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Abstract: Human chorionic gonadotropin (hCG) is a hormone of considerable importance in the
establishment, promotion and maintenance of human pregnancy. It has been clearly demonstrated
that hCG exerts multiple endocrine, paracrine and autocrine actions on a variety of gestational and
non-gestational cells and tissues. These actions are directed to promote trophoblast invasiveness
and differentiation, placental growth, angiogenesis in uterine vasculature, hormone production,
modulation of the immune system at the maternal-fetal interface, inhibition of myometrial
contractility as well as fetal growth and differentiation. In recent years, considerable interest has
been raised towards the biological effects of environmental contaminants, particularