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Abstract: In physiological conditions, different types of macrophages can be found within the central
nervous system (CNS), i.e., microglia, meningeal macrophages, and perivascular (blood-brain barrier)
and choroid plexus (blood-cerebrospinal fluid barrier) macrophages. Microglia and tissue-resident
macrophages, as well as blood-borne monocytes, have different origins, as the former derive from yolk
sac erythromyeloid precursors and the latter from the fetal liver or bone marrow. Accordingly, specific
phenotypic patterns characterize each population. These cells function to maintain homeostasis
and are directly involved in the development and resolution of neuroinflammatory processes.
Also, following inflammation, circulating monocytes can be recruited and enter the CNS, therefore
contributing to brain pathology. These cell populations have now been identified as key players
in CNS pathology, including autoimmune diseases, such as multiple sclerosis, and degenerative
diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer’s disease. Here, we review the
evidence on the involvement of CNS macrophages in neuroinflammation and the advantages, pitfalls,
and translational opportunities of pharmacological interventions targeting these heterogeneous
cellular populations for the treatment of brain diseases.

Keywords: microglia; macrophages; neuroinflammation; Alzheimer’s disease; multiple sclerosis;
Amyotrophic Lateral Sclerosis

1. Introduction

The central nervous system (CNS), as an “immuno-privileged” organ, hosts numerous populations
of myeloid cells and defensive barriers such as the meninges, the perivascular space, and the choroid
plexus [1]. Under steady-state conditions, the central myeloid cell populations in the CNS are
represented by parenchymal microglia and non-parenchymal macrophages, namely perivascular
macrophages, meningeal macrophages, macrophages of the choroid plexus, and blood-borne
monocytes [2,3] (Figure 1). All of these populations are characterized by specific localization and
molecular profiles [2,3]. Microglia are a unique tissue-resident macrophage population of the CNS and
are considered to be primarily involved in immune reactions and inflammatory diseases [4].
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population of the CNS and are considered to be primarily involved in immune reactions and 
inflammatory diseases [4].  

 
Figure 1. Origin of parenchymal and non-parenchymal CNS macrophages. This figure was drawn 
using the vector image bank of Servier Medical Art (http://smart.servier.com/). Servier Medical Art 
by Servier is licensed under a Creative Commons Attribution 3.0 Unported License 
(https://creativecommons.org/licenses/by/3.0/). 

Neuroinflammation involves a coordinated response between microglia and other CNS cells, 
such as astrocytes, as well as peripheral immune cells infiltrating the CNS. Several types of stimuli, 
including toxins, infections, trauma, or ischemia, elicit a rapid activation of the immune system, 
referred to as acute neuroinflammation, characterized by microgliosis and by the release of 
inflammatory mediators [5].  

When this process is not regulated, it leads to chronic neuroinflammation, which, in turn, 
results in neurodegeneration, underlying several neurological disorders, including Alzheimer’s 
disease (AD), Amyotrophic Lateral Sclerosis (ALS), and multiple sclerosis (MS). 

The characterization of microglia and brain macrophages and of their functions appears to be of 
primary importance to advance our knowledge of their role in the disease and may open up new 
therapeutic approaches. 

2. Macrophage Populations in the Central Nervous System 

2.1. Microglia Physiology 

Microglia constitute from 5% to 12% of the total number of glial cells in the adult murine CNS 
[6] and, in humans, represents from 0.5% to 16.6% of glia with a higher density in the white than in 
the gray matter [7].  

Recent fate-mapping studies of several macrophage populations in the body have provided 
elegant evidence that, under homeostatic conditions, microglia derive from mesodermal 
hematopoietic cells (HSCs) that originate in mammals from the yolk sac [8,9]. In vivo lineage tracing 
studies have shown that adult microglia derive from primitive myeloid progenitors arising before 
embryonic day 8 and that they are highly proliferative throughout early life [8]. 

Uncommitted c-kit+ stem cells that have both erythroid and myeloid potential are the direct 
yolk sac-derived precursors of microglia during early embryogenesis [10]. Microglia differentiation 
is independent from Myb, Inhibitor DNA-binding 2 protein HLH (Id2), Basic leucine zipper 

Figure 1. Origin of parenchymal and non-parenchymal CNS macrophages. This figure was drawn
using the vector image bank of Servier Medical Art (http://smart.servier.com/). Servier Medical
Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/).

Neuroinflammation involves a coordinated response between microglia and other CNS cells,
such as astrocytes, as well as peripheral immune cells infiltrating the CNS. Several types of
stimuli, including toxins, infections, trauma, or ischemia, elicit a rapid activation of the immune
system, referred to as acute neuroinflammation, characterized by microgliosis and by the release of
inflammatory mediators [5].

When this process is not regulated, it leads to chronic neuroinflammation, which, in turn, results
in neurodegeneration, underlying several neurological disorders, including Alzheimer’s disease (AD),
Amyotrophic Lateral Sclerosis (ALS), and multiple sclerosis (MS).

The characterization of microglia and brain macrophages and of their functions appears to be
of primary importance to advance our knowledge of their role in the disease and may open up new
therapeutic approaches.

2. Macrophage Populations in the Central Nervous System

2.1. Microglia Physiology

Microglia constitute from 5% to 12% of the total number of glial cells in the adult murine CNS [6]
and, in humans, represents from 0.5% to 16.6% of glia with a higher density in the white than in the
gray matter [7].

