-acid mutation R65A worked as a dominant negative fashion against CLOCK:BMAL1
transactivation [21]. These dominant negative functions of DEC mutation may affect differences in
sleep phenotype of Dec knockout mice. Collectively, these human and animal studies strongly suggest
a significant role of metabolic and circadian rhythms in maintaining health and preventing metabolic
and circadian disorders.

4. Clock Genes Regulate Both Metabolic Rhythms and Processes

As the molecular mechanism of the mammalian circadian clock was revealed, it became clear
that metabolic rhythms are under the control of the molecular clock [1–6]. For example, in studies of
with tissue-specific knockout of the clock gene, the diurnal rhythm in hepatic glucose metabolism was
found to be regulated by the liver clock [44,47]. Recent studies have also shown that the production of
hepatic metabolites such as nucleotides and amino acids exhibits diurnal variation in mice and that
BMAL1 plays an important role in the circadian oscillation of these metabolites [48]. In addition to
the liver clock, the molecular clock in the pancreas was found to regulate the daily rhythm of insulin
secretion [49]. While these local clocks play an important role in generating local metabolic rhythms,
systemic signals produced by the fasting/feeding cycle, which is driven by the SCN clock, also affect
certain cellular metabolic rhythms independently of the local clock [50].

Apart from its role in generating metabolic rhythms, the molecular clock also participates in
fundamental metabolic processes such as the proliferation of islet cells in the pancreas, glucose
transport by skeletal muscle, and adipogenesis in white adipose tissue. Both the BMAL1 and
CLOCK proteins in the pancreas have been shown to regulate secretion of insulin and proliferation
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of pancreatic islets [51,52]. Insulin-dependent glucose uptake in skeletal muscle was also found to
be associated with the function of the Bmal1 gene [53]. Furthermore, BMAL1 regulates adipocyte
differentiation and lipogenesis in white adipose tissue and plays an important role in ectopic fat
deposition in the liver and skeletal muscle [54,55]. Intriguingly, both genetic and epigenetic in silico
studies support these experimental findings that the Bmal1 gene is linked to energy metabolism.
Human genome-wide association studies have revealed that certain haplotypes of the Bmal1 gene are
associated with the development of type 2 diabetes [56]. Moreover, using whole-genome chromatin
immunoprecipitation-based analyses, a large number of BMAL1 target genes were found to be
classified as genes that are related to cellular energy metabolism [57–59].

Given that BMAL1, together with CLOCK, directly activates the transcription of both Dec1 and
Dec2 [20–23], it is possible that BMAL1 may control energy metabolism through the function of DEC1
and DEC2. Although this possibility remains to be examined, the DECs per se regulate lipid metabolism
in metabolic tissues. DEC1 and DEC2 inhibit lipogenesis in the liver by repressing the transcription
of Srebp-1c (sterol regulatory element-binding protein-1c), which codes for the master regulator of
lipogenic genes, by binding to the E-box in its promoter region [60,61]. Therefore, changes in the DEC
levels could affect the degree of lipid storage in the liver. Indeed, both leptin-deficient ob/ob and leptin
receptor-deficient db/db mice show a decrease in Dec1 expression in the liver and a significant increase
in hepatic triglycerides [61], whereas only a mild increase in hepatic triglyceride content was observed
in mice with alcohol-induced fatty liver, in which Dec1 expression was increased [62]. White adipose
tissue also requires the function of the Dec1 gene to regulate adipogenesis. DEC1 suppresses adipocyte
differentiation by inhibiting the expression of peroxisome proliferator-activated receptor γ (Pparγ),
a gene encoding a nuclear receptor critical for adipogenesis [63]. Collectively, these findings suggest
that, in addition to its role as a circadian oscillator, the molecular clock plays an important role in
regulating fundamental properties of energy metabolism in major metabolic organs.

