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Abstract

:

Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.
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1. Introduction


Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species [1]. They share a common backbone stilbene structure but differ in the type and position of substituents on the ring (Figure 1). Stilbenoids exist as monomers or oligomers. They may also be found free (aglycone) or conjugated as glucosides. For example, piceid is resveratrol-3-O-glucoside [2,3]. The monomeric stilbene (trans-1,2-diphenylethylene) aglycone structure consists of two phenyl rings joined by an ethylene bridge. Stilbenes may exist as the cis- or trans-isomer, but the trans-isomer is the more common and stable configuration [1].



Stilbenes are synthesized in plants via the phenylpropanoid pathway in a similar fashion to flavonoids [1]. The biosynthetic pathway begins with the conversion of phenylalanine to cinnamate by the action of phenylalanine ammonia lyase [4]. An acetyl-CoA group is thereafter added to cinnamate by the enzyme, CoA ligase, to form cinnamoyl-CoA. Lastly, cinnamoyl-CoA is converted to stilbenoids by the action of stilbene synthase in a process that utilizes three units of malonyl CoA [4]. Stilbenoids can be further processed by methylation, glucosylation and prenylation. The most popular and perhaps the most widely studied stilbenoid is resveratrol. There are other structural analogs with potentially beneficial medicinal properties, but the information on those biological effects is limited. The biological activities of stilbenoids reviewed in this paper and the respective underlying mechanisms are summarized in Figure 2 below.




2. Stilbenoids


Stilbenoids are phytoalexins, which are antimicrobial compounds produced de novo to protect the plant from fungal infection and toxins [5,6]. Resveratrol (trans-3,5,4′-trihydroxystilbene) is found in Vitis species (grapes), red wine and other plant species [5,7]. Pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene) is a dimethyl ether analog of resveratrol and is found in plant species such as Pterocarpus marsupium [8], Vitis [6], and Vaccinium species (blueberries) [9]. HPLC analysis revealed that resveratrol and pterostilbene are present in drakshasava, an ancient cardiotonic grape preparation used in Ayurvedic medicine [10].



Gnetol (trans-2,6,3′,5′-tetrahydroxystilbene) is another stilbenoid found in several species of the genus Gnetum. Gnetum is a gymnospermous plant with more than 35 species that occur as trees, shrubs and lianas. Specifically, gnetol has been isolated from Gnetum ula [11], G. gnemon [12], G. montanum [13], G. klossii [14] and G. hainanese [15]. The seeds and leaves of G. gnemon, also known as melinjo, are eaten as vegetables in Indonesia [16]. Gnetol is used in folk medicine for arthritis and asthma [17].



Piceatannol (trans-3′,4′,3,5-tetrahydroxystilbene) is commonly found in berries, grapes, rhubarb (Rheum species), passion fruit (Passiflora species) and white tea [18]. Piceatannol is a metabolite of resveratrol, produced by the enzyme CYP1B1 in humans [19]. Thus, resveratrol is considered a pro-drug for piceatannol. Due to the presence of an additional hydroxyl group and subsequent formation of a semiquinone radical, piceatannol exhibits more powerful antioxidant activity compared to resveratrol [20,21]. Another stilbenoid is oxyresveratrol, an isomer of hydroxylated resveratrol. Oxyresveratrol is found in the bark of Morus alba [22], and in the heartwood of Artocarpus lakoocha [23]. Oxyresveratrol exerts its effects primarily through the inhibition of tyrosinase, an enzyme which is responsible for the pigmentation found in skin, eyes and hair [22].



2.1. Bioavailability


Resveratrol exhibits poor water solubility (<0.05 mg/mL) and low oral bioavailability [24]. Complexation with cyclodextrins improves aqueous solubility of resveratrol but not bioavailability [24]. Administration of higher doses of resveratrol also did not improve the pharmacokinetic profile [24]. Other attempts to improve bioavailability of stilbenoids include complexation with bile acids [25], incorporation into liposomes [26] and formulation into nanoparticle delivery systems [27,28].



The bioavailabilities and half-lives of selected stilbenoids following oral administration in rats are shown in Table 1. Pterostilbene exhibited the highest bioavailability of 80% [29] while gnetol exhibited the lowest oral bioavailability of 6.59% [30]. After intravenous administration, resveratrol exhibited a very short half-life of 14 min due to rapid metabolism. The reported oral bioavailability values for resveratrol range from 20% to 29.8% [29,31]. Although gnetol has the lowest bioavailability, the reported half-life after oral administration of 100 mg/kg in rat was 4.2 h [30]. This value is significantly longer than values reported for resveratrol (1.48 h) [31] and pterostilbene (1.73 h) [32]. Moreover, higher levels of the gnetol glucuronide metabolite persisted for up to 72 h in serum after oral administration [30]. It is possible that gnetol glucuronide may be reconverted into free gnetol and thus compensate for the low bioavailability.



The presence of two methoxy groups in the pterostilbene structure makes it more lipophilic and thus more bioavailable [29]. Pterostilbene is also more metabolically stable because it has only one free hydroxyl group available for glucuronidation or sulphation. Indeed, an enzyme kinetic glucuronidation assay performed in human liver microsomes showed that resveratrol was more efficiently metabolized by glucuronidation compared to pterostilbene [36]. This may further contribute to higher levels of the free pterostilbene and higher bioavailability. Thus, based on the pharmacokinetic profile of stilbenoids, pterostilbene is more bioavailable than resveratrol and, as such, may be a potential candidate as an alternative to resveratrol.




2.2. Metabolism


The low bioavailability of stilbenoids is largely due to rapid and extensive metabolism in the intestine and liver during and after absorption giving rise to a lower level of the free parent compounds [37]. Resveratrol undergoes glucuronidation in the intestine and is mainly absorbed as the glucuronide [38,39]. The remaining resveratrol, absorbed as the aglycone, is further metabolized in the liver to sulfates and glucuronides [40]. High levels of stilbene metabolites such as sulfates and glucuronides have been detected in the plasma and tissues after oral administration [40]. Despite the relatively low bioavailability of parent resveratrol, many studies have demonstrated its biological activities in vivo in various animal studies. Pharmacokinetic studies showed high levels of stilbene metabolites (sulfates and glucuronides) in plasma [41]. Therefore some argue that these metabolites may act as reservoirs for the stilbenoids either by direct action of metabolites [42] or via enterohepatic recycling [31,41]. Stilbenoids are mainly excreted as the metabolites in the urine (renal) and faeces (non-renal). Non-renal routes seem to predominate renal routes of elimination for resveratrol [31] and pterostilbene [32], suggesting as important role for enterohepatic cycling. Thus, biological effects may still be attained with low circulating levels of the parent stilbenoid compounds.




2.3. Stability


In terms of stability, stilbenoids are sensitive to heat, air, light and oxidative enzymes. Specifically, trans to cis isomerization of resveratrol occurs on exposure to both ultraviolet and visible light [43]. The trans- form is known to be the more active form of resveratrol [44]. Furthermore, resveratrol may be degraded by oxidation under certain conditions, for example in the presence of sodium bicarbonate [45,46]. Complexation with cyclodextrin improves both solubility and photostability [25]. Resveratrol was more stable in human plasma than in organic solvents. This is possibly due to binding with plasma proteins such as albumin [47]. The solubility and stability of resveratrol and pterostilbene can also be improved by incorporation into liposomes [26].




2.4. Safety


Toxicological data show that at low doses, resveratrol is well-tolerated in humans, although safety information following long-term administration is lacking [48]. Furthermore, administration of pterostilbene in a clinical trial at a dose of 125 mg twice daily for 6–8 weeks was found to be safe and did not evoke any remarkable adverse reactions [49]. The safety of gnetol, as a relatively nascent molecule in research, has not been evaluated in humans. Therefore, additional randomized clinical studies with larger population samples and longer follow-up periods are important to further ascertain the safety of resveratrol and other stilbenoids.





3. Cardioprotective Effects of Stilbenoids


Interest in the cardioprotective effects of resveratrol was initially stimulated by observation of the French paradox, in which mortality due to coronary heart disease was significantly reduced among the southwestern French population despite deleterious risk factors such as high intake of dietary cholesterol, saturated fat and smoking [50]. A WHO study, Worldwide Monitoring System for Cardiovascular Diseases (CVD), revealed lower mortality rates for ischemic heart disease in France compared to other developed countries such as the United Kingdom and United States [51]. Cardioprotection was observed despite the presence of similar risk factors for coronary heart disease such as high blood pressure, high body mass index, and high cholesterol [51].



The first attempt to explain the French paradox was by Renaud in 1992 in an epidemiological review [52]. Consumption of wine was negatively correlated with CHD mortality [51]. Since there is relatively high wine consumption among the French population, Renaud postulated that the French paradox might be due to the ability of wine consumption to negate the deleterious effects of dairy fat consumption [52]. Thus, phenolic constituents of red wine such as resveratrol garnered attention of biomedical researchers. Many studies have shown the beneficial effects of stilbenoids on vascular function, platelet biology, atherosclerosis, oxidative stress, cardiac hypertrophy and ischemic-reperfusion injury as discussed below. Of the stilbenoids reviewed here, resveratrol is the most widely studied, followed by pterostilbene, piceatannol and gnetol. The cardioprotective effects of resveratrol have been recently reviewed by Zoedoky et al. [53].



3.1. Vascular Compliance and Blood Pressure


Resveratrol (2.5 mg/kg/day for 10 weeks) increased mesenteric small artery compliance and reduced wall stiffness in normotensive Wistar–Kyoto (WKY) rats. Resveratrol treatment also attenuated arterial compliance in the spontaneously hypertensive rats (SHR), at least in part through inhibitory actions on pro-growth extracellular signal-regulated kinase (ERK) signaling [54]. The effect of resveratrol on blood pressure in animal models is dose dependent. Resveratrol had no effects on blood pressure at low doses (2.5 mg/kg/day for 10 weeks) [55], whereas administration of higher doses of resveratrol such as 200 mg/kg/day for 4 weeks [56] reduced systolic blood pressure in SHR. Combination of low dose resveratrol (2.5 mg/kg/day) with hydralazine (25 mg/kg/day) was also more effective than resveratrol or hydralazine alone in reducing blood pressure in SHR [57]. Thus, resveratrol may be useful as an adjunct or supplement to current therapies.



Likewise, in humans, a meta-analysis of six randomized control trials showed that resveratrol consumption at a dose of 150 mg/day, but not lower doses, reduced systolic blood pressure. Neither low dose nor high dose resveratrol reduced diastolic blood pressure [58]. To date, there are few studies about the effect of pterostilbene on blood pressure in humans. One randomized double-blinded placebo-controlled trial indicated that high dose pterostilbene (125 mg twice daily) reduced both systolic and diastolic blood pressure while a lower dose of 50 mg twice daily did not [59].




3.2. Platelet Biology


Among other factors, activation of platelet aggregation is a major contributor to the development of atherothrombosis. In response to rupture of an unstable atherosclerotic plaque, platelets are activated, resulting in thrombus formation [60]. The detached plaque and the resulting thrombus may enter the systemic circulation and cause occlusion of blood vessels, thereby limiting blood supply to organs such as the heart (myocardial infarction) or the brain (stroke). Thus, inhibition of platelet activity is an important strategy to prevent such thrombotic events [61,62].



Resveratrol inhibited platelet aggregation in both animal and human studies [63,64,65]. Furthermore, resveratrol (50 µg/mL) inhibits platelet aggregation induced by collagen, epinephrine, and thromboxane in vitro, and these effects may be attributable to suppression of cyclooxygenase (COX)-1 in the arachidonic acid pathway [66]. Other mechanisms that may be involved include inhibition of the MAPK pathway, activation of the nitric oxide/cGMP pathway [67] and inhibition of phosphoinositide signaling [64].



Similar to resveratrol, pterostilbene also has a strong inhibitory action on platelet aggregation, and stimulates nitric oxide production in platelets [68]. Furthermore gnetol, along with other monomeric stilbenoids (trans-resveratrol and isorhapotigenin) extracted from G. macrostachyum, inhibited arachidonic acid-induced platelet aggregation [69]. However, gnetol did not inhibit platelet aggregation induced by thrombin [69]. In this study, gnetol also inhibited platelet-collagen adhesion in a dose-dependent manner, although to a lesser extent compared to resveratrol. In addition, in an in vitro ELISA assay reported by Remsberg et al., gnetol inhibited COX with a stronger inhibitory action on COX-1 compared to COX-2 [30].