Recent fate-mapping studies of several macrophage populations in the body have provided
elegant evidence that, under homeostatic conditions, microglia derive from mesodermal hematopoietic
cells (HSCs) that originate in mammals from the yolk sac [8,9]. In vivo lineage tracing studies have
shown that adult microglia derive from primitive myeloid progenitors arising before embryonic day 8
and that they are highly proliferative throughout early life [8].

Uncommitted c-kit+ stem cells that have both erythroid and myeloid potential are the direct
yolk sac-derived precursors of microglia during early embryogenesis [10]. Microglia differentiation
is independent from Myb, Inhibitor DNA-binding 2 protein HLH (Id2), Basic leucine zipper
transcriptional factor ATF-like 3 (Batf3), and Kruppel-like factor 4 (Klf4) but dependent on the PU.1 and
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Interferon Regulatory Factor 8 (IRF8) pathways, and their survival is mediated by Colony Stimulating
Factor 1 receptor (CSF1R) signaling [10,11]. The PU.1 gene controls hematopoietic cell differentiation,
as it is a vital target gene downstream of Runt-related transcription factor 1 (RUNX1) during embryonic
hematopoiesis [12].

Mice with the PU.1 gene knocked out were born alive but died of severe septicemia within
48 h [13] due to multiple hematopoietic aberrations, since they lacked mature B cells, circulating
monocytes, and tissue macrophages, including microglial cells [13].

Neurons and microglia communicate with each other through the neuronal expression of
several genes, including Chemokine (C-X-C motif ) ligand 1 (CXCL1), CSF-1, Interleukin 34 (IL-34),
and Transforming Growth Factor beta 1 (TGF-β1). All microglial cells express CX3C chemokine receptor
1 (CX3CR1) in the brain and healthy neurons constitutively express high levels of chemokine (C-X3-C
motif) ligand 1 (CX3CL1) (also named fractalkine). Decreased CX3CR1 expression negatively affects
neurogenesis, leads to disruption of hippocampal circuit integrity, and impairs spatial learning and
other behavioral and learning tasks [14] (Figure 2).
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cerebellum [15]. Accordingly, in adult IL-34LacZ/LacZ mice, microglia are partially reduced, 
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development, suggesting that IL-34 is only required to maintain microglia homeostasis in specific 
regions of the adult CNS but not during embryonic development [15].  

Also, reduced microglia are found in mice deficient in TGF-β1 in the CNS (CNS-TGF-β1−/−), 
therefore suggesting a role for TGF-β1 as a major differentiation factor. These mice, despite showing 
an apparently healthy behavior phenotype, have defects in glutamate recycling and synaptic 
plasticity and develop late-onset motor dysfunction in adult life [16].  

Microglia show a unique transcriptomic signature, expressing transmembrane protein 119 
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In mice, the differentiation of most macrophage populations is regulated by CSF-1 and the receptor
CSF-1R. CSF-1R is expressed at a similar level in both yolk sac macrophages and microglia at embryonic
day 9.5, and is maintained throughout development. Knockout of CSF-1R is associated with a reduced
development of microglia and yolk sac macrophages but does not affect the number of circulating
monocytes. IL-34 is a second ligand for CSF-1R, expressed in the brain at higher levels than CSF-1 [8].
In particular, IL-34 is detected prevalently in the neurons of the cortex, the anterior olfactory nucleus,
and the hippocampus, but no expression is found in the brain stem and cerebellum [15]. Accordingly,
in adult IL-34LacZ/LacZ mice, microglia are partially reduced, predominantly in the brain areas with
higher IL-34 expression [15]. On the other hand, in IL-34LacZ/LacZ embryos, microglia precursors are
present in a physiological number throughout development, suggesting that IL-34 is only required
to maintain microglia homeostasis in specific regions of the adult CNS but not during embryonic
development [15].

Also, reduced microglia are found in mice deficient in TGF-β1 in the CNS (CNS-TGF-β1−/−),
therefore suggesting a role for TGF-β1 as a major differentiation factor. These mice, despite showing
an apparently healthy behavior phenotype, have defects in glutamate recycling and synaptic plasticity
and develop late-onset motor dysfunction in adult life [16].

Microglia show a unique transcriptomic signature, expressing transmembrane protein 119
(TMEM119), sialic acid-binding immunoglobulin-like lectin H (Siglec-H), P2Y purinoceptor 12
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(P2RY12), Sal-like protein 1 (SALL1), CSF1R, TGFβ1, and TGFβ receptor 1 (TGFβR1). These molecules
distinguish microglia from the non-parenchymal macrophages of the CNS [16–19].

In healthy CNS, microglia show a typical ramified morphology and express a variety of surface
markers, including CD11b, CD45, EMR1 (also known as F4/80), the receptor CX3CR1 [14], CD200R1,
CD172a/SIRPa, and TREM2b [20]. On the other hand, perivascular macrophages and meningeal
macrophages have high expression of the mannose receptor, CD206. Finally, CNS macrophages can be
distinguished from circulating monocytes by the expression of the Lymphocyte Antigen 6 Complex,
Ly6C [11].

Microglia represent the primary immune effector cells of the cerebral parenchyma. Microglia
contribute to the development of the brain and to its homeostasis, given their involvement in
the programmed death of neuronal cells during development [21], the removal of cellular debris,
dying cells or poorly folded, and in the regulation of neuronal synaptic plasticity [22] (Figure 1).

In the healthy adult brain, microglial cells are highly dynamic in the resting state. The microglial
cell somata are generally fixed, while microglial processes are active, with highly motile filopodia-like
protrusions of different shapes. It is believed that the brain parenchyma undergoes complete
screening by resting microglia once every few hours. This high resting motility may serve to perform
housekeeping functions, enabling microglial cells to control the microenvironment efficiently and
clear the parenchyma of metabolic end-products and damaged tissue. In the healthy brain, microglia
interact with other cortical elements, i.e., astrocytes, neuronal cells, and blood vessels. However,
when processes of nearby microglial cells overlap with each other, they are mutually withdrawn [23].

All brain macrophages, except for choroid plexus macrophages, are maintained locally throughout
adulthood by self-renewal, rather than recruitment of circulating precursors to the CNS [24,25].

2.2. Microglia in CNS Pathology

An increasing body of data has demonstrated that microglia exert both neuroprotective and
neurotoxic effects. Indeed, microglia produce inflammatory cytokines, such as Interleukin 1
beta (IL-1β), Tumor Necrosis Factor alpha (TNFα), Interleukin 6(IL-6), superoxide, nitric oxide,
and excitatory amino acid [26], as well as neuroprotective factors such as neurotrophins, Brain-derived
Neurotrophic Factor (BDNF), Glial cell-Derived Neurotrophic Factor (GDNF), and Nerve Growth
Factor (NGF) [27].

In steady-state conditions, microglia express low levels of major histocompatibility
class I and II complexes (MHC) molecules. However, once activated, microglia and
CNS-infiltrating monocyte-derived macrophages upregulate many surface molecules, including
major histocompatibility class II (MCHII) complexes and co-stimulatory molecules, which make
them capable of presenting antigens to T cells more efficiently than astrocytes but less efficiently
than dendritic cells [28]. Furthermore, under neuroinflammatory conditions, microglia express and
release chemokines such as CCL2, CCL3, CCL4, CCL5, CXCL10, and CCL12, required for myeloid
and T cell chemoattraction [29]. The surface molecule CD200 is widely expressed by neurons,
astrocytes, and oligodendrocytes [30]. Its receptor CD200R (also named OX2 receptor) is primarily
expressed on macrophages of the CNS, including microglia. The CD200–CD200R signaling leads
to inactivation of microglia cells and keeps them in a resting state [31,32]. Indeed, microglia in
CD200−/− mice form aggregates, associated with high expression of CD11b and CD45, particularly in
the spinal cord [31]. Aggregation of microglia is usually observed during neuroinflammation and/or
neurodegeneration [31]. In an animal model of multiple sclerosis (MS), the Myelin Oligodendrocyte
Glycoprotein (MOG)-induced Experimental Allergic Encephalomyelitis (EAE) model, CD200−/− mice
showed a more rapid onset of disease as compared to C57BL/6 WT mice. Accordingly, macrophage
and microglia activation in the CNS of CD200−/− mice was dramatically enhanced, as determined by
CD68 expression [31].

Following considerable CNS lesions, with extensive neuronal death, demyelination,
or hemorrhage, damage-associated molecular patterns (DAMPs) are released and promote the
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morphological transformation of microglia in amoeboids, leading to significant alterations in gene
expression. Nimmerjahn et al. have shown that laser-induced injury is associated with an early
microglia response, characterized by movement of the nearby microglial processes toward the lesion.
Only microglial cells adjacent to the lesion are found to be activated, and the number of activated cells
is dependent on the severity of the injury [23].

Blood-derived monocytes express the chemokine receptors, C-C chemokine receptor 2 (CCR2)
and CX3CR1. In rodents, CCR2 is absent from CNS myeloid cells and helps to distinguish infiltrating
monocytes from resident myeloid cells. The constitutive expression of CCR2 on resident microglia is
low if present. However, LPS and other pathological stimuli dramatically induce the expression of this
receptor on microglia [33–36]. CCR2 and its ligands have been found to be upregulated in many types
of CNS injury, including ischemia, hemorrhage, trauma, and hypoxia [37–39].

Chemokines and the nucleotide ATP, control the targeted migration of microglia in the damaged
area. Many CNS cells, including neurons and astrocytes, release ATP as a transmitter, to allow
intercellular communication [40]. Microglia activation, cytokine release, and phagocytosis are
controlled by purinergic receptors. Low ATP concentrations represent a chemotactic stimulus for
the recruitment of cells, while high levels of ATP also activate other effector functions, such as
phagocytosis and cytokine secretion [41]. Microglia expresses multiple purinergic P2X and P2Y
receptors, which regulate chemotaxis and phagocytosis [42]. P2X receptors are ligand-gated ion
channel receptors, which comprise seven subtypes, all of which are primarily activated by ATP. All P2X
receptor channels are permeable to Na+, K+, and Ca2+, while some of them are permeable to Cl−.
P2Y receptors are seven-membrane-spanning, G-protein-coupled receptors, comprising eight subtypes,
which are activated by ATP, ADP, UTP, and UDP [43].

In AD, evidence suggests that multiple microglia receptors, including CD36, CD47, integrinα6β1,
Toll-like receptor (TLR) 4, TLR2, and scavenger receptor A, are co-activated in response to β-amyloid
(Aβ). This causes the formation of a large receptor complex to mediate microglial phagocytosis of Aβ

fibrils and the subsequent activation of pro-inflammatory intracellular signaling pathways [44–46].
FcγRs, by binding the Fc (fragment crystallizable) region of IgG immunoglobulin, are involved

in a series of microglia functions, such as phagocytosis, oxidative burst, and cytokine release [47].
FcγR activation has been shown to stimulate inhibitory signaling through another microglial
receptor, the signal regulatory protein α (SIRPα), which in turn inhibits FcγR- and complement
receptor-mediated phagocytosis [48,49]. SIRPα, together with its ligand CD47, is also expressed by
neurons and is involved in the regulation of neuronal apoptosis, neurite outgrowth, and synaptic
activities [48,50,51]. In MS CD47 localizes in normal myelin but also in foamy macrophages and
activated astrocytes surrounding the active MS lesions. The expression of CD47 has been found to be
downregulated in MS brain lesions [52].

The Receptor for Advanced Glycation End-products (RAGE) exists in either a membrane-bound
form or an insoluble form that lacks the transmembrane domain [53]. RAGE is highly expressed in the
CNS cells including microglia, neurons, and endothelial cells and contributes to many pathological
states characterized by an inflammatory component [54]. HMGB1-RAGE signaling links neuronal
necrosis with microglia/macrophage activation. Therefore, RAGE signaling seems a potential target
for anti-inflammatory therapy in stroke [55], as well as in other neuroinflammatory disorders.

Similar to peripheral macrophages, the classic versus alternative activated polarization state
(also M1 and M2) paradigm has been proposed for microglia. M1 cells are usually associated with
an acute infection, while M2 cells play a role in tissue remodeling, repair, and healing. The T helper 1
(Th1) cytokine, interferon-γ (IFNγ) [56], and bacterial lipopolysaccharide (LPS) polarize macrophages
towards the M1 state and induce the release or expression of interleukin-(IL-)1, IL-6, IL-12, IL-23
and inducible Nitric Oxide Synthase (iNOS). In contrast, the presence of the Th2 cytokines, IL-4,
IL-10, and IL-13 [56–59], transform microglia into M2 cells, which, in turn, produce IL-10 and
express arginase 1. The chemokine CCL2, which is strongly induced in neurodegenerative and
neuroinflammatory conditions, also drives M2 macrophage polarization [60,61]. M2 was further
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subdivided to accommodate similarities and differences in the effects provided by IL-4 (M2a), immune
complex+ TLR ligands (M2b), IL-10, and glucocorticoid (M2c) stimuli [62]. Despite the usefulness of
this categorization, however, Martinez and Gordon have highlighted the limitations of this schema,
providing a viewpoint that undermines the possibility of applying the M1/M2 framework to microglia.
To date, limited information is available on the microglial phenotypes that arise in neurological
disorders, such as AD, ALS, and MS [63].

2.3. Non-Parenchymal CNS Macrophages

Non parenchymal CNS macrophages include perivascular, meningeal macrophages, and choroid
plexus macrophages (Figure 1). All of them are CX3CR1+ CD11b+ CD45 high cells.
All non-parenchymal macrophages were originally believed to originate from short-living blood
monocytes after birth that is quickly replaced by bone marrow (BM)-derived cells. More recently,
Goldmann and collaborators (2016) found that all of them have their prenatal origin in the yolk sac
and depend on similar transcription factors (i.e., PU1., Irf8, Myb, and Batf3) [11]. Mice knocked out
for PU.1 do not have perivascular, meningeal, and choroid plexus macrophages. In Irf8 knockout
mice, a reduction of meningeal macrophages was observed, while the absence of Myb did not impair
meningeal and choroid plexus macrophages. Finally, Batf3 deficiency did not affect any macrophage
population. Also, Goldmann observed that while meningeal and perivascular macrophages are
stable populations, choroid plexus macrophages undergo continuous exchange with peripheral blood
cells [11].

Differently from microglia, perivascular macrophages express the mannose receptor, CD206,
as detected in mice and humans [64], and CD163 in rats and humans [65]. Similarly, a significant
proportion of meningeal macrophages express these receptors. Also, as compared to microglia,
the perivascular and meningeal macrophages express higher levels of MHC antigens and show
increased phagocytic activity [66]. Perivascular macrophages play a protective role during bacterial
infection by recruitment of circulating leukocytes [67]. In a model of pneumococcal meningitides,
depletion of the meningeal and perivascular macrophages was associated with a more aggressive
disease course, characterized by higher blood and cerebrospinal fluid bacteria counts. Moreover,
despite the presence of high levels of chemotactic factors (e.g., macrophage-inflammatory protein-2
and VCAM-1), a reduced number of white blood cells was observed in the cerebrospinal fluid.

Furthermore, it has been shown that they are involved in the preservation of endothelial cells
integrity, the promotion of capillary stability, vascular constriction regulation, and the maintenance of
BBB integrity [68].

3. Central Nervous System Macrophages in the Pathogenesis of Neuroinflammatory/
Neurodegenerative Diseases

3.1. Alzheimer’s Disease

First described by Alois Alzheimer in 1907, Alzheimer’s disease (AD) is now the most common
cause of dementia. Neuropathological hallmarks of the AD brain are Aβ accumulation, neurofibrillary
tangles, synaptic loss, and neurodegeneration [69].