5. The Clock Senses Energy Balance

While the molecular clock regulates energy metabolism, changes in energy balance, in turn, affect
the function of the molecular clock [64]. For example, mice fed a high-fat diet exhibit an increase
in the circadian period of locomotor activity under constant dark conditions, which indicates that
high-fat feeding alters the function of the SCN clock [65]. Energy excess also attenuates the amplitude
of rhythmic expression of clock genes in peripheral tissues [12,65]. In addition to excess energy
intake, the timing of energy intake has been shown to impact the rhythmic expression of clock genes
in metabolic tissues [66]. Specifically, in mice, when food availability is restricted only to the light
(i.e., sleep) phase, the rhythmic expression of clock genes occurs in anti-phase to that observed in
ad lib feeding. Although the molecular mechanism is not fully understood, this phenomenon is
predominantly observed in peripheral metabolic tissues, such as the liver and white adipose tissues,
and not in the SCN [39,67]. It should be noted that changes in the fasting/feeding cycle not only
affect patterns of rhythmic expression of clock genes but also alter their expression levels. In the
murine liver, the mRNA expression level of Dec1 is significantly decreased by fasting and increased by
re-feeding [68–70], although Dec2 expression is not altered by feeding [68,69]. The expression level
of Per2 in the liver, but not in the heart and lung, is also increased by re-feeding after fasting [68,70].
Although the effects of changes in the fasting/feeding cycle on clock gene expression are limited to
certain clock genes and to specific tissues, these studies nevertheless suggest that the molecular clock
is sensitive to alteration in the balance and the timing of energy intake.

6. Molecules at the Intersection of the Molecular Clock and Energy Metabolism

How does the molecular clock sense changes in energy balance? The fasting/feeding and
activate/resting cycles induce a dynamic change in the levels of metabolites and fuels in the cells
and interstitial spaces surrounding the cells. The molecules with altered levels include cellular redox
components and energy resources, energy substrates and oxygen. Growing evidence now suggests the
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possibility that any of these molecules can be sensed by the molecular clock through molecules that
not only function as key metabolic regulators but also modulate clock function.

6.1. Cellular Redox

Molecules associated with the cellular redox state were perhaps the first metabolic factors
to be proposed to influence the function of the molecular clock (Figure 2). Specifically, cellular
levels of the hydrogen carriers NAD+ (nicotinamide adenine dinucleotide) and FAD (flavin adenine
dinucleotide) have been shown to either directly or indirectly affect the regulation of clock gene
function. For example, the reduced forms of NAD+ and NADP+ (i.e., NADH and NADPH) increase
the DNA-binding activity of the CLOCK:BMAL1 heterodimer in vitro [71]. Accordingly, inhibition of
the pentose phosphate pathway, a major source of NADPH, prolongs the circadian period of clock
gene expression in cultured cells [72]. Recently, it has also been reported that the circadian period
of PER2 expression is lengthened by FAD through stabilization of CRY proteins [73]. Given that
the levels of NAD+ and FAD oscillate in both tissues and cultured cells [73–76], the diurnal changes
in these hydrogen carriers may play an important role in shaping the rhythmic expression of clock
genes. The oscillation of hydrogen carriers seems to be under enzymatic control because both the
mRNA and protein levels of genes encoding nicotinamide phosphoribosyltransferase (NAMPT) and
riboflavin kinase (RFK), which are the rate-limiting enzymes of the NAD+ salvage pathway and FAD
biosynthesis, respectively, vary dynamically in a circadian fashion in the murine liver [73–75]. Although
the molecular mechanisms underlying the rhythmic expression of Rfk remain unclear, the transcription
of Nampt has been reported to be directly regulated by the CLOCK:BMAL1 heterodimer through
the E-box in its promoter [74,75]. Collectively, these findings reveal that cellular redox affects clock
function which in turn participates in the circadian regulation of redox state, suggesting a mutual
relationship between controls of cellular redox and clock function.
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Figure 2. Interplay between cellular redox factors and the molecular clock. Cellular redox status
directly and indirectly affects the function of the molecular clock through changes in the levels of
cofactors (i.e., NADH, NADPH, and FAD) and/or the activity of NAD+-consuming enzymes (SIRT1
and PARP1). The molecular clock in turn regulates the transcription of the Nampt gene, which encodes
the rate-limiting enzyme in the NAD+ salvage pathway.
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NAD+-consuming enzymes have also been shown to link energy metabolism with the molecular
clock (Figure 2). Sirtuin 1 (SIRT1), whose activity relies on the NAD+ level, deacetylates histones
and a wide variety of proteins, including those that regulate glucose and lipid metabolism [77–81].
SIRT1 forms a complex with CLOCK:BMAL1 and promotes the deacetylation of BMAL1, which
then alters the transcriptional activity of CLOCK:BMAL1 [82,83]. As mentioned earlier, since DEC1
and DEC2 are transactivated by CLOCK:BMAL1, it is possible that SIRT1 indirectly regulates
DEC1 and DEC2 levels through BMAL1 deacetylation. SIRT1 also deacetylates and degrades
PER2 [83]. In addition, SIRT1 deacetylates and activates PGC-1α (PPARγ coactivator 1-alpha) [81,84],
a transcriptional coactivator that promotes Bmal1 expression through coactivation of ROR family
members, including RORα and RORγ [85]. Consistent with these findings, deletion of the Sirt1
gene leads to a significant reduction in the expression level of Bmal1 [83,86]. Interestingly, mice with
brain-specific knockout of Sirt1 showed a lengthened circadian period of locomotor activity [86],
which further indicates that SIRT1 is linked to clock function. In addition to SIRT1, poly (ADP-ribose)
polymerase 1 (PARP-1), which exerts its physiological function by transferring ADP-ribose subunits
from NAD+ to its target proteins, has also been reported to modulate the function of the molecular
clock. PARP-1 binds and poly (ADP-ribosyl) ates the CLOCK protein, thereby reducing the DNA
binding activity of CLOCK: BMAL1 [87]. Importantly, this phenomenon is observed to occur in a
circadian fashion. It is possible that PARP-1 indirectly decreases DEC1 and DEC2 levels through the
CLOCK:BMAL1 reduction.