3.3. Ischemia-Reperfusion Injury


Resveratrol (100 µM) attenuates ischemia-reperfusion injury in neonatal cardiomyocytes exposed to 2-h simulated ischemia and 4-h simulated reperfusion possibly by decreasing intracellular calcium, preventing apoptosis and enhancing activities of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) [70,71]. Other mechanisms that might confer anti-oxidant effects of resveratrol reportedly include modulation of the mitochondrial membrane permeability transition pore (mPTP) [72], activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) [73], and induction of nitric oxide synthase (NOS) [74,75,76].



In cardiomyocytes, pterostilbene protects against hypoxia-reoxygenation injury via activation and up-regulation of sirtuin 1 (SIRT1) [77]. SIRT1 is a NAD+-dependent protein deacetylase that, upon activation, activates peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) via deacetylation and thus improves mitochondrial function and oxidative capacity [78]. Here, pre-treatment of H9c2 cells with splitomycin, a SIRT1 inhibitor, abolished the protective effects of pterostilbene [77]. In an animal model of ischemia-reperfusion injury, pterostilbene improved cardiac function and reduced markers of oxidative stress and inflammation such as tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and myeloperoxidase activity [79]. These data are consistent with results from other groups that showed protective effects of pterostilbene on myocardial ischemia-reperfusion injury via inhibition of apoptosis and attenuation of inflammatory markers in rats [80,81]. Pterostilbene improved cardiac function and decreased myocardial infarct size in a rat model of ischemia-reperfusion injury [80]. Here treatment with pterostilbene reduced expression of TNF-α and IL-1β, thus reducing cardiac inflammation. Furthermore, pterostilbene increased Bcl-2 expression while decreasing Bax expression [80].



A study by Hung and colleagues investigated the beneficial effects of astringin, a 3-β-d-glucoside of piceatannol, in the setting of ischemia reperfusion (I/R) injury in a rat model [82]. Pre-treatment with astringin significantly reduced the incidence and duration of both ventricular tachycardia and fibrillation [82]. Varying doses of astringin were also associated with decreased mortality rates, increased nitric oxide (NO) and decreased lactate dehydrogenase (LDH) levels, supporting its role as a potent antiarrhythmic and cardioprotective agent [82]




3.4. Atherosclerosis


There are two major types of lipoprotein that function as carriers of cholesterol in the systemic circulation: high density lipoprotein (HDL) and low-density lipoproteins (LDL). High levels of HDL in the circulatory system are considered “good” while high levels of LDL “bad”. Due to their low molecular weight, a high level of LDL predisposes to lipid accumulation in the arterial wall, leading to atherogenic processes [83]. Furthermore, LDL oxidation plays an important role in atherogenesis. Oxidized LDL promotes accumulation of inflammatory cells such as macrophages, thereby causing build-up of plaques on the vessel wall [84,85]. Therefore, suppression of LDL oxidation is an important anti-atherosclerotic therapeutic target. Flavonoids from grape juice and red wine, for example, inhibit plasma oxidation of LDL in humans [86].



Resveratrol modifies vascular function [54,87], attenuates lipid accumulation [88,89], and modulates gene expression related to lipogenesis and lipolysis [90]. Resveratrol also inhibits oxidized LDL (oxLDL)-induced apoptosis in vascular endothelial cells [91,92]. Similarly, pterostilbene protects human vascular endothelial cells against apoptosis [93]. Pterostilbene induced cytoprotective autophagy in vascular endothelial cells via activation of AMPK and downstream inhibition of mTOR signaling [94]. Here, pterostilbene activated AMPK via upstream calcium/calmodulin-dependent protein kinase kinase beta (CAMKKβ) [94]. Recent studies indicate that pterostilbene attenuates high fat-induced atherosclerosis in mice via suppression of pro-inflammatory cytokines such as transforming growth factor beta (TGFβ), TNFα, IL-1β and IL-6 among others [95]. Pterostilbene inhibits proliferation of vascular smooth muscle cells and progression of cell cycle by regulating Akt kinase [96]. In several notable studies, piceatannol given at variable doses (15–45 mg/kg) resulted in reduced plasma lipopolysaccharides, LDL-cholesterol levels and lipid peroxidation in a murine model [97,98].



Taken together, these research findings suggest protective properties of stilbenoids on the vascular endothelium, which may delay the initiation and progression of atherosclerosis.




3.5. Cardiac Hypertrophy


Resveratrol prevents cardiomyocyte and cardiac hypertrophy in isolated NE-treated cardiomyocytes and in the pressure overload model of cardiac hypertrophy [99,100,101]. One possible explanation of anti-hypertrophic actions of resveratrol is via activation of NO-AMPK signaling [99]. Resveratrol also inhibited hypertrophy induced by pressure overload (concentric hypertrophy) but not volume overload (eccentric hypertrophy) [102]. The proposed mechanism for the effect of resveratrol on pressure overload-induced hypertrophy includes alleviation of oxidative stress and increased NO production via upregulation of endothelial nitric oxide synthase (eNOS) [102]. Of note, eNOS level and activity remain unchanged in the volume-overload model of hypertrophy [103], suggesting that unique signaling pathways are involved in pressure-overload versus volume-overload hypertrophy. Therefore, the authors concluded that resveratrol may be used in pressure-overload disease settings such as hypertension and aortic stenosis [102]. Resveratrol also prevented development of hypertrophy in SHR, a genetic model of hypertension and hypertrophy, via the LKB-AMPK-eNOS signaling axis [55,104], and grape powder containing phenols such as resveratrol, anthocyanins and catechins improved cardiac and vascular function in SHR [105].



In a recent study, we showed that gnetol and pterostilbene inhibited ET-1-induced hypertrophy in isolated neonatal rat cardiomyocytes via activation of AMPK [106]. A comparative study using equal doses (2.5 mg/kg/day) of gnetol, pterostilbene and resveratrol for 8 weeks did not inhibit left ventricular hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat, which is a model of hypertrophy and heart failure [106]. However, the three stilbenoids improved diastolic function as evidenced by preventing prolongation of iso-volumetric relaxation time, and thus, still exerted some cardioprotection beyond antihypertrophic effects [106].




3.6. Cardiovascular Human Studies


Despite the promising effects described above for stilbenoids, the efficacy of specific grape phenols such as resveratrol is yet to be established in humans. For example, administration of resveratrol (75 mg/day for 12 weeks; n = 15) to non-obese healthy postmenopausal women did not change metabolic parameters such as insulin sensitivity, mitochondrial function, AMPK signaling and inflammatory markers [107]. The absence of effect of resveratrol on metabolic parameters in healthy subjects is consistent with earlier results obtained in healthy rodents [108]. Thus, we may infer that resveratrol likely exerts its effects only in metabolic disease conditions such as obesity, type II diabetes and dyslipidemia.



Resveratrol administration for primary and secondary prevention of CVD have shown some promise [109,110,111], but small sample size (n = 75) and short follow-up (1 year) limit the clinical relevance. In this study, 75 subjects were randomly divided into 3 groups. One group was administered resveratrol-containing grape extract capsules (8.1 mg/day for the first 6 months and 16.2 mg/day for the next 6 months), another group was given grape extract capsules containing no resveratrol, and the third group was given placebo capsules. All subjects in this study were also on statins and were treated according to the prevailing guidelines for primary prevention of CVD [110]. At the study endpoint, patients treated with resveratrol-containing grape extract showed improved inflammatory and fibrinolytic status compared to placebo and grape-extract only group [110]. Since resveratrol provided additional benefits in patients with high risk of CVD, over and above other phenols in the grape extract, resveratrol may complement current guidelines for the primary prevention of CVD [109,110].



Although resveratrol and pterostilbene exerted antihyperlipidemic actions in animal models [112,113], clinical trials in humans do not show reduction in LDL/HDL ratio. In a meta-analysis of randomized control trials, supplementation with resveratrol did not significantly affect lipid parameters such as total cholesterol, LDL, HDL and triglyceride levels [114]. Both high and low doses of pterostilbene increased LDL and had no effect on HDL and triglycerides in a randomized placebo-controlled trial [59]. Administration of grape extract had no effect on LDL levels.



To determine effects on secondary prevention of CVD, resveratrol-containing grape extract (8.1 mg/day for the first 6 months and 16.2 mg/day for the next 6 months) was administered to patients with stable coronary artery disease in addition to their regular medications and dietary restrictions [111]. Compared to the placebo and grape extract only group, there was an increase in anti-inflammatory adiponectin and a decrease in thrombogenic plasminogen activator inhibitor type 1 (PAI-1) in the group that received resveratrol [111]. Thus, resveratrol may exert its cardioprotective effects by improving anti-inflammatory response and preventing atherothrombotic signaling [111].





4. Other Biological Effects of Stilbenoids


4.1. Diabetes


Diabetes is a chronic metabolic disease associated with inflammation and oxidative stress. Due to its anti-inflammatory and antioxidant effects, resveratrol can mitigate the development of diabetic complications. Preclinical data show that resveratrol might be beneficial in the management of diabetes by improving insulin resistance, improving defective insulin signaling, and preventing pancreatic beta cell apoptosis and dysfunction [115]. Resveratrol prevents hyperglycemia in diabetic animal models by increasing glucose uptake and translocation of GLUT 4 to the caveolar membrane of diabetic myocardium [116]. Furthermore, resveratrol improved glucose tolerance and reduced the expression of advanced glycated end-products (AGE) receptors in diabetic rat liver and kidney [117,118]. Resveratrol prevents production of ROS and reactive nitrogen species such as superoxide anion (O2•−), hydroxyl radical (OH•), hydrogen peroxide and malondialdehyde (MDA) while increasing levels of antioxidant enzymes such as SOD, catalase and glutathione peroxidase in diabetic animals [119]. Resveratrol also inhibits the pro-inflammatory signaling, nuclear factor ĸB (NFĸB), and reduces the production of inflammatory cytokines such as TNF-α, IL-1β, IL-4, and IL-6 [119]. In addition, resveratrol increased insulin sensitivity, glucose tolerance and mitochondrial biogenesis in an AMPK-dependent manner [120]. In this study, resveratrol was unable to elicit the same effect in AMPK-deficient mice suggesting the role of AMPK in the metabolic actions of resveratrol [120].



While some human studies have shown the benefits of resveratrol on glycemic control, other studies did not demonstrate significant effects. Administration of resveratrol (250 mg/day for 3 months) in addition to either metformin or glibenclamide improved glycemic parameters in type 2 diabetes patients, as compared to metformin or glibenclamide alone [121]. Movahed and colleagues also reported that resveratrol (1 g/day for 45 days) reduced fasting blood sugar, HbA1c and systolic blood pressure [122]. Indeed, a much lower dose of resveratrol (5 mg/day for 28 days) reduced hemoglobin A1c (HbA1c), systolic blood pressure and improved insulin sensitivity but did not affect the homeostatic model of assessment of insulin resistance (HOMA-β).



In contrast, in a randomized control trial by Thazhath et al., administration of 500 mg of resveratrol twice daily for 5 weeks in diet-controlled type 2 diabetes did not significantly improve glycemic control [123]. There was no difference between the fasting glucose level, postprandial glucose level, HbA1c, gastric emptying and glucagon-like peptide 1 secretion in the resveratrol-treated versus the placebo group. Similarly, resveratrol treatment for 6 months did not improve metabolic parameters in type 2 diabetic patients [124]. Therefore, the effect of resveratrol on diabetes in human, if any, is not fully understood.



Pterostilbene improves glycemic control in insulin-resistant obese rats by increasing hepatic glucokinase activity and increasing skeletal muscle glucose uptake [125]. In vitro studies also indicate that pterostilbene protected pancreatic beta cells against oxidative stress and apoptosis [126]. Antihyperglycemic properties of pterostilbene along with other phenolic constituents of Pterocarpus marsupium have been reported [127,128]. Whereas pterostilbene has been shown to be beneficial in animal models of diabetes and metabolic disorders, human data are still limited. The effect of pterostilbene on human type 2 diabetes is yet to be explored. Administration of blueberry (Vaccinium myrtillus) and sea buckthorn (Hippophae rhamnoides) extract to children with type 1 diabetes for two months elicited a reduction in HBA1c levels and an increase in SOD and glutathione peroxidase levels [129]. Since pterostilbene has been isolated from Vaccinium myrtillus [130], this effect may be due to the presence of pterostilbene alongside other bioactive compounds in the extract.