Mutations at or near the cleavage sites of β- and γ-secretase [70,71] or the mutations of γ-secretase
constituents, Presenilin-1 (Psen1) and Presenilin-2 (Psen2) [72], result in increased production of Aβ and
consequently lead to early onset of AD [73]. The polymorphism of Apolipoprotein E (ApoE) gene is
a genetic risk factor for AD, with the ApoE4 allele strongly associated with an increased risk of AD,
and the ApoE2 allele associated with protection [74].

The abnormal processing of amyloid precursor protein (APP) causes accumulation of insoluble
Aβ, which induces free-radical reactions and inflammation and finally leads to the death of neurons
and development of dementia [75–77].
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Numerous epidemiological data seem to confirm the critical role of neuroinflammation in AD.
Indeed, patients undergoing chronic treatment with non-steroidal anti-inflammatory drugs (NSAIDs)
show a low risk of developing the disease, revealing the preventive effect of anti-inflammatory
drugs [78]. Inflammatory components involved in AD-associated neuroinflammation include
brain cells, such as microglia and astrocytes, the complement system, as well as cytokines and
chemokines [79]. Microglia and bone-marrow-derived mononuclear phagocytes accumulate around
senile plaques in AD patients and animal models of the AD [80–82]. It is also known that in AD,
high concentrations of Aβ(1–40) or Aβ(1–42) do not cause neuronal damage if microglia are not
present [83].

Microglia respond to the Aβ peptides and promote their clearance through the release of cytotoxic
factors, which, in turn, promote the phagocytosis of these peptides [84]. Therefore, if, on the one hand,
phagocytosis of amyloid-β peptides could improve disease course, on the other hand, the release of
proinflammatory mediators seems to promote the disease [81].

Recent studies revealed multiple genetic risk factors for susceptibility to AD, including the
polymorphic variants of the myeloid cell molecules, CD33 [85] and TREM2 [86]. CD33 is a cell surface
molecule of the immunoglobulin superfamily that binds to sialic acids. A decrease in Aβ clearance
by myeloid cells could be associated with the enhanced expression of CD33, which is a risk factor
for late-onset AD [87,88]. TREM2 is transmembrane glycoprotein expressed in myeloid cells that
transmit intracellular signals through its transmembrane binding partner DNAX-activating protein 12
(DAP12) [89]. Mutation in TREM2 decreased phagocytic capacities of microglia and is associated with
higher Aβ load [90]. Also, in mouse models of AD, TREM2 deficiency reduces microglia recruitment
around Aβ plaques, promoting their accumulation. Indeed, TREM2 represents a protective factor since
it enables microglia to affect Aβ plaque depositions, therefore limiting damage of the neurons [91].

The signaling pathway CR3/C3 has also recently been implicated in early synapse loss in mouse
models of AD-like pathology, suggesting that inappropriate activation of microglia by pathogenic
proteins results in aberrant phagocytosis of functional synapses [92].

In addition, Khoury et al. have shown that the deletion of CCR2 in an AD mouse model resulted in
a substantial reduction of microglial accumulation around the plaque and an increase in the deposition
of Aβ [93], thus demonstrating that the chemokine CCR2 mediates the recruitment of inflammatory
peripherals monocytes in the Alzheimer’s brain [94].

In vitro and in vivo studies show that the loss of neuron-microglial signaling CX3CL1/CX3CR1
leads to reduced Aβ deposition in two mouse models of AD, which is potentially mediated by altered
activation and phagocytic capability of CX3CR1-deficient microglia [95].

The role of purinergic receptors has also been investigated. The role of P2X7 is controversial, and
some studies show that the expression of P2X7 is increased in microglia in mouse models of AD or
when microglia are stimulated with Aβ, suggesting its crucial role for microglial Aβ uptake [96,97].
Another study reported that silencing of P2X7 in microglia increased their capacity to clear Aβ,
thus decreasing the rate of IL-1β release from microglia [98]. More evidence exists for the essential role
of the P2Y2R in recruiting microglia to the brain during the development of AD. In a mouse model of
AD, expression of CD11b, a marker for activated microglia, is elevated in hippocampal brain sections
but reduced when the P2Y2R expression is suppressed. Also, the heterozygous deletion of the P2Y2R
is associated with an increase in soluble and total Aβ1–42 levels and Aβ plaque deposition, a decrease
in expression CD11b, and enhanced neurological deficits and accelerated mortality as compared to
wild-type mice [99].

In the TgCRND8 mouse model of AD, depletion of perivascular macrophages significantly
increased the vascular Aβ levels. Conversely, stimulation of perivascular macrophage turnover
reduced cerebral amyloid angiopathy load, independently of clearance by microglia, highlighting the
importance of the perivascular macrophages in brain disease [100].
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3.2. Amyotrophic Lateral Sclerosis

ALS is a neurodegenerative disease that belongs to the clinical and pathological spectrum of
motor neuron disorders [101]. The disease is characterized by moderate and progressive dysfunction
and loss of motor neurons. Neuronal injury depends upon well-orchestrated cross-talk between motor
neurons and microglia [102]. ALS pathogenesis is often associated with aggregates of pathological
superoxide dismutase 1 (SOD1), FUS (Fused in Sarcoma), or TDP-43 (TAR DNA-binding protein 43) in
motor neurons and oligodendrocytes [103,104]. Neuroinflammation is a pathological hallmark of ALS
and is characterized by the activation and proliferation of microglia and the infiltration of T cells into
the brain and spinal cord [105].