Nocturnin which encodes circadian deadenylase is regulated by CLOCK:BMAL1, and crosstalk
circadian and metabolism [88]. Nocturnin plays important roles in lipid metabolism, adipogenesis,
and glucose homeostasis, involving circadian clock [88].

Taken together, these findings suggest that the clock can sense cellular redox through changes in
the level of hydrogen carriers and/or the activity of NAD+-consuming enzymes.

6.2. Cellular Energy Status

In addition to cellular redox, changes in the intracellular level of energy resources (i.e., ATP)
are sensed by the molecular clock. AMPK has been proposed as the key molecule that mediates the
ATP-sensing property of the molecular clock [89,90]. AMPK is a heterotrimeric protein composed
of a catalytic α and regulatory β and γ subunits, and each of these subunits is encoded by either 2
(α1 and α2 or β1 and β2) or 3 genes (γ1, γ2, and γ3) [91–93]. AMPK is activated when a threonine
residue (Thr172) within the α subunit is phosphorylated by upstream kinases. These include liver
kinase B1 (LKB1) and calmodulin-dependent protein kinase kinase (CaMKK). LKB1 is thought to
be constitutively active and promotes phosphorylation of Thr172 when AMP binds to the AMPK-γ
subunit, while CaMKK activates (i.e., phosphorylates) AMPK in response to a rise in intracellular
Ca2+, independent of changes in the AMP/ATP ratio. Due to the energy-dependent phosphorylation
of AMPK by LKB1, AMPK has been considered a cellular energy sensor. Importantly, it has been
reported that activated AMPK directly or indirectly interacts with the molecular clock (Figure 3) [89,90].
For instance, AMPK directly phosphorylates CRY1 and indirectly phosphorylates PER2 by activating
(i.e., phosphorylating) CKIε (casein kinase Iε) [94,95], which leads to the degradation of both CRY1 and
PER2. Therefore, it could be speculated that a defect in the function of AMPK causes dysregulation
of the circadian clock. Indeed, mice deficient in the Ampkα1 gene show a shorter circadian period
of locomotor activity [96]. Moreover, the rhythmic expression of clock genes in peripheral tissues is
altered in mice lacking either Ampkα1 or Ampkα2 [96].
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Figure 3. Interplay between the regulation of bioenergy and the molecular clock. Activated AMPK
directly or indirectly phosphorylates core circadian repressors (i.e., PER/CRY). DEC, another circadian
repressor, suppresses the transcription of Lkb1 which codes for a serine-threonine kinase that directly
phosphorylates and activates AMPK, thus forming a reciprocal relationship between regulators of
bioenergy and the circadian clock.