4.2. Neurodegeneration


The neuroprotective effects of stilbenoids are mostly due to their anti-oxidant and anti-inflammatory properties [131,132,133,134]. Neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases are associated with oxidative stress and mitochondrial dysfunction leading to loss of function and death of neurons [135]. Resveratrol protects neurons against ROS and improved motor co-ordination in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice by scavenging hydroxyl radicals [136]. Resveratrol also protected against lipopolysaccharide-induced dopaminergic neurodegeneration via inhibition of microglial activation and NFĸB signaling in the microglial [137]. Alzheimer’s disease is characterized by development of plaques made up of amyloid-beta protein in the hippocampus and cerebral cortex. Aggregation of amyloid-beta plays a key role in the pathogenesis of Alzheimer’s disease [138]. There is also evidence that amyloid-beta contributes to oxidative damage in the neurons by inducing lipid peroxidation, protein oxidation and DNA oxidation [139]. Resveratrol holds therapeutic potential in the treatment of Alzheimer’s disease due to its ability to reduce amyloid plaques in brain. In a study by Marambaud et al., although resveratrol did not inhibit the production of amyloid-beta, it promoted proteasome-dependent degradation of amyloid-beta [140].



Pre-treatment with resveratrol protects against cerebral ischemia-reperfusion injury in rats [141]. Levels of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) were upregulated in the resveratrol-treated group, suggesting reduction in oxidative damage during cerebral ischemia [141]. Infarct volume and brain water content were reduced and neurological scores were improved by resveratrol pre-treatment. Resveratrol protected against neuronal death in a rat model of global cerebral ischemia via activation of PI3K-Akt signaling and downregulation of glycogen synthase kinase-3β (GSK-3β) and cAMP response element-binding protein (CREB) [142]. Apart from effects on cerebral ischemia, resveratrol improved cognition in an animal model of vascular dementia [143]. Here, vascular dementia was induced by bilateral occlusion of the common carotid arteries for 8 to 12 weeks. Treatment with resveratrol improved learning and memory scores. The lipid peroxidation product, malondialdehyde, was reduced while levels of antioxidant enzymes such as SOD and glutathione were increased in the hippocampus and cerebral cortex of the resveratrol-treated group [143]. This suggests the antioxidant role of resveratrol in the neuroprotective effects.



Although reports on the effects of pterostilbene on specific animal models of Alzheimer and Parkinsonism are limited, effects in cell culture models of neurotoxicity have been reported. Pterostilbene exerts neuroprotective effects against high glucose-induced injury in neuroblastoma cells [131]. Here, pterostilbene prevented cell death and generation of ROS in a dose-dependent manner. Pterostilbene also increased activities of mitochondrial complexes I and III, mitochondrial cytochrome C, and mitochondrial membrane potential. In addition, the levels of Nrf2, HO-1 and glutathione S-transferase (GST) were elevated with pterostilbene treatment, indicating protection against neuronal oxidative stress [131]. Similarly, pterostilbene ameliorates glutamate-induced neuronal oxidative stress via Nrf2 signaling [132]. In a recent study, streptozotocin-induced memory deficit in Sprague-Dawley (SD) rats was improved by pterostilbene treatment [144]. Pterostilbene also improved cholinergic transmission via inhibition of cholinesterases [144]. A study investigating the neuroprotective effect of oxyresveratrol in rat cortical neurons demonstrated that the hydroxystilbene prevented Aβ (25–35)-induced neuronal cell damage by preventing increase in cytosolic [Ca2+] levels, inhibiting glutamate release and reducing ROS generation [145].



In a separate study, Andrabi et al. demonstrated the neuroprotective effect of oxyresveratrol in a transient murine middle cerebral artery occlusion (MCAO) model [146]. At various doses of 10 or 20 mg/kg, oxyresveratrol significantly reduced the brain infarct volume of MCAO rats, improved neurological deficits caused by I/R injury, and inhibited cytochrome c release as well as caspase-3 activation in MCAO rats. These findings indicate the potent neuroprotective effect of oxyresveratrol and its potential use for the treatment of stroke [146].



Studies on the effect of gnetol on the nervous system are scarce. There is one report that gnetol reversibly and competitively inhibits butyryl cholinesterase, and this may be applicable in the treatment of Alzheimer disease [147].



In a randomized placebo-controlled clinical trial, resveratrol, at a dose of 500 mg per day gradually escalated to 1000 mg twice daily for 52 weeks, was found to be safe and well-tolerated in Alzheimer disease patients [148]. In this study, resveratrol prevented reduction of cerebrospinal fluid and plasma levels of amyloid-beta 40 (the most abundant amyloid beta isoform) compared to the placebo group, but did not affect several other important Alzheimer disease biomarkers [148]. Thus, the results of this study did not clearly indicate benefit of resveratrol in Alzheimer disease. In contrast, supplementation with 200 mg/day resveratrol and 320 mg/day quercetin (to improve bioavailability of resveratrol) for 26 weeks improved memory performance in healthy overweight elderly subjects [149]. A more recent clinical trial also indicated that resveratrol improves cognition, mood and cerebrovascular function in postmenopausal women when administered at a dose of 75 mg twice daily for 14 weeks [150]. Resveratrol improved cerebral blood flow by dilating cerebral blood vessels and thus improved cognitive performance in type 2 diabetic patients [151,152]. In conclusion, results of human studies show that resveratrol improves memory function and cognition in healthy subjects and diabetic patients with sub-clinical cognitive impairment but not in Alzheimer disease per se. The effects of pterostilbene and gnetol on memory and cognition are yet to be studied in humans.




4.3. Obesity


Obesity is characterized by excessive adipose tissue caused by increased caloric intake and/or inadequate energy expenditure. As defined, body mass index greater than 30 and waist circumference greater than 88 cm and 94 cm in women and men respectively [153] is one of the major risk factors for the development of CVD. Resveratrol inhibits adipogenesis, attenuates lipid accumulation and increases lipolysis in mature adipocytes [154]. The lifespan of mice fed high caloric (60% fat) diets supplemented with 0.04% resveratrol was lengthened [155]. Furthermore, administration of 150 mg/day trans-resveratrol over 30 days mimics the effect of caloric restriction in obese humans and thus may help to control obesity and other metabolic syndromes [156]. Similarly, resveratrol delayed age-related abnormalities, albeit without significant effect on longevity in non-obese mice [157]. This indicates that resveratrol may help counter the adverse metabolic effects of obesity. In non-human primates, resveratrol was shown to suppress body mass gain, increase metabolic rates and total energy expenditure [158,159].



Since resveratrol activates AMPK, and AMPK is involved in energy balance regulation and mitochondrial biogenesis, AMPK was proposed as a possible mechanism by which resveratrol protects against metabolic dysfunction [120]. In AMPK-deficient mice, resveratrol failed to improve insulin sensitivity possibly due to non-effect on mitochondrial content and fatty acid oxidation in skeletal muscles. This caused a build-up of lipids that may inhibit insulin action [120]. Furthermore, resveratrol activates sirtuins [160]. In high fat-fed mice, resveratrol improved glucose tolerance by enhancing sensitivity to insulin, and protected the mice against development of obesity [161]. This beneficial effect of resveratrol was lost when the acetylation sites of PGC-1α were mutated or when SIRT expression was disrupted using SIRT-deficient mice, thus indicating the role of PGC-1α /SIRT signaling [161].



Similar to resveratrol, pterostilbene exhibits anti-obesity properties. Pterostilbene reduces fat accumulation in adipose tissue by inhibiting lipogenesis, while enhancing fatty acid oxidation in the liver [162]. Pterostilbene also increased AMPK and acetyl-coA carboxylase activities in adipose tissue. Furthermore, in Zucker fa/fa rats, pterostilbene increased thermogenesis in brown adipose tissue by increasing the gene expression and translation of uncoupling protein 1 (UCP-1), a key mediator of thermogenesis [163]. Another recent study showed that pterostilbene reduced accumulation of abdominal white adipose tissue, increased fat metabolism and suppressed lipogenesis in obese rats [164]. Here, mRNA levels of UCP1 were also increased while mRNA levels of fatty acid synthase and leptin were reduced [164]. While effects on obesity have been reported for both resveratrol and pterostilbene as discussed above, the effect of gnetol on obesity is yet to be explored.



Despite promising effects of resveratrol on obesity in animal models, a systematic review of nine randomized controlled trials on the effects of resveratrol on obesity in humans showed limited evidence for the use of resveratrol in obesity and weight management [165]. Most studies did not find a reduction in body weight after treatment with resveratrol for a period of 4 to 12 weeks in obese and non-obese subjects [107,156,166,167]. The only study that reported a clear beneficial effect on body weight administered resveratrol 500 mg three times per day for 12 weeks in obese subjects with metabolic syndrome [168]. Thus, it may be concluded that a period of at least 12 weeks may be required for resveratrol to elicit anti-obesity effects in obese humans [169]. Further human studies are required to confirm the effects of resveratrol, and the results of ongoing clinical trials may provide more information in this regard.




4.4. Cancer Treatment and Prevention


Interventions to prevent and/or treat cancer may occur at specific stages of carcinogenesis such as initiation, promotion and progression. Stilbenes block metabolic activation of pro-carcinogens by inhibiting specific isoforms of cytochrome P450 (CYP) enzymes and thus prevented the initiation of carcinogenesis in cultured human tumor cells [170,171]. Resveratrol may also protect against cancer by inducing phase II metabolism of carcinogens, thereby enhancing their elimination from the body [172]. For instance, resveratrol induced activity of metabolizing enzymes such as uridine-5-diphospho (UDP) glucuronyltransferase and NADPH:quinone oxidoreductase in mouse epidermis [173]. Resveratrol may prevent the progression of cancer by suppressing actions of transcription and growth factors, including p53, FoxO, and ATF3, which are involved in the initiation and promotion of cancer in cell culture studies [174]. Furthermore, resveratrol and pterostilbene prevent proliferation and induce apoptosis in various cancer types including breast, prostate, pancreatic, liver and colorectal cancer (recently reviewed by Carter et al. [175,176]). Mechanisms that have been implicated in the anticancer properties of resveratrol and pterostilbene include induction of apoptosis, inhibition of proliferation, cell cycle arrest and inhibition of angiogenesis [177,178].



Pterostilbene exerts more potent inhibitory actions on human colon cancer cells than resveratrol due to its higher lipophilicity [179]. Hagiwara and colleagues demonstrated the ability of pterostilbene (50 μM) to promote the expression of tumor-suppressive miRs and argonaute2 (Ago2), a central RNA interference component, in breast cancer cells [180]. Piceatannol, an analog of resveratrol, suppressed various cancer types. Piceatannol suppressed proliferation and invasion of AH109A hepatoma cells via cell cycle arrest, apoptosis and anti-oxidation [181]. In addition, two separate groups demonstrated that through the inhibition of matrix metallopeptidase (MMP)-9, various doses of piceatannol reduced the metastasis of prostate and breast cancer cells [182,183]. Finally, in a recent study, gnetol was shown to possess anti-cancer potency through the inhibition of histone deacetylases and cytochrome enzymes (CYP2C9 and CYP3A4) [30], which serves as a prospective area for further investigation.



Although data from animal studies are promising, there is limited human clinical data to support the use of stilbenoids in the treatment and management of cancer. Thus, more studies are needed in this area before resveratrol and other stilbenoids can be considered for use in the setting of human cancer treatment and prevention.




4.5. Depigmentation


Melanin, a pigment which protects the skin against harmful effects of ultra-violet radiation, is produced by melanocytes in the process of melanogenesis [184]. Overproduction of melanin in some acquired hyperpigmentation disorders may cause skin concerns [185]. Furthermore, deregulation of melanogenesis has been associated with more aggressive progression of melanotic melanomas which may be due to increased production of cytotoxic and immunosuppressive intermediates, such as quinone, semiquinone and other ROS [186,187]. Thus, inhibition of melanogenesis may serve as an adjuvant therapy in the treatment of melanomas [188]. Melanogenesis is a multistep process which begins with conversion of l-tyrosine to l-3,4-dihydroxyphenylalanine (l-DOPA), the rate-limiting step catalyzed by the enzyme tyrosinase [184]. Gnetol inhibited melanin production in murine B16 melanoma cells via inhibition of tyrosinase [12].