Many studies indicate that microglial activation occurs before or concomitantly with the onset of
clinical symptoms and increases during the disease course. Recent studies have shown that the in vivo
activation state of microglia in ALS is characterized as a continuum between the neuroprotective
M2 (alternatively-activated) phenotypic state and the neurotoxic M1 (classically-activated) state.
In microglia from mutant SOD1 (mSOD1) mice, at the onset of disease, higher levels of the M2 markers,
Ym1, CD163, and BDNFand lower levels of the M1 marker, Nox2, can be observed as compared
with end-stage disease. In addition, on the contrary to end-stage mSOD1 M1 microglia, mSOD1 M2
microglia in vitro resulted to be neuroprotective [106].

Beers and colleagues have evaluated in vivo the effects of microglia in the development of ALS
by using PU.1 knockout (PU.1−/−) mice, which at birth lack macrophages, neutrophils, T- and B cells,
and microglia, and require bone marrow transplantation for survival. Transplantation of mSOD1G93A
bone marrow into PU.1−/− mice did not show clinical or pathological evidence of motor neuron
disease, indicating that mSOD1 in microglia alone is not sufficient to initiate disease [107].

Recruitment of inflammatory Ly6Chi monocytes to the spinal cord also has a pathological role
in ALS. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced
monocyte recruitment to the spinal cord, diminished neuronal loss, and extended lifespan in a mouse
model of ALS [108].

Both in ALS patients and in animal models, the hyperactivation of P2X7 receptors has been
described in the advanced stages of the disease [109]. Indeed, the administration of P2X7 antagonist
Brilliant Blue G (BBG) is able to delay onset and improve the general conditions and motor performance
in SOD1-G93A mice, although without increasing lifespan [110].

3.3. Multiple Sclerosis

An increasing body of data suggests that CNS macrophages are involved in many neurological
diseases, including MS. Studies have identified CCR2, CX3CR1, and the purine receptors P2X7 and
P2X4 as crucial molecules involved in the etiopathogenesis of this disease.

MS is a demyelinating autoimmune disease of the CNS characterized by progressive axonal
damage as a result of the loss of oligodendrocytes and neurodegeneration.

Following blood–brain barrier damage, peripheral immune cells such as T lymphocytes,
monocytes, and dendritic cells (DC) invade the CNS and co-activate the innate immune system within
the CNS. T helper lymphocytes, mainly Th1 and Th17, cytotoxic T cells, B cells, macrophages, microglia,
and the cytokines they secrete, are implicated in the initiation and maintenance of a deregulated
immune response to myelin antigens and subsequent immune-mediated demyelination [111].

Microglia activation is regarded as a primary feature of neuroinflammatory diseases. However,
in MS and experimental autoimmune encephalomyelitis (EAE), microglia have been shown to
exhibit neuroinflammatory as well as neuroprotective characteristics. The activation of microglia
precedes a massive immune cell infiltration and the demyelination process and finally dominates
the remyelination and repair of disease [112]. In early active lesions, high levels of the phagocytic
marker, CD68, as well as of MHC class I and II, and CD86 molecules are expressed by microglia and
macrophages. On the other hand, in later stages of active lesions, an upregulation of the M2 activation
markers CD206 and CD163 can be observed [113].
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During the inflammatory process, various proinflammatory cytokines are produced, such as
tumor necrosis factor (TNF) α, interferon (IFN) γ, IL-1β, IL6, and inducible iNOS, which can
activate the microglial cells; these in turn increase the production of various proinflammatory factors,
with consequent exacerbation of the symptoms of the disease.

Activated microglia are also the primary source of IFNβ in the inflamed CNS, which is thought
to lead to increased phagocytosis of myelin debris at the peak of EAE, and treatment of naïve
microglia with IFNβ improved removal of myelin debris in demyelinated organotypic cultures [114].
Genetic ablation of IFNβ or its receptor leads to increased severity of EAE [115].

Lampron and colleagues have found in mice with CX3CR1 deficiency that microglia clearance
of myelin debris was significantly blocked, compromising the integrity of the myelin sheaths and
thus preventing remyelination [116]. Given the pro-inflammatory role of the purinergic receptor P2X7,
its involvement in the etiopathogenesis of MS has been investigated. Sharp and collaborators have
observed that in P2X7-deficient mice, the incidence of EAE disease was reduced compared to the
wild-type mice [117]. Also, treatment with P2X7 antagonists of chronic EAE reduces demyelination
and ameliorates the associated neurological symptoms [118].

Another target for the treatment of multiple sclerosis is CCR2, which is expressed in
inflammatory monocytes. CCR2 and its corresponding ligand, CCL2, are associated with numerous
neuroinflammatory conditions. CCL2 is synthesized in the CNS, mainly by astrocytes, and to a lesser
extent by microglia, endothelial cells, and neurons [119] and controls the infiltration of inflammatory
monocytes into the inflamed brain [120]. Accordingly, lack of CCR2, or the deletion or inhibition of
CCL2, reduces monocyte-derived macrophage recruitment into the CNS in mice with EAE [121] and is
associated with less severe EAE disease scores [122,123].

Finally, another study showed that conditional deletion of transforming growth factor
(TGF)-β-activated kinase 1 (TAK1) in CX3CR1+ tissue macrophages, suppressed CNS inflammation,
and decreased axonal damage by cell-autonomous inhibition of the NF-κB, JNK, and ERK1/2 pathways
in EAE [124].