While the regulation of the molecular clock is modulated by AMPK, the molecular clock in turn
regulates AMPK activity [43,97]. We have recently reported that DEC1 directly binds to the E-box
box of the Lkb1 promoter and suppresses the expression of the LKB1 protein, thereby reducing the
phosphorylation of AMPK [97]. We also reported that the phosphorylation of AMPK is increased in
the liver and lung in Dec2 knockout mice, indicating that DEC2 may also suppress AMPK activity [43],
although the precise mechanism remains to be elucidated. Of note, phosphorylation of AMPK
is rhythmic and is inversely correlated with the rhythmic expression of DECs [20,96,97], further
indicating that AMPK is a downstream target of DECs. Taken together, these findings suggest a mutual
relationship between the function of the molecular clock and AMPK activity. It will be important to
identify other molecules that link clock function and changes in the cellular energy balance.

6.3. Glucose Metabolism

In vitro studies have shown that the change in the glucose level also affects the function of the
molecular clock. By using rat-1 fibroblasts, Hirota et al. demonstrated that glucose down-regulates
the transcription of the Per1 and Per2 genes [98]. We and others have also reported that in cultured
cells, Dec1 expression is increased by glucose supplementation, while glucose depletion decreases
both DEC1 and DEC2 protein levels [43,99]. These findings are consistent with in vivo studies that
fasting decreases and re-feeding increases Dec1 expression in the murine liver [68–70]. The concept
that glucose is a key nutrient cue that alters clock gene function has been further supported by a series
of animal studies. Among food macronutrients, glucose has been shown to alter the phase of the
rhythm of locomotor activity in mice [100,101]. In addition, Oike et al. showed that intraperitoneal
administration of glucose with amino acids increases the mRNA expression levels of Per1, Per2, Dec1,
and Dec2 in the liver in fasted mice [70]. While the precise mechanisms underlying the glucose-induced
alteration in clock function remain unknown, transcriptional regulators have been proposed to mediate
the effect of glucose on clock genes [98]. Liver X receptor (LXR), a glucose-activated transcription
factor [102], may be an attractive candidate transmitter of the glucose signal to the molecular clock
because LXR was found to induce Dec1 expression by binding its promoter [69].
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In addition to glucose, insulin was also found to affect the function of the molecular clock. Recent
studies have shown that insulin promotes the phosphorylation of the BMAL1 protein by Akt, thereby
suppressing its transcriptional activity [103]. Furthermore, several studies demonstrated that insulin
increases the expression levels of Per1, Per2, Dec1, and Dec2 in cultured cells [104–107]. While the
molecular mechanisms underlying insulin-induced expression of these clock genes remain to be
elucidated, insulin signalling pathways may play an important role in the regulation of the molecular
clock because insulin-induced expression of Dec1 and Dec2 was found to be inhibited by the blockade
of phosphoinositide 3-kinase, protein kinase C, or mammalian target of rapamycin [104–106].

We showed that high-fat diet induced the insulin and glucose levels [65]. As described above,
insulin and glucose induced Dec1 and Dec2 expression, respectively. We speculate that high-fat diet
induces Dec1 and Dec2 expression through insulin and glucose supplement.