Similarly, resveratrol inhibited ultraviolet B-induced hyperpigmentation in guinea pig skin [189]. Here, resveratrol also downregulated melanogenesis-related proteins such as tyrosinase, tyrosinase related protein (TRYP) 1, TRYP2 and microphthalmia-associated transcription factor (MITF) in melanoma cells [189]. There is evidence to show that pterostilbene is a more potent inhibitor of melanogenesis than resveratrol in α-melanocyte stimulating hormone (MSH)-stimulated B16/F10 melanoma cells [190]. Moreover, pterostilbene inhibited tyrosinase enzyme activity in a dose-dependent manner [190]. A study by Kim and colleagues investigated oxyresveratrol and demonstrated a potent inhibitory effect of 1.2 μM (IC50 value) on mushroom tyrosinase activity. Oxyresveratrol depigmentation is believed to exert its effects through reversible inhibition of tyrosinase activity and is dependent on the number and position of hydroxy substituents the compound contains [191].



The antimelanogenetic properties of piceatannol have also been investigated, with results indicating that piceatannol down-regulates melanin content and has a stronger anti-tyrosinase activity than both kojic acid, a chelation agent with moderate anti-pigment properties, and resveratrol [192]. The actions of piceatannol are likely attributed to anti-oxidative actions along with the ability to suppress reactive species generation while increasing the glutathione/oxidized glutathione ratio [192]. The ability of stilbenoids to inhibit melanin synthesis qualifies them as suitable potential candidates for use in the cosmetic industry to treat acquired hyperpigmentation disorders and possibly as adjuvants in the treatment of melanotic melanomas.





5. Conclusions


In summary, stilbenoids exert various biological effects such as cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. These effects are thought to be mediated by several universal signaling pathways. For instance, stilbenoids inhibited platelet aggregation possibly through inhibition of COX-1. Stilbenoids also reduced markers of oxidative stress and inflammation (TNF-α, IL-1β) in various models of ischemia-reperfusion injury and inhibited cardiomyocyte hypertrophy via activation of AMPK. In addition to the beneficial effects seen in the cardiovascular setting, stilbenoids improved insulin resistance and glucose tolerance in animal models of diabetes, induced apoptosis and inhibited proliferation of various cancer cell lines, and inhibited melanogenesis via downregulation of tyrosinase and other related proteins. The results presented in this review cover a myriad of models, from cell culture to animal studies as well as human studies (Table 2). Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate the beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid compound. However, there is limited information regarding the potential beneficial properties of less common stilbenoids. Therefore, further research is warranted to evaluate the beneficial health effects of less known stilbenoid compounds.
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	AGE
	Advanced glycated end-products



	Akt
	Protein kinase B



	AMP
	Adenosine monophosphate



	AMPK
	AMP-activated protein kinase



	CAMKKβ
	Calcium/calmodulin-dependent protein kinase kinase beta



	cAMP
	Cyclic adenosine monophosphate



	cGMP
	Cyclic guanosine monophosphate



	CHD
	Coronary heart disease



	COX
	Cyclooxygenase



	CREB
	cAMP response element-binding protein



	CVD
	Cardiovascular disease



	CYP
	Cytochrome P450



	ELISA
	Enzyme-linked immunosorbent assay



	eNOS
	Endothelial nitric oxide synthase



	ERK
	Extracellular signal-regulated kinase



	GLUT4
	Glucose transporter 4



	GSH
	Glutathione



	GSK-3β
	Glycogen synthase kinase 3 beta



	GSSH
	Glutathione disulfide



	GST
	Glutathione S-transferase



	HbA1c
	Hemoglobin A1c



	HDL
	High density lipoprotein



	HO-1
	Heme oxygenase-1



	HPLC
	High performance liquid chromatography



	IL
	Interleukin



	I/R
	Ischemia-Reperfusion



	LDH
	Lactate dehydrogenase



	l-DOPA
	l-dihydroxyphenylalanine



	LDL
	Low density lipoprotein



	LKB
	Liver kinase B



	MAPK
	Mitogen-activated protein kinase



	MCAO
	Middle cerebral artery occlusion



	MITF
	Microphthalmia-associated transcription factor



	MMP
	Matrix metallopeptidase



	mPTP
	Membrane permeability transition pore



	mRNA
	Messenger ribonucleic acid



	MSH
	Melanocyte Stimulating Hormone



	mTOR
	Mammalian target of rapamycin



	NAD
	Nicotinamide adenine dinucleotide



	NE
	Norepinephrine



	NFκB
	Nuclear factor kappa B



	NO
	Nitric oxide



	NOS
	Nitric oxide synthase



	O2−
	Superoxide anion



	•OH
	Hydroxyl radical



	PAI
	Plasminogen activator inhibitor



	PGC-1α
	Peroxisome proliferator-activated receptor gamma coactivator-1-alpha



	ROS
	Reactive oxygen species



	SD
	Sprague-Dawley



	SHR
	Spontaneously hypertensive rat



	SIRT1
	Sirtuin 1



	SOD
	Superoxide dismutase



	TGF-β
	Transforming growth factor-beta



	TNF-α
	Tumor necrosis factor-alpha



	TRYP
	Tyrosinase-related protein



	UCP
	Uncoupling protein



	UDP
	Uridine diphosphate



	WHO
	World Health Organization



	WKY
	Wistar-Kyoto







References


	



Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [Google Scholar] [CrossRef] [PubMed]

	



Larronde, F.; Richard, T.; Delaunay, J.C.; Decendit, A.; Monti, J.P.; Krisa, S.; Mérillon, J.M. New stilbenoid glucosides isolated from vitis vinifera cell suspension cultures (cv. Cabernet sauvignon). Planta Medica 2005, 71, 888–890. [Google Scholar] [CrossRef] [PubMed]

	



Waffo Teguo, P.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Merillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from vitis vinifera cell cultures. J. Nat. Prod. 1998, 61, 655–657. [Google Scholar] [CrossRef] [PubMed]

	



Yu, O.; Jez, J.M. Nature’s assembly line: Biosynthesis of simple phenylpropanoids and polyketides. Plant J. 2008, 54, 750–762. [Google Scholar] [CrossRef] [PubMed]

	



Langcake, P.; Pryce, R.J. The production of resveratrol by vitis vinifera and other members of the vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]

	



Langcake, P.; Cornford, C.A.; Pryce, R.J. Identification of pterostilbene as a phytoalexin from vitis vinifera leaves. Phytochemistry 1979, 18, 1025–1027. [Google Scholar] [CrossRef]

	



López, M.; Martínez, F.; Del Valle, C.; Orte, C.; Miró, M. Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J. Chromatogr. A 2001, 922, 359–363. [Google Scholar] [CrossRef]

	



Seshadri, T.R. Polyphenols of pterocarpus and dalbergia woods. Phytochemistry 1972, 11, 881–898. [Google Scholar] [CrossRef]

	



Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef] [PubMed]

	



Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]

	



Prakash, S.; Khan, M.A.; Khan, K.Z.; Zaman, A. Stilbenes of gnetum ula. Phytochemistry 1985, 24, 622–624. [Google Scholar] [CrossRef]

	



Ohguchi, K.; Tanaka, T.; Iliya, I.; Ito, T.; Iinuma, M.; Matsumoto, K.; Akao, Y.; Nozawa, Y. Gnetol as a potent tyrosinase inhibitor from genus gnetum. Biosci. Biotechnol. Biochem. 2003, 67, 663–665. [Google Scholar] [CrossRef] [PubMed]

	



Xiang, W.; Jiang, B.; Li, X.M.; Zhang, H.J.; Zhao, Q.S.; Li, S.H.; Sun, H.D. Constituents of gnetum montanum. Fitoterapia 2002, 73, 40–42. [Google Scholar] [CrossRef]

	



Ali, Z.; Tanaka, T.; Iliya, I.; Iinuma, M.; Furusawa, M.; Ito, T.; Nakaya, K.; Murata, J.; Darnaedi, D. Phenolic constituents of gnetum klossii. J. Nat. Prod. 2003, 66, 558–560. [Google Scholar] [CrossRef] [PubMed]

	



Huang, K.S.; Wang, Y.H.; Li, R.L.; Lin, M. Stilbene dimers from the lianas of gnetum hainanense. Phytochemistry 2000, 54, 875–881. [Google Scholar] [CrossRef]

	



Kato, E.; Tokunaga, Y.; Sakan, F. Stilbenoids isolated from the seeds of melinjo (gnetum gnemon l.) and their biological activity. J. Agric. Food Chem. 2009, 57, 2544–2549. [Google Scholar] [CrossRef] [PubMed]

	



Nagabhushanam, K.; Thomas, S.M.; Prakash, L.; Muhammed, M. Stilbenols—A class of priviledged structures. PharmaChem 2009, 8, 2–6. [Google Scholar]

	



Seyed, M.A.; Jantan, I.; Bukhari, S.N.; Vijayaraghavan, K. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem. 2016, 64, 725–737. [Google Scholar] [CrossRef] [PubMed]

	



Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome p450 enzyme cyp1b1. Br. J. Cancer 2002, 86, 774–778. [Google Scholar] [CrossRef] [PubMed]

	



Piotrowska, H.; Kucinska, M.; Murias, M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. 2012, 750, 60–82. [Google Scholar] [CrossRef] [PubMed]

	



Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure-activity relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef] [PubMed]

	



Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801–803. [Google Scholar] [CrossRef] [PubMed]

	



Likhitwitayawuid, K.; Sritularak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from millettia erythrocalyx and artocarpus lakoocha. Nat. Prod. Res. 2005, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]

	



Das, S.; Lin, H.S.; Ho, P.C.; Ng, K.Y. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm. Res. 2008, 25, 2593–2600. [Google Scholar] [CrossRef] [PubMed]

	



Silva, F.; Figueiras, A.; Gallardo, E.; Nerín, C.; Domingues, F.C. Strategies to improve the solubility and stability of stilbene antioxidants: A comparative study between cyclodextrins and bile acids. Food Chem. 2014, 145, 115–125. [Google Scholar] [CrossRef] [PubMed]

	



Coimbra, M.; Isacchi, B.; van Bloois, L.; Torano, J.S.; Ket, A.; Wu, X.; Broere, F.; Metselaar, J.M.; Rijcken, C.J.; Storm, G.; et al. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm. 2011, 416, 433–442. [Google Scholar] [CrossRef] [PubMed]

	



Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J.L.; Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [Google Scholar]

	



Zhang, Y.; Shang, Z.; Gao, C.; Du, M.; Xu, S.; Song, H.; Liu, T. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 2014, 15, 1000–1008. [Google Scholar] [CrossRef] [PubMed]

	



Kapetanovic, I.M.; Muzzio, M.; Huang, Z.; Thompson, T.N.; McCormick, D.L. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 2011, 68, 593–601. [Google Scholar] [CrossRef] [PubMed]

	



Remsberg, C.M.; Martinez, S.E.; Akinwumi, B.C.; Anderson, H.D.; Takemoto, J.K.; Sayre, C.L.; Davies, N.M. Preclinical pharmacokinetics and pharmacodynamics and content analysis of gnetol in foodstuffs. Phytother. Res. 2015, 29, 1168–1179. [Google Scholar] [CrossRef] [PubMed]

	



Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: Extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 2002, 302, 369–373. [Google Scholar] [CrossRef] [PubMed]

	



Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef] [PubMed]

	



Roupe, K.A.; Yáñez, J.A.; Teng, X.W.; Davies, N.M. Pharmacokinetics of selected stilbenes: Rhapontigenin, piceatannol and pinosylvin in rats. J. Pharm. Pharmacol. 2006, 58, 1443–1450. [Google Scholar] [CrossRef] [PubMed]

	



Lin, H.S.; Tringali, C.; Spatafora, C.; Wu, C.; Ho, P.C. A simple and sensitive hplc-uv method for the quantification of piceatannol analog trans-3,5,3′,4′-tetramethoxystilbene in rat plasma and its application for a pre-clinical pharmacokinetic study. J. Pharm. Biomed. Anal. 2010, 51, 679–684. [Google Scholar] [CrossRef] [PubMed]

	