3.4. Myeloid-Targeted Therapy

Targeting the CNS myeloid cell populations represents a promising therapeutic avenue for many
CNS disorders. Many targets have been identified, including High Mobility Group Box 1 (HMGB1),
Adenosine Monophosphate-activated Protein Kinase (AMPK), Peroxisome Proliferator-Activated
Receptor Gamma (PPARγ), and Glycogen Synthase Kinase 3 beta (GSK3β), and several drugs are now
being tested for their potential neuroprotective profiles.

HMGB1 is a non-histonic chromosomal protein that acts as a proinflammatory cytokine since
damaged neurons release it and it is secreted from activated macrophages. A massive release of HMGB1
has been observed in primary cortical cultures upon NMDA- or glutamate-induced excitotoxicity [125].
Primary microglia cultures incubated with media from NMDA-treated primary cortical cells underwent
significant activation, as determined by NO secretion and expression of the proinflammatory factors,
TNF-α, cyclooxygenase-2 (COX2), and iNOS [125]. Accordingly, immunoneutralization of HMGB1
restored basal levels of NO production. Also, a supernatant from short hairpin (sh) HMGB1-expressing
cortical cells was not sufficient to induce microglia activation [125]. In AD, HMGB1 is associated
with senile plaques and seems to inhibit microglial Aβ42 clearance, thereby increasing Aβ42
neurotoxicity. By binding HMGB1 and HMGB2, the small molecule inflachromene blocks their
post-translational modifications and release, and, in turn, reduces microglial activation [126–128].
It has also been reported that Glycyrrhizin, a triterpene extracted from the roots and rhizomes of
the plant Glycyrrhiza glabra (licorice), binds directly to HMGB1, inhibiting its chemoattractant and
mitogenic activities [125].

Activation of the AMP-activated protein kinase (AMPK) has been found to be associated in vitro
with reduced NF-κB activation and a consequent decrease in the expression of pro-inflammatory
cytokines and iNOS in glial cells. Several natural and synthetic molecules are known activators of
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AMPK, including berberine, resveratrol, metformin, and 5-amino-4-imidazole carboxamide riboside.
In vitro and in vivo data have confirmed the ability of these molecules to exert neuroprotective
effects in a variety of settings, including Aβ-induced neurotoxicity [129–131]. In an EAE model,
phosphorylated and total levels of AMPK are reduced during onset and peak of disease, but increase
in the remission phases. Moreover, modulation of AMPK signaling follows the expression of IFN-γ
and the IFN-γ-induced chemokine CCL2 in the brain [132]. More recently, it was shown that
the Angiotensin II type 1 receptor blocker telmisartan promoted M2 polarization and reduced M1
polarization in LPS-challenged in microglia cells via enhancing AMPK activation. Indeed, the effects
of telmisartan were reduced by AMPK knockdown or administration of an AMPK inhibitor [133] and
were prevented by treatment with a siRNA for Ca2+/calmodulin-dependent protein kinase kinase β

(CaMKKβ), an upstream kinase of AMPK [133]. It should be noted that the neuroprotective effects
of telmisartan are also partly dependent on its effects as an AT1 receptor blocker and PPARγ partial
agonist [134], as the decrease of neuronal injury and microglia activation by telmisartan is the result of
AT1 receptor blockade and PPARγ activation [135,136]. Along the same lines, the PPARγ activator
pioglitazone reduced neuron damage and improved survival in the G93A-SOD1 transgenic mouse
model of ALS, and reduced neuroinflammation in mouse models of AD, thus improving disease
severity. However, clinical data are still disappointing, as pioglitazone in combination with riluzole
has shown no effects on the survival of ALS patients [137–139].

Promising data also come from pharmacological targeting of the glycogen synthase kinase-3β
(GSK3β). The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, as well as protein kinase
C and protein kinase A, are major regulators of GSK3. In turn, GSK3 promotes inflammation,
as its activity has been found necessary for the full induction of cytokine production, upon TLR
stimulation (reviewed in [140]). Treatment of BV-2 microglia with GSK3 inhibitors (i.e., lithium,
indirubin-3′-monoxime, and kenpaullone) significantly decreased the migration of cells and reduced
the production of IL-6 and NO upon LPS stimulation [141]. Finally, GSK3β inhibitors have been showed
to be neuroprotective in mouse models of ALS, delaying the onset of symptoms and prolonging animal
lifespan [142,143].

The cannabinoid receptors represent another promising target as they may induce a shift from M1
to the M2 phenotype. In resting microglia, low or no expression of either CB1 or CB2 can be detected.
CB2 receptors are upregulated in the activated microglia, as has been found in brain tissue from AD
and MS patients (reviewed by [144]). In both acute and chronic models of EAE, the administration
of an endocannabinoid receptor ligand, 2-arachydonyl-glycerol, delayed the onset of disease and
ameliorated the disease course by increasing the number of M2 macrophages in the perivascular
infiltrations [145]. Also, the phytocannabinoid cannabidiol (CBD) modulates microglial cell function
in vitro and improves an in vivo model of AD [146].

Several classes of antipsychotic drugs, such as dopamine D2 receptor antagonists and selective
serotonin reuptake inhibitor, have also been shown in vitro to reduce IFNγ-induced microglial
activation and suppress the release of pro-inflammatory cytokines [147–149].