6.4. Lipid Metabolism

The observation that the regulation of PPARs is under the control of clock proteins has led to
the idea that the function of the molecular clock is linked to lipid metabolism [107]. Both DEC1 and
DEC2 were found to regulate adipogenesis by repressing the transcription of a gene encoding PPARγ,
the master transcriptional regulator of adipogenesis [63,108,109]. Accordingly, Dec1 overexpression
has been shown to suppress adipocyte differentiation [110]. DEC1 does not directly bind to the
Pparγ promoter, but exerts its repressive effect on Pparγ expression by interacting with DNA-bound
CCAAT/enhancer binding protein [63,108]. In addition to DEC proteins, other clock proteins have
also been shown to regulate adipocyte differentiation [111]. PER2 inhibits the recruitment of PPARγ to
its target gene promoters, and a defect in the Per2 gene increases adipogenesis in cultured cells [112].
In contrast, knockdown of the Bmal1 gene was found to suppress adipocyte differentiation in 3T3-L1
cells [55], although in vivo studies have shown contradictory results, specifically, that mice with
adipocyte-specific knockout of the Bmal1 gene develop obesity [113]. It should be noted that the
function of PPARγ could in turn affect the molecular clock. The transcription of a gene coding for
REV-ERBα, a circadian transcriptional repressor, was found to be induced by PPARγ through the
direct repeat-2 response element in the Rev-erbα gene [114].

In addition to PPARγ, PPARα, the major regulator of fatty acid oxidation in the liver, has also
been reported to interact with the molecular clock. The interconnection between PPARα and the
circadian clock was first indicated in studies showing that the expression of PPARα is rhythmic at
both the mRNA and protein levels [115]. Subsequently, PPARα was found to be a direct target of
clock genes [116,117]. The CLOCK:BMAL1 heterodimer activates the transcription of the Pparα gene
by binding to the E-box within the gene promoter [116]. PER2 also interacts with the PPARα protein
through its LXXLL motifs [117]. Similar to the case of PPARγ, PPARα in turn regulates the transcription
of clock genes. PPARα transactivates the Bmal1 and Rev-erbα genes via PPAR response elements located
in the promoters of these genes [118,119].

6.5. Hypoxia

Changes in tissue oxygen levels have also been shown to alter clock gene function. Both Dec1
and Dec2 expression were found to be induced by hypoxic conditions in cultured cells [120–123].
Promoter analyses have revealed that hypoxia-inducible factor-1α (HIF-1α), a master regulator
of oxygen homeostasis, activates the transcription of the Dec1 and Dec2 genes by binding to the
hypoxia-response elements (HREs) present within the promoters of these genes [121]. More recently,
an additional interrelationship between hypoxia and clock gene function has emerged from studies by
Peek et al. [124], who demonstrated that HIF-1α binds to the E-box within the promoters of Per2 and
Cry1. While HIF-1α regulates the transcription of core clock genes, it has also been shown that the clock
proteins in turn interact with the HIF-1α protein. For instance, DEC2 binds to HIF-1α and decreases the
binding of HIF-1α to HREs to activate the transcription of the HIF target genes [120]. Co-expression of
HIF-1α and BMAL1 has also been shown to significantly transactivate HRE [124], further indicating the
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interaction between the clock proteins and HIF-1α. These findings are consistent with the observation
that HIF-1α target genes show diurnal rhythms in their expression [120,125]. Because the alternation
of HIF-1α and DEC expression is closely associated with tumor progression [120,126], it would be of
interest to examine whether conditional Hif-1α and Dec knockout mice implanted tumor cells affect the
circadian rhythm and metabolism. Collectively, these studies suggest that cellular oxygen homeostasis
is tightly coupled to the regulation of daily rhythms in various physiological processes.

7. Conclusions

The clock genes Dec1, Dec2, and Bmal1 are now recognized as important mediators that integrate
the function of the circadian and metabolic systems. Dysfunction of the clock genes can therefore
provoke both circadian and metabolic disorders. Further efforts to understand how Dec1, Dec2,
and Bmal1 sense energy balance and how energy imbalance impacts the function of these clock genes
will provide insight into pathophysiologic interactions between circadian disorders such as sleep
disturbances and metabolic disorders such as diabetes and obesity in humans.
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