Chen, W.; Yeo, S.C.M.; Elhennawy, M.G.A.A.; Lin, H.-S. Oxyresveratrol: A bioavailable dietary polyphenol. J. Funct. Foods 2016, 22, 122–131. [Google Scholar] [CrossRef]

	



Dellinger, R.W.; Garcia, A.M.; Meyskens, F.L. Differences in the glucuronidation of resveratrol and pterostilbene: Altered enzyme specificity and potential gender differences. Drug Metab. Pharmacokinet. 2014, 29, 112–119. [Google Scholar] [CrossRef] [PubMed]

	



Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef] [PubMed]

	



Andlauer, W.; Kolb, J.; Siebert, K.; Fürst, P. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp. Clin. Res. 2000, 26, 47–55. [Google Scholar] [PubMed]

	



Kuhnle, G.; Spencer, J.P.; Chowrimootoo, G.; Schroeter, H.; Debnam, E.S.; Srai, S.K.; Rice-Evans, C.; Hahn, U. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 2000, 272, 212–217. [Google Scholar] [CrossRef] [PubMed]

	



Boocock, D.J.; Patel, K.R.; Faust, G.E.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.; Steward, W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 848, 182–187. [Google Scholar] [CrossRef] [PubMed]

	



Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [PubMed]

	



Calamini, B.; Ratia, K.; Malkowski, M.G.; Cuendet, M.; Pezzuto, J.M.; Santarsiero, B.D.; Mesecar, A.D. Pleiotropic mechanisms facilitated by resveratrol and its metabolites. Biochem. J. 2010, 429, 273–282. [Google Scholar] [CrossRef] [PubMed]

	



Silva, C.G.; Monteiro, J.; Marques, R.R.; Silva, A.M.; Martínez, C.; Canle, M.; Faria, J.L. Photochemical and photocatalytic degradation of trans-resveratrol. Photochem. Photobiol. Sci. 2013, 12, 638–644. [Google Scholar] [CrossRef] [PubMed]

	



Rius, C.; Abu-Taha, M.; Hermenegildo, C.; Piqueras, L.; Cerda-Nicolas, J.M.; Issekutz, A.C.; Estañ, L.; Cortijo, J.; Morcillo, E.J.; Orallo, F.; et al. Trans- but not cis-resveratrol impairs angiotensin-ii-mediated vascular inflammation through inhibition of nf-κb activation and peroxisome proliferator-activated receptor-gamma upregulation. J. Immunol. 2010, 185, 3718–3727. [Google Scholar] [CrossRef] [PubMed]

	



Yang, N.C.; Lee, C.H.; Song, T.Y. Evaluation of resveratrol oxidation in vitro and the crucial role of bicarbonate ions. Biosci. Biotechnol. Biochem. 2010, 74, 63–68. [Google Scholar] [CrossRef] [PubMed]

	



Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 48–59. [Google Scholar] [CrossRef] [PubMed]

	



Pantusa, M.; Bartucci, R.; Rizzuti, B. Stability of trans-resveratrol associated with transport proteins. J. Agric. Food Chem. 2014, 62, 4384–4391. [Google Scholar] [CrossRef] [PubMed]

	



Cottart, C.H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef] [PubMed]

	



Riche, D.M.; McEwen, C.L.; Riche, K.D.; Sherman, J.J.; Wofford, M.R.; Deschamp, D.; Griswold, M. Analysis of safety from a human clinical trial with pterostilbene. J. Toxicol. 2013, 2013, 463595. [Google Scholar] [CrossRef] [PubMed]

	



The who monica project. A worldwide monitoring system for cardiovascular diseases: Cardiovascular mortality and risk factors in selected communities. In World Health Statistics Annual; World Health Organization: Geneva, Switzerland, 1989; pp. 27–149.

	



St Leger, A.S.; Cochrane, A.L.; Moore, F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1979, 1, 1017–1020. [Google Scholar] [CrossRef]

	



Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the french paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]

	



Zordoky, B.N.; Robertson, I.M.; Dyck, J.R. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta 2015, 1852, 1155–1177. [Google Scholar] [CrossRef] [PubMed]

	



Behbahani, J.; Thandapilly, S.J.; Louis, X.L.; Huang, Y.; Shao, Z.; Kopilas, M.A.; Wojciechowski, P.; Netticadan, T.; Anderson, H.D. Resveratrol and small artery compliance and remodeling in the spontaneously hypertensive rat. Am. J. Hypertens. 2010, 23, 1273–1278. [Google Scholar] [CrossRef] [PubMed]

	



Thandapilly, S.J.; Wojciechowski, P.; Behbahani, J.; Louis, X.L.; Yu, L.; Juric, D.; Kopilas, M.A.; Anderson, H.D.; Netticadan, T. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the shr without lowering blood pressure. Am. J. Hypertens. 2010, 23, 192–196. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Dai, Y.; Yan, S.; Shi, Y.; Li, J.; Liu, J.; Cha, L.; Mu, J. Resveratrol lowers blood pressure in spontaneously hypertensive rats via calcium-dependent endothelial no production. Clin. Exp. Hypertens. 2016, 38, 287–293. [Google Scholar] [CrossRef] [PubMed]

	



Thandapilly, S.J.; Louis, X.L.; Behbahani, J.; Movahed, A.; Yu, L.; Fandrich, R.; Zhang, S.; Kardami, E.; Anderson, H.D.; Netticadan, T. Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. Hypertens. Res. 2013, 36, 866–872. [Google Scholar] [CrossRef] [PubMed]

	



Liu, Y.; Ma, W.; Zhang, P.; He, S.; Huang, D. Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. Clin. Nutr. 2015, 34, 27–34. [Google Scholar] [CrossRef] [PubMed]

	



Riche, D.M.; Riche, K.D.; Blackshear, C.T.; McEwen, C.L.; Sherman, J.J.; Wofford, M.R.; Griswold, M.E. Pterostilbene on metabolic parameters: A randomized, double-blind, and placebo-controlled trial. Evid. Based Complement. Altern. Med. 2014, 2014, 459165. [Google Scholar] [CrossRef] [PubMed]

	



Freynhofer, M.K.; Bruno, V.; Wojta, J.; Huber, K. The role of platelets in athero-thrombotic events. Curr. Pharm. Des. 2012, 18, 5197–5214. [Google Scholar] [CrossRef] [PubMed]

	



Ling, G.; Ovbiagele, B. Oral antiplatelet therapy in the secondary prevention of atherothrombotic events. Am. J. Cardiovasc. Drugs 2009, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]

	



Silva, M.V.; Dusse, L.M.; Vieira, L.M.; Carvalho, M.D. Platelet antiaggregants in primary and secondary prevention of atherothrombotic events. Arq. Bras. Cardiol. 2013, 100, e78–e84. [Google Scholar] [PubMed]

	



Olas, B.; Wachowicz, B.; Saluk-Juszczak, J.; Zieliński, T. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb. Res. 2002, 107, 141–145. [Google Scholar] [CrossRef]

	



Olas, B.; Wachowicz, B.; Holmsen, H.; Fukami, M.H. Resveratrol inhibits polyphosphoinositide metabolism in activated platelets. Biochim. Biophys. Acta 2005, 1714, 125–133. [Google Scholar] [CrossRef] [PubMed]

	



Stef, G.; Csiszar, A.; Lerea, K.; Ungvari, Z.; Veress, G. Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J. Cardiovasc. Pharmacol. 2006, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]

	



Zbikowska, H.M.; Olas, B.; Wachowicz, B.; Krajewski, T. Response of blood platelets to resveratrol. Platelets 1999, 10, 247–252. [Google Scholar] [PubMed]

	



Shen, M.Y.; Hsiao, G.; Liu, C.L.; Fong, T.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. Inhibitory mechanisms of resveratrol in platelet activation: Pivotal roles of p38 mapk and no/cyclic gmp. Br. J. Haematol. 2007, 139, 475–485. [Google Scholar] [CrossRef] [PubMed]

	



Messina, F.; Guglielmini, G.; Curini, M.; Orsini, S.; Gresele, P.; Marcotullio, M.C. Effect of substituted stilbenes on platelet function. Fitoterapia 2015, 105, 228–233. [Google Scholar] [CrossRef] [PubMed]

	



Kloypan, C.; Jeenapongsa, R.; Sri-in, P.; Chanta, S.; Dokpuang, D.; Tip-pyang, S.; Surapinit, N. Stilbenoids from gnetum macrostachyum attenuate human platelet aggregation and adhesion. Phytother. Res. 2012, 26, 1564–1568. [Google Scholar] [CrossRef] [PubMed]

	



Ray, P.S.; Maulik, G.; Cordis, G.A.; Bertelli, A.A.; Bertelli, A.; Das, D.K. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic. Biol. Med. 1999, 27, 160–169. [Google Scholar] [CrossRef]

	



Shen, M.; Wu, R.X.; Zhao, L.; Li, J.; Guo, H.T.; Fan, R.; Cui, Y.; Wang, Y.M.; Yue, S.Q.; Pei, J.M. Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS ONE 2012, 7, e51223. [Google Scholar] [CrossRef] [PubMed]

	



Xi, J.; Wang, H.; Mueller, R.A.; Norfleet, E.A.; Xu, Z. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur. J. Pharmacol. 2009, 604, 111–116. [Google Scholar] [CrossRef] [PubMed]

	



Hwang, J.T.; Kwon, D.Y.; Park, O.J.; Kim, M.S. Resveratrol protects ros-induced cell death by activating ampk in h9c2 cardiac muscle cells. Genes Nutr. 2008, 2, 323–326. [Google Scholar] [CrossRef] [PubMed]

	



Bradamante, S.; Barenghi, L.; Piccinini, F.; Bertelli, A.A.; De Jonge, R.; Beemster, P.; De Jong, J.W. Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism. Eur. J. Pharmacol. 2003, 465, 115–123. [Google Scholar] [CrossRef]

	



Hattori, R.; Otani, H.; Maulik, N.; Das, D.K. Pharmacological preconditioning with resveratrol: Role of nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H1988–H1995. [Google Scholar] [CrossRef] [PubMed]

	



Shen, M.; Jia, G.L.; Wang, Y.M.; Ma, H. Cardioprotective effect of resvaratrol pretreatment on myocardial ischemia-reperfusion induced injury in rats. Vascul. Pharmacol. 2006, 45, 122–126. [Google Scholar] [CrossRef] [PubMed]

	



Guo, Y.; Zhang, L.; Li, F.; Hu, C.P.; Zhang, Z. Restoration of sirt1 function by pterostilbene attenuates hypoxia-reoxygenation injury in cardiomyocytes. Eur. J. Pharmacol. 2016, 776, 26–33. [Google Scholar] [CrossRef] [PubMed]

	



Tang, B.L. Sirt1 and the mitochondria. Mol. Cells 2016, 39, 87–95. [Google Scholar] [PubMed]

	



Yu, Z.; Wang, S.; Zhang, X.; Li, Y.; Zhao, Q.; Liu, T. Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int. Immunopharmacol. 2017, 43, 7–15. [Google Scholar] [CrossRef] [PubMed]

	



Wu, M.; Lu, S.; Zhong, J.; Huang, K.; Zhang, S. Protective effects of pterostilbene against myocardial ischemia/reperfusion injury in rats. Inflammation 2017, 40, 578. [Google Scholar] [CrossRef] [PubMed]

	



Lv, M.; Liu, K.; Fu, S.; Li, Z.; Yu, X. Pterostilbene attenuates the inflammatory reaction induced by ischemia/reperfusion in rat heart. Mol. Med. Rep. 2015, 11, 724–728. [Google Scholar] [CrossRef] [PubMed]

	



Hung, L.M.; Chen, J.K.; Lee, R.S.; Liang, H.C.; Su, M.J. Beneficial effects of astringinin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Free Radic. Biol. Med. 2001, 30, 877–883. [Google Scholar] [CrossRef]

	



Schwenke, D.C.; Carew, T.E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. Ii. Selective retention of ldl vs. Selective increases in ldl permeability in susceptible sites of arteries. Arteriosclerosis 1989, 9, 908–918. [Google Scholar] [CrossRef] [PubMed]

	



Folcik, V.A.; Nivar-Aristy, R.A.; Krajewski, L.P.; Cathcart, M.K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J. Clin. Investig. 1995, 96, 504–510. [Google Scholar] [CrossRef] [PubMed]

	