Interestingly, novel pharmacological delivery tools such as poly(methyl methacrylate)
nanoparticles (PMMA-NPs) have been designed in order to be able to enter specifically into activated
microglia/macrophages and release pharmacologically active compounds, such as pioglitazone,
minocycline, and rolipram, which have been shown to modulate microglia activation in different
preclinical models [150].

Finally, gene transfer vehicles able to target microglial cells have been tested in preclinical models
to regulate cellular activation. To this aim, recombinant vectors based on adeno-associated virus
(rAAV) as gene transfer vehicles have been designed. The rAAV can be used to transfer genes into
mammalian cells, where it integrates specifically within short genomic regions. In order to generate
microglia-specific AAV-derived vectors, cell-type-specific mammalian promoters can be used, such as
the regulatory elements for human CD11b and CD68, as well as murine F4/80 [151].

A summary of myeloid-targeted therapies is presented as Table 1.
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Table 1. Myeloid-targeted therapy.

Treatment Target Disease Effect References

Inflachromene HMGB1–HMGB2 Animal Model of AD
Blocks post-translational

modifications and releases reduce
microglial activation

[126,127]

Berberine
Resveratrol

AMPK
AMPK

LPS- and IFN γ BV-2
microglia cells

Animal model of AD
Animal model of AD

Reduces neuroinflammation
Ameliorates neurotoxicity

induced by Aβ.
Improves the cognitive impairment

[129–131]

Telmisartan AMPK
PPARγ

LPS-challenged
microglia cell

Promotes M2 polarization and
reduces M1 polarization

Reduction of neuronal injury and
microglia activation

[133]

Pioglitazone PPARγ Animal model of ALS
Animal models of AD

Reduces neuron damage and
increases survival

Reduces neuroinflammation,
Improves disease severity

[137,138,150]

GSK3β inhibitors GSK3β
LPS-challenged BV-2

microglia cell
Animal model of ALS

Reduces IL-6 and NO
Delays onset of symptoms and

prolongs the lifespan
[141–143]

2-arachydonyl-glycerol
Cannabidiol (CBD)

Endocannabinoid
receptor

Experimental Allergic
Encephalomyelitis

Animal model of AD

Improves disease course
Prevents the cognitive impairment [145,146]

Risperidone,
Perospirone and

Quetiapine
D2 receptor IFN γ activated

microglia cells
Suppresses the release of

pro-inflammatory cytokines [147–149]

4. Conclusions

Many neurodegenerative and autoimmune CNS disorders are still orphan diseases, and in the
long term the current therapeutic approaches are highly ineffective. It is now believed that targeting the
CNS myeloid populations may represent a promising strategy, aimed at modulating cellular activation
and switching the cellular phenotype from neurotoxic to neuroprotective. Indeed, anti-inflammatory
approaches have failed to be effective, particularly in neurodegenerative diseases, both in animal
models and in clinical trials. Many potential microglial targets have been identified, and several
molecules are currently being tested in preclinical models. However, despite the encouraging results,
much more effort is needed to progress these molecules into the clinical setting. Also, it is of primary
relevance to continue expanding basic knowledge on microglia/CNS macrophages biology in order to
identify key genes and signaling pathways that regulate CNS homeostasis and potentially control the
pathophysiology of CNS diseases.
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Abbreviations

CNS Central nervous system
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
MS Multiple sclerosis
HSCs hematopoietic cells
CSF1R CSF1 receptor
IL-34 Interleukin-34
CNS-TGF-β1−/− mice deficient in TGF-β1 in the CNS
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TMEM119 transmembrane protein 119
Siglec-H sialic acid-binding immunoglobulin-like lectin H
P2RY12 P2Y purinoceptor 12
SALL1 Sal-like protein 1
TGFβ1 transforming growth factor-β1
TGFβR1 TGFβ receptor 1
BDNF Brain-derived neurotrophic factor
GDNF Glial cell-derived neurotrophic factor
NGF Nerve growth factor
MCHII major histocompatibility class II
MOG Myelin oligodendrocyte glycoprotein
EAE Experimental allergic encephalomyelitis
DAMPs damage-associated molecular patterns
CCR2 C-C chemokine receptor 2
Fc fragment crystallizable
SIRPα signal regulatory protein α

RAGE Receptor for advanced glycation end-products
IL Interleukin
iNOS inducible nitric oxide synthase
Th1 T helper 1 (Th1)
IFNγ interferon-γ
LPS lipopolysaccharide
TLR Toll-like receptor
Psen1 Presenilin-1
Psen2 Presenilin-2
ApoE Apolipoprotein E
APP amyloid precursor protein
NSAIDs non-steroidal anti-inflammatory drugs
DAP12 DNAX-activating protein 12
SOD1 superoxide dismutase 1
FUS Fused in Sarcoma
TDP-43 TAR DNA-binding protein 43
mSOD1 mutant SOD1
PU.1−/− PU.1 knockout
BBG Brilliant Blue G
DC dendritic cells
ROS reactive oxygen species
TNF tumor necrosis factor
TGF transforming growth factor
TAK1 transforming growth factor (TGF)-β-activated kinase 1
Sh short hairpin
AMPK AMP-activated protein kinase
CaMKKβ calmodulin-dependent protein kinase kinase β

GSK3β glycogen synthase kinase-3 β

PI3K The phosphatidylinositol 3-kinase
CBD cannabidiol
PMMA-NPs poly(methyl methacrylate) nanoparticles
rAAV recombinant vectors based on adeno-associated virus
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