Staprãns, I.; Rapp, J.H.; Pan, X.M.; Hardman, D.A.; Feingold, K.R. Oxidized lipids in the diet accelerate the development of fatty streaks in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 533–538. [Google Scholar] [CrossRef] [PubMed]

	



Miyagi, Y.; Miwa, K.; Inoue, H. Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am. J. Cardiol. 1997, 80, 1627–1631. [Google Scholar] [CrossRef]

	



Ou, H.C.; Chou, F.P.; Sheen, H.M.; Lin, T.M.; Yang, C.H.; Huey-Herng Sheu, W. Resveratrol, a polyphenolic compound in red wine, protects against oxidized ldl-induced cytotoxicity in endothelial cells. Clin. Chim. Acta 2006, 364, 196–204. [Google Scholar] [CrossRef] [PubMed]

	



Voloshyna, I.; Hai, O.; Littlefield, M.J.; Carsons, S.; Reiss, A.B. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via pparγ and adenosine. Eur. J. Pharmacol. 2013, 698, 299–309. [Google Scholar] [CrossRef] [PubMed]

	



Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate amp-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic ldl receptor-deficient mice. Diabetes 2006, 55, 2180–2191. [Google Scholar] [CrossRef] [PubMed]

	



Gomez-Zorita, S.; Tréguer, K.; Mercader, J.; Carpéné, C. Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J. Physiol. Biochem. 2013, 69, 585–593. [Google Scholar] [CrossRef] [PubMed]

	



Chang, H.C.; Chen, T.G.; Tai, Y.T.; Chen, T.L.; Chiu, W.T.; Chen, R.M. Resveratrol attenuates oxidized ldl-evoked lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J. Cereb. Blood Flow Metab. 2011, 31, 842–854. [Google Scholar] [CrossRef] [PubMed]

	



Lin, Y.L.; Chang, H.C.; Chen, T.L.; Chang, J.H.; Chiu, W.T.; Lin, J.W.; Chen, R.M. Resveratrol protects against oxidized ldl-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J. Nutr. 2010, 140, 2187–2192. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, L.; Zhou, G.; Song, W.; Tan, X.; Guo, Y.; Zhou, B.; Jing, H.; Zhao, S.; Chen, L. Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 2012, 17, 25–36. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, L.; Cui, L.; Zhou, G.; Jing, H.; Guo, Y.; Sun, W. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J. Nutr. Biochem. 2013, 24, 903–911. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, Y. Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via nf-κb signaling pathway in toll-like receptor 5 (tlr5) deficient mice. Biomed. Pharmacother. 2016, 81, 345–355. [Google Scholar] [CrossRef] [PubMed]

	



Park, E.S.; Lim, Y.; Hong, J.T.; Yoo, H.S.; Lee, C.K.; Pyo, M.Y.; Yun, Y.P. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking akt-dependent pathway. Vascul. Pharmacol. 2010, 53, 61–67. [Google Scholar] [CrossRef] [PubMed]

	



Llarena, M.; Andrade, F.; Hasnaoui, M.; Portillo, M.P.; Pérez-Matute, P.; Arbones-Mainar, J.M.; Hijona, E.; Villanueva-Millán, M.J.; Aguirre, L.; Carpéné, C.; et al. Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese zucker rats. J. Physiol. Biochem. 2016, 72, 555–566. [Google Scholar] [CrossRef] [PubMed]

	



Uchida-Maruki, H.; Inagaki, H.; Ito, R.; Kurita, I.; Sai, M.; Ito, T. Piceatannol lowers the blood glucose level in diabetic mice. Biol. Pharm. Bull. 2015, 38, 629–633. [Google Scholar] [CrossRef] [PubMed]

	



Chan, A.Y.; Dolinsky, V.W.; Soltys, C.L.; Viollet, B.; Baksh, S.; Light, P.E.; Dyck, J.R. Resveratrol inhibits cardiac hypertrophy via amp-activated protein kinase and akt. J. Biol. Chem. 2008, 283, 24194–24201. [Google Scholar] [CrossRef] [PubMed]

	



Juric, D.; Wojciechowski, P.; Das, D.K.; Netticadan, T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2138–H2143. [Google Scholar] [CrossRef] [PubMed]

	



Thandapilly, S.J.; Louis, X.L.; Yang, T.; Stringer, D.M.; Yu, L.; Zhang, S.; Wigle, J.; Kardami, E.; Zahradka, P.; Taylor, C.; et al. Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating no-ampk pathway. Eur. J. Pharmacol. 2011, 668, 217–224. [Google Scholar] [CrossRef] [PubMed]

	



Wojciechowski, P.; Juric, D.; Louis, X.L.; Thandapilly, S.J.; Yu, L.; Taylor, C.; Netticadan, T. Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. J. Nutr. 2010, 140, 962–968. [Google Scholar] [CrossRef] [PubMed]

	



Gealekman, O.; Abassi, Z.; Rubinstein, I.; Winaver, J.; Binah, O. Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation 2002, 105, 236–243. [Google Scholar] [CrossRef] [PubMed]

	



Dolinsky, V.W.; Chakrabarti, S.; Pereira, T.J.; Oka, T.; Levasseur, J.; Beker, D.; Zordoky, B.N.; Morton, J.S.; Nagendran, J.; Lopaschuk, G.D.; et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim. Biophys. Acta 2013, 1832, 1723–1733. [Google Scholar] [CrossRef] [PubMed]

	



Thandapilly, S.J.; LeMaistre, J.L.; Louis, X.L.; Anderson, C.M.; Netticadan, T.; Anderson, H.D. Vascular and cardiac effects of grape powder in the spontaneously hypertensive rat. Am. J. Hypertens. 2012, 25, 1070–1076. [Google Scholar] [CrossRef] [PubMed]

	



Akinwumi, B.C.; Raj, P.; Lee, D.I.; Acosta, C.; Yu, L.; Thomas, S.M.; Nagabhushanam, K.; Majeed, M.; Davies, N.M.; Netticadan, T.; et al. Disparate effects of stilbenoid polyphenols on hypertrophic cardiomyocytes in vitro vs. In the spontaneously hypertensive heart failure rat. Molecules 2017, 22, 204. [Google Scholar] [CrossRef] [PubMed]

	



Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Rossi Fanelli, F.; Patterson, B.W.; et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012, 16, 658–664. [Google Scholar] [CrossRef] [PubMed]

	



Juan, M.E.; Vinardell, M.P.; Planas, J.M. The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. J. Nutr. 2002, 132, 257–260. [Google Scholar] [CrossRef] [PubMed]

	



Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; García-Almagro, F.J.; Avilés-Plaza, F.; Parra, S.; Yáñez-Gascón, M.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized ldl and apob in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 2012, 56, 810–821. [Google Scholar] [CrossRef] [PubMed]

	



Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol. 2012, 110, 356–363. [Google Scholar] [CrossRef] [PubMed]

	



Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013, 27, 37–48. [Google Scholar] [CrossRef] [PubMed]

	



Rimando, A.M.; Nagmani, R.; Feller, D.R.; Yokoyama, W. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J. Agric. Food Chem. 2005, 53, 3403–3407. [Google Scholar] [CrossRef] [PubMed]

	



Miura, D.; Miura, Y.; Yagasaki, K. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci. 2003, 73, 1393–1400. [Google Scholar] [CrossRef]

	



Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 822–835. [Google Scholar] [CrossRef] [PubMed]

	



Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta 2015, 1852, 1145–1154. [Google Scholar] [CrossRef] [PubMed]

	



Penumathsa, S.V.; Thirunavukkarasu, M.; Zhan, L.; Maulik, G.; Menon, V.P.; Bagchi, D.; Maulik, N. Resveratrol enhances glut-4 translocation to the caveolar lipid raft fractions through ampk/akt/enos signalling pathway in diabetic myocardium. J. Cell Mol. Med. 2008, 12, 2350–2361. [Google Scholar] [CrossRef] [PubMed]

	



Khazaei, M.; Karimi, J.; Sheikh, N.; Goodarzi, M.T.; Saidijam, M.; Khodadadi, I.; Moridi, H. Effects of resveratrol on receptor for advanced glycation end products (rage) expression and oxidative stress in the liver of rats with type 2 diabetes. Phytother. Res. 2016, 30, 66–71. [Google Scholar] [CrossRef] [PubMed]

	



Moridi, H.; Karimi, J.; Sheikh, N.; Goodarzi, M.T.; Saidijam, M.; Yadegarazari, R.; Khazaei, M.; Khodadadi, I.; Tavilani, H.; Piri, H.; et al. Resveratrol-dependent down-regulation of receptor for advanced glycation end-products and oxidative stress in kidney of rats with diabetes. Int. J. Endocrinol. Metab. 2015, 13, e23542. [Google Scholar] [CrossRef] [PubMed]

	



Soufi, F.G.; Mohammad-Nejad, D.; Ahmadieh, H. Resveratrol improves diabetic retinopathy possibly through oxidative stress—Nuclear factor κb—Apoptosis pathway. Pharmacol. Rep. 2012, 64, 1505–1514. [Google Scholar] [CrossRef]

	



Um, J.H.; Park, S.J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. Amp-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010, 59, 554–563. [Google Scholar] [CrossRef] [PubMed]

	



Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012, 32, 537–541. [Google Scholar] [CrossRef] [PubMed]

	



Movahed, A.; Nabipour, I.; Lieben Louis, X.; Thandapilly, S.J.; Yu, L.; Kalantarhormozi, M.; Rekabpour, S.J.; Netticadan, T. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid.-Based Complement. Alternat. Med. 2013, 2013, 851267. [Google Scholar] [CrossRef] [PubMed]

	



Thazhath, S.S.; Wu, T.; Bound, M.J.; Checklin, H.L.; Standfield, S.; Jones, K.L.; Horowitz, M.; Rayner, C.K. Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 66–70. [Google Scholar] [CrossRef] [PubMed]

	



Bo, S.; Ponzo, V.; Ciccone, G.; Evangelista, A.; Saba, F.; Goitre, I.; Procopio, M.; Pagano, G.F.; Cassader, M.; Gambino, R. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol. Res. 2016, 111, 896–905. [Google Scholar] [CrossRef] [PubMed]

	



Gómez-Zorita, S.; Fernández-Quintela, A.; Aguirre, L.; Macarulla, M.T.; Rimando, A.M.; Portillo, M.P. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: Involvement of skeletal muscle and liver. Food Funct. 2015, 6, 1968–1976. [Google Scholar] [CrossRef] [PubMed]

	



Bhakkiyalakshmi, E.; Shalini, D.; Sekar, T.V.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through nrf2. Br. J. Pharmacol. 2014, 171, 1747–1757. [Google Scholar] [CrossRef] [PubMed]

	



Manickam, M.; Ramanathan, M.; Jahromi, M.A.; Chansouria, J.P.; Ray, A.B. Antihyperglycemic activity of phenolics from pterocarpus marsupium. J. Nat. Prod. 1997, 60, 609–610. [Google Scholar] [CrossRef] [PubMed]

	



Grover, J.K.; Vats, V.; Yadav, S.S. Pterocarpus marsupium extract (vijayasar) prevented the alteration in metabolic patterns induced in the normal rat by feeding an adequate diet containing fructose as sole carbohydrate. Diabetes Obes. Metab. 2005, 7, 414–420. [Google Scholar] [CrossRef] [PubMed]

	



Nemes-Nagy, E.; Szocs-Molnár, T.; Dunca, I.; Balogh-Sămărghiţan, V.; Hobai, S.; Morar, R.; Pusta, D.L.; Crăciun, E.C. Effect of a dietary supplement containing blueberry and sea buckthorn concentrate on antioxidant capacity in type 1 diabetic children. Acta Physiol. Hung. 2008, 95, 383–393. [Google Scholar] [CrossRef] [PubMed]

	



Habanova, M.; Haban, M.; Kobidova, R.; Schwarzova, M.; Gazo, J. Analysis of biologically active substances in bilberry (Vaccinium myrtillus l.) in selected natural localities of Slovak Republic. J. Cent. Eur. Agric. 2013, 14, 1210–1219. [Google Scholar] [CrossRef]

	



Yang, Y.; Fan, C.; Wang, B.; Ma, Z.; Wang, D.; Gong, B.; Di, S.; Jiang, S.; Li, Y.; Li, T.; et al. Pterostilbene attenuates high glucose-induced oxidative injury in hippocampal neuronal cells by activating nuclear factor erythroid 2-related factor 2. Biochim. Biophys. Acta 2017, 1863, 827–837. [Google Scholar] [CrossRef] [PubMed]

	



Wang, B.; Liu, H.; Yue, L.; Li, X.; Zhao, L.; Yang, X.; Wang, X.; Yang, Y.; Qu, Y. Neuroprotective effects of pterostilbene against oxidative stress injury: Involvement of nuclear factor erythroid 2-related factor 2 pathway. Brain Res. 2016, 1643, 70–79. [Google Scholar] [CrossRef] [PubMed]

	



Su, Q.; Pu, H.; Hu, C. Neuroprotection by combination of resveratrol and enriched environment against ischemic brain injury in rats. Neurol. Res. 2016, 38, 60–68. [Google Scholar] [CrossRef] [PubMed]

	



Fang, L.; Gao, H.; Zhang, W.; Wang, Y. Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int. J. Clin. Exp. Med. 2015, 8, 3219–3226. [Google Scholar] [PubMed]

	



Ruszkiewicz, J.; Albrecht, J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem. Int. 2015, 88, 66–72. [Google Scholar] [CrossRef] [PubMed]

	



Lu, K.T.; Ko, M.C.; Chen, B.Y.; Huang, J.C.; Hsieh, C.W.; Lee, M.C.; Chiou, R.Y.; Wung, B.S.; Peng, C.H.; Yang, Y.L. Neuroprotective effects of resveratrol on mptp-induced neuron loss mediated by free radical scavenging. J. Agric. Food Chem. 2008, 56, 6910–6913. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, F.; Shi, J.S.; Zhou, H.; Wilson, B.; Hong, J.S.; Gao, H.M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol. 2010, 78, 466–477. [Google Scholar] [CrossRef] [PubMed]

	



Sun, X.; Chen, W.D.; Wang, Y.D. B-amyloid: The key peptide in the pathogenesis of alzheimer’s disease. Front. Pharmacol. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]

	



Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 2002, 32, 1050–1060. [Google Scholar] [CrossRef]

	



Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of alzheimer’s disease amyloid-beta peptides. J. Biol. Chem. 2005, 280, 37377–37382. [Google Scholar] [CrossRef] [PubMed]

	



Ren, J.; Fan, C.; Chen, N.; Huang, J.; Yang, Q. Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor nrf2 and ho-1 in rats. Neurochem. Res. 2011, 36, 2352–2362. [Google Scholar] [CrossRef] [PubMed]

	



Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol prevents ca1 neurons against ischemic injury by parallel modulation of both gsk-3β and creb through pi3-k/akt pathways. Eur. J. Neurosci. 2012, 36, 2899–2905. [Google Scholar] [CrossRef] [PubMed]

	



Ma, X.; Sun, Z.; Liu, Y.; Jia, Y.; Zhang, B.; Zhang, J. Resveratrol improves cognition and reduces oxidative stress in rats with vascular dementia. Neural. Regen. Res. 2013, 8, 2050–2059. [Google Scholar] [PubMed]

	



Naik, B.; Nirwane, A.; Majumdar, A. Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cogn. Neurodyn. 2017, 11, 35–49. [Google Scholar] [CrossRef] [PubMed]

	



Ban, J.Y.; Jeon, S.Y.; Nguyen, T.T.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid beta protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 2006, 29, 2419–2424. [Google Scholar] [CrossRef] [PubMed]

	



Andrabi, S.A.; Spina, M.G.; Lorenz, P.; Ebmeyer, U.; Wolf, G.; Horn, T.F. Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 2004, 1017, 98–107. [Google Scholar] [CrossRef] [PubMed]

	



Sermboonpaisarn, T.; Sawasdee, P. Potent and selective butyrylcholinesterase inhibitors from ficus foveolata. Fitoterapia 2012, 83, 780–784. [Google Scholar] [CrossRef] [PubMed]

	



Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; et al. A randomized, double-blind, placebo-controlled trial of resveratrol for alzheimer disease. Neurology 2015, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]

	



Witte, A.V.; Kerti, L.; Margulies, D.S.; Flöel, A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 2014, 34, 7862–7870. [Google Scholar] [CrossRef] [PubMed]

	



Evans, H.M.; Howe, P.R.; Wong, R.H. Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients 2017, 9, 27. [Google Scholar] [CrossRef] [PubMed]

	



Wong, R.H.; Raederstorff, D.; Howe, P.R. Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients 2016, 8, 425. [Google Scholar] [CrossRef] [PubMed]

	



Wong, R.H.; Nealon, R.S.; Scholey, A.; Howe, P.R. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 393–399. [Google Scholar] [CrossRef] [PubMed]

	



WHO. Obesity: Preventing and Managing the World Epidemic; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]

	



Baile, C.A.; Yang, J.Y.; Rayalam, S.; Hartzell, D.L.; Lai, C.Y.; Andersen, C.; Della-Fera, M.A. Effect of resveratrol on fat mobilization. Ann. N. Y. Acad. Sci. 2011, 1215, 40–47. [Google Scholar] [CrossRef] [PubMed]

	



Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef] [PubMed]

	



Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14, 612–622. [Google Scholar] [CrossRef] [PubMed]

	



Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8, 157–168. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Dal-Pan, A.; Blanc, S.; Aujard, F. Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol. 2010, 10, 11. [Google Scholar] [CrossRef] [PubMed]

	



Dal-Pan, A.; Terrien, J.; Pifferi, F.; Botalla, R.; Hardy, I.; Marchal, J.; Zahariev, A.; Chery, I.; Zizzari, P.; Perret, M.; et al. Caloric restriction or resveratrol supplementation and ageing in a non-human primate: First-year outcome of the restrikal study in microcebus murinus. Age (Dordr) 2011, 33, 15–31. [Google Scholar] [CrossRef] [PubMed]

	



Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; et al. Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef] [PubMed]

	



Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef] [PubMed]

	



Gómez-Zorita, S.; Fernández-Quintela, A.; Lasa, A.; Aguirre, L.; Rimando, A.M.; Portillo, M.P. Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J. Agric. Food Chem. 2014, 62, 8731. [Google Scholar] [CrossRef] [PubMed]

	



Aguirre, L.; Milton-Laskibar, I.; Hijona, E.; Bujanda, L.; Rimando, A.M.; Portillo, M.P. Effects of pterostilbene in brown adipose tissue from obese rats. J. Physiol. Biochem. 2017, 73, 1–8. [Google Scholar] [CrossRef] [PubMed]

	



Nagao, K.; Jinnouchi, T.; Kai, S.; Yanagita, T. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J. Nutr. Biochem. 2017, 43, 151–155. [Google Scholar] [CrossRef] [PubMed]

	



Christenson, J.; Whitby, S.J.; Mellor, D.; Thomas, J.; McKune, A.; Roach, P.D.; Naumovski, N. The effects of resveratrol supplementation in overweight and obese humans: A systematic review of randomized trials. Metab. Syndr. Relat. Disord. 2016, 14, 323–333. [Google Scholar] [CrossRef] [PubMed]

	



Poulsen, M.M.; Vestergaard, P.F.; Clasen, B.F.; Radko, Y.; Christensen, L.P.; Stødkilde-Jørgensen, H.; Møller, N.; Jessen, N.; Pedersen, S.B.; Jørgensen, J.O. High-dose resveratrol supplementation in obese men: An investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013, 62, 1186–1195. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Chachay, V.S.; Macdonald, G.A.; Martin, J.H.; Whitehead, J.P.; O’Moore-Sullivan, T.M.; Lee, P.; Franklin, M.; Klein, K.; Taylor, P.J.; Ferguson, M.; et al. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014, 12, 1–6. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Méndez-del Villar, M.; González-Ortiz, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G.; Lizárraga-Valdez, R. Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord. 2014, 12, 497–501. [Google Scholar] [CrossRef] [PubMed]

	



Fernández-Quintela, A.; Carpéné, C.; Fernández, M.; Aguirre, L.; Milton-Laskibar, I.; Contreras, J.; Portillo, M.P. Anti-obesity effects of resveratrol: Comparison between animal models and humans. J. Physiol. Biochem. 2016, 73, 1–13. [Google Scholar] [CrossRef] [PubMed]

	



Chang, T.K.; Lee, W.B.; Ko, H.H. Trans-resveratrol modulates the catalytic activity and mrna expression of the procarcinogen-activating human cytochrome p450 1b1. Can. J. Physiol. Pharmacol. 2000, 78, 874–881. [Google Scholar] [CrossRef] [PubMed]

	



Chun, Y.J.; Oh, Y.K.; Kim, B.J.; Kim, D.; Kim, S.S.; Choi, H.K.; Kim, M.Y. Potent inhibition of human cytochrome p450 1b1 by tetramethoxystilbene. Toxicol. Lett. 2009, 189, 84–89. [Google Scholar] [CrossRef] [PubMed]

	



Signorelli, P.; Ghidoni, R. Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises. J. Nutr. Biochem. 2005, 16, 449–466. [Google Scholar] [CrossRef] [PubMed]

	



Szaefer, H.; Cichocki, M.; Brauze, D.; Baer-Dubowska, W. Alteration in phase i and ii enzyme activities and polycyclic aromatic hydrocarbons-dna adduct formation by plant phenolics in mouse epidermis. Nutr. Cancer 2004, 48, 70–77. [Google Scholar] [CrossRef] [PubMed]

	



Whitlock, N.C.; Baek, S.J. The anticancer effects of resveratrol: Modulation of transcription factors. Nutr. Cancer 2012, 64, 493–502. [Google Scholar] [CrossRef] [PubMed]

	



Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr.-Relat. Cancer 2014, 21, R209–R225. [Google Scholar] [CrossRef] [PubMed]

	



McCormack, D.; McFadden, D. Pterostilbene and cancer: Current review. J. Surg. Res. 2012, 173, e53–e61. [Google Scholar] [CrossRef] [PubMed]

	



Kosuru, R.; Rai, U.; Prakash, S.; Singh, A.; Singh, S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol. 2016, 789, 229–243. [Google Scholar] [CrossRef] [PubMed]

	



Pavan, A.R.; Silva, G.D.; Jornada, D.H.; Chiba, D.E.; Fernandes, G.F.; Man Chin, C.; Dos Santos, J.L. Unraveling the anticancer effect of curcumin and resveratrol. Nutrients 2016, 8, 628. [Google Scholar] [CrossRef] [PubMed]

	



Nutakul, W.; Sobers, H.S.; Qiu, P.; Dong, P.; Decker, E.A.; McClements, D.J.; Xiao, H. Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: A side-by-side comparison. J. Agric. Food Chem. 2011, 59, 10964–10970. [Google Scholar] [CrossRef] [PubMed]

	



Hagiwara, K.; Kosaka, N.; Yoshioka, Y.; Takahashi, R.U.; Takeshita, F.; Ochiya, T. Stilbene derivatives promote ago2-dependent tumour-suppressive microrna activity. Sci. Rep. 2012, 2, 314. [Google Scholar] [CrossRef] [PubMed]

	



Kita, Y.; Miura, Y.; Yagasaki, K. Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma ah109a cells. J. Biomed. Biotechnol. 2012, 2012, 672416. [Google Scholar] [CrossRef] [PubMed]

	



Jayasooriya, R.G.; Lee, Y.G.; Kang, C.H.; Lee, K.T.; Choi, Y.H.; Park, S.Y.; Hwang, J.K.; Kim, G.Y. Piceatannol inhibits mmp-9-dependent invasion of tumor necrosis factor-α-stimulated du145 cells by suppressing the akt-mediated nuclear factor-κb pathway. Oncol. Lett. 2013, 5, 341–347. [Google Scholar] [CrossRef] [PubMed]

	



Ko, H.S.; Lee, H.J.; Kim, S.H.; Lee, E.O. Piceatannol suppresses breast cancer cell invasion through the inhibition of mmp-9: Involvement of pi3k/akt and nf-κb pathways. J. Agric. Food Chem. 2012, 60, 4083–4089. [Google Scholar] [CrossRef] [PubMed]

	



Videira, I.F.; Moura, D.F.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [PubMed]

	



Cestari, T.F.; Dantas, L.P.; Boza, J.C. Acquired hyperpigmentations. An. Bras. Dermatol. 2014, 89, 11–25. [Google Scholar] [CrossRef] [PubMed]

	



Brożyna, A.A.; Jóźwicki, W.; Carlson, J.A.; Slominski, A.T. Melanogenesis affects overall and disease-free survival in patients with stage iii and iv melanoma. Hum. Pathol. 2013, 44, 2071–2074. [Google Scholar] [CrossRef] [PubMed]

	



Slominski, A.; Kim, T.K.; Brożyna, A.A.; Janjetovic, Z.; Brooks, D.L.; Schwab, L.P.; Skobowiat, C.; Jóźwicki, W.; Seagroves, T.N. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of hif-1α expression and hif-dependent attendant pathways. Arch. Biochem. Biophys. 2014, 563, 79–93. [Google Scholar] [CrossRef] [PubMed]

	



Slominski, A.; Paus, R.; Mihm, M.C. Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: Selective review and hypothesis. Anticancer. Res. 1998, 18, 3709–3715. [Google Scholar] [PubMed]

	



Lee, T.H.; Seo, J.O.; Baek, S.H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet b-induced pigmentation in guinea pig skin. Biomol. Ther. 2014, 22, 35–40. [Google Scholar] [CrossRef] [PubMed]

	



Yoon, H.S.; Hyun, C.G.; Lee, N.H.; Park, S.S.; Shin, D.B. Comparative depigmentation effects of resveratrol and its two methyl analogues in α-melanocyte stimulating hormone-triggered b16/f10 murine melanoma cells. Prev. Nutr. Food. Sci. 2016, 21, 155–159. [Google Scholar] [CrossRef] [PubMed]

	



Kim, Y.M.; Yun, J.; Lee, C.K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340–16344. [Google Scholar] [CrossRef] [PubMed]

	



Yokozawa, T.; Kim, Y.J. Piceatannol inhibits melanogenesis by its antioxidative actions. Biol. Pharm. Bull. 2007, 30, 2007–2011. [Google Scholar] [CrossRef] [PubMed]








[image: Ijms 19 00792 g001 550] 





Figure 1. Chemical structures of selected stilbenoid phenolics showing common stilbene backbone. 
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Figure 2. Summary of mechanisms of biological activities of stilbenoids. 
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Table 1. Half-lives and oral bioavailabilities of stilbenoids after oral administration in rats.
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	Stilbenoid
	Oral Dose (mg/kg)
	Half Life (h)
	Oral Bioavailability (Rats) (%)





	resveratrol
	50
	1.48 [31]
	29.8 [31]



	pterostilbene
	20
	1.73 [32]
	80 [29]



	gnetol
	100
	4.2 [30]
	6.59 [30]



	piceatannol
	10
	4.23 [33]
	50.7 [34]



	oxyresveratrol
	24.4
	–
	9.13 [35]
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Table 2. Summary of biological effects of stilbenoids.
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Study

	
Model

	
Stilbenoid

	
Dose

	
Result




	
Cardiovascular/Blood Pressure

	






	
Behbahani

	
WKY rat

	
resveratrol

	
2.5 mg/kg per day (for 10 weeks)

	
increased compliance and reduced wall stiffness in mesenteric small arteries




	
Thandapilly et al. [55]

	
SHR

	
resveratrol

	
2.5 mg/kg per day (for 10 weeks)

	
prevention of developed concentric hypertrophy, systolic/diastolic dysfunction; no effect on blood pressure (BP)




	
Li et al. [56]

	
SHR

	
resveratrol

	
200 mg/kg (for 4 weeks)

	
increased endothelial NO production; reduced BP




	
Riche et al. [59]

	
human

	
pterostilbene

	
125 mg twice daily (for 6–8 weeks)

	
increased LDL cholesterol and reduced BP




	
Tome-Carneiro et al. [110]

	
human, stable coronary artery disease

	
grape extract + resveratrol

	
8.1 mg/day (6 months); then 16.2 mg/day (6 months)

	
increased anti-inflammatory serum adiponectin, decreased thrombogenic PAI-1




	
Platelet biology

	




	
Olas et al. [63]

	
in vitro

	
resveratrol

	
25–100 μg/mL

	
inhibition of adhesion of platelets to fibrinogen/collagen




	
I/R Injury

	




	
Yu et al. [79]

	
SD rat (30 min ischemia;

3 h reperfusion)

	
pterostilbene

	
10 mg/kg

	
reduced superoxide generation, MDA; increased SOD; reduced myocardial infarction and apoptosis




	
Hung et al. [82]

	
SD rat

	
piceatannol

	
2.5 × 10−4 g/kg

	
reduced incidence and duration of ventricular tachycardia, ventricular fibrillation; prevention of mortality, increased NO and decreased LDH levels




	
Diabetes

	




	
Um et al. [120]

	
AMPK subunit (α1/α2) deficient mice

	
resveratrol

	
400 mg/kg per day (12 weeks)

	
AMPK dependent: increased insulin sensitivity, glucose tolerance and mitochondrial biogenesis




	
Bhatt et al. [121]

	
humans (with type II diabetis mellitus)

	
resveratrol

	
250 mg/day for 3 months

	
improved HbA1c, systolic BP, total cholesterol and total protein




	
Gomez-Zorita et al. [125]

	
diabetic rat (induced by obesogenic diet)

	
pterostilbene

	
15–30 mg/day for 6 weeks

	
improved glycaemic control due to increased hepatic glucokinase activity and skeletal muscle glucose uptake




	
Nemes-Nagy et al. [129]

	
human (children with T1DM)

	
blueberry and sea buckthorn concentrate

	
3 × 1 comprimates per day for

2 months

	
increased SOD activity, decreased levels of glycated hemoglobin and increased C peptide concentration




	
Neurodegeneration

	




	
Ren et al. [141]

	
SD rat

	
resveratrol

	
15–30 mg/kg for 7 days

	
Reduced cerebral infarct volume, decreased MDA levels, restored SOD activity, increased Nrf2 and HO-1 and reduced caspase-3 expression




	
Ma et al. [143]

	
rat model (vascular dementia)

	
resveratrol

	
25 mg/kg per day

	
decreased malonyldialdehyde levels; increased SOD activity and glutathione levels; improved learning and memory ability




	
Naik et al. [144]

	
SD rat (streptozotocin-induced memory deficit)

	
pterostilbene

	
10–50 mg/kg per day for 13 days

	
improved memory and cognition; improved brain antioxidants [catalase, SOD, glutathione (GSH)]; improved cholinergic transmission.




	
Ban et al. [145]

	
SD rat

	
oxyresveratrol

	
10 μM

	
inhibition of Aβ-induced neuronal cell death, elevation of cytosolic [Ca] and ROS generation




	
Evans et al. [150]

	
human (postmenopausal women)

	
resveratrol

	
75 mg twice per day for 14 weeks

	
improved memory, mood and overall

cognitive performance




	
Obesity

	

	

	

	




	
Timmers et al. [156]

	
Human (obese)

	
resveratrol

	
150 mg/day for 30 days

	
reduced sleeping and resting metabolic rate; in muscle, activated AMPK, increased SIRT1 and PGC-1α protein levels; decreased systolic BP and improved HOMA index




	
Aguirre et al. [163]

	
Zucker (fa/fa) rat model

	
pterostilbene

	
15–30 mg/kg per day for 6 weeks

	
increased thermogenic and oxidative capacity of brown adipose tissue




	
Cancer

	




	
Nutakul et al. [179]

	
human colon cancer cells

	
resveratrol and pterostilbene

	
0–100 μM for between 30 min to

10 days

	
pterostilbene: more potent inhibitor of colony formation, stronger apoptosis-inducing effects, and 2–4-fold higher intracellular pterostilbene levels than resveratrol




	
Jayasooriya et al. [178]

	
human prostate

cancer cells

	
piceatannol

	
0–40 μM for 24 h

	
inhibition of TNF-α-induced invasion of cancer cells through suppression of MMP-9 activation via the Akt-mediated NF-ĸB pathway




	
Remsberg et al. [30]

	
SD rats

	
gnetol

	
10–100 mg/kg per day, for 0–72 h

	
reductions in cell viability in cancer cell lines (i.e., colorectal cancer); activities in COX-1, COX-2, histone deacetylase and decreased inflammation




	
Pigmentation

	




	
Lee et al. [189]

	
male guinea pig model

	
resveratrol

	
dissolved in ethanol/propylene glycol (3:7, v/v)

	
reduced expression of melanogenesis-related proteins; decreased hyperpigmentation in ultraviolet B-stimulated skin




	
Yoon et al. [190]

	
B16/F10 murine

melanoma cells

	
pterostilbene and resveratrol trimethyl ether (RTE)

	
10 μM for 48 h

	
inhibition of α-MSH-induced melanin synthesis, stronger downregulation of tyrosinase protein expression and α-MSH stimulated protein than RTE




	
Yokozawa et al. [192]

	
B16/F10 melanoma cells

	
piceatannol

	
0–400 μM for 24 h

	
greater antityrosinase activity than kojic and resveratrol; down-regulation of melanin content, suppressed ROS generation and enhanced GSH/GSSG ratio












© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
Ischemia-reperfusion

: injury:
Neuroprotection: increase antioxidant
reduce amyloid plagues enzymes (SOD),
in the brain, reduce oxidative stress,
reduce cerebral infarct and inflammation (TNF-q,
volume, IL-1B)
reduce neuronal ROS
generation,
inhibit cholinesterases \
Depigmentation: 0-Q
decreased melanin .
production, _ o
inhibit tyrosinase i
activity

< /

Blood pressure:
lower systolic blood
pressure at high doses

Cardiomyocyte and

cardiac hypertrophy:
activate AMPK,
upregulate eNOS

stilbenoids

Atherosclerosis:
reduce markers of oxidative
stress and inflammation
(TNF-qa, IL-1B),
inhibit oxidation of LDL in
endothelial cells

I »

\\

Platelet aggregation:
inhibit cyclooxygenase (COX)
enzymes

Diabetes:
enhance insulin
sensitivity,
increase glucose uptake
(translocation of GLUT),
reduce ROS generation,
increase AMPK-
dependent mitochondrial
biogenesis

Cancertreatmentand
prevention:
induce apoptosis,
inhibit angiogenesis and
proliferation of various
cancer cell lines

Obesity:
inhibite lipogenesis,
increase lipolysis,
activate AMPK, SIRT
and PGC-1a





nav.xhtml


  ijms-19-00792


  
    		
      ijms-19-00792
    


  




  





media/file0.png





media/file2.png
resveratrol
(trans-3,5,4'-
trihydroxystilbene)

OH
oxyresveratrol

(trans-2,4,3’,5’-
tetrahydroxystilbene)

pterostilbene
(trans-3,5-dimethoxy-4’-
hydroxystilbene)
HO OH

. OH
piceatannol
(trans-3',4’,3,5-
tetrahydroxystilbene)

HO

HO

o
o

gnetol
(trans-2,6,3',5'-
tetrahydroxystilbene)
HO

OH

HO

H

5)
piceid

(3,4,5-trihydroxystilbene

-3-beta-monoglucoside)





media/file3.jpg
Ischemia-repertusion

o Atherosclerosis
Nouroprotection:  ncress amoudant _1oucemanar o oxdaive
reduce amyioid ‘enzymes (S0D), St oy,
Sy vt S, .
e coertrt andanmaten Ve, endothelal ol {ransiocation of GLUT).
reduce neuronal ROS SRS RO et
s romitrtoapad
i choinesterases \ , el
Depigmentation: - g Soncariraminntond.
‘decreased melanin. p-g Let apoptos
4 AL e i e nd
v racatness
wm: tyrosinase b ‘prolferation of various.
ey e
/ stilbenoids \
Carormjoey s / \
cardiachypeirophy:
Pty
et SS Platlot aggregation:

it cyclooxygenase (COX) ‘ndPGCia
‘onzymes






media/file1.jpg
Nu%\ oH r%? \g

resveratrol pterostilbene anetol
(trans-3,5,4"- (trans-3,5-dimethoxy-&'- (trans-2,6,3,5"-
trihydroxystilbene) hydroxystilbene) tetrahydroxystilbene)
HO. oH Ho OH L
on
Ho. o
Ho: - [ I‘m
OH on w
oxyresveratrol piceatannol piceid
(trans-2,4,3,5'- (trans-3,4'3,5- (3,4,5-trihydroxystilbene

tetrahydroxystilbene) tetrahydroxystilbene) -3-beta-monoglucoside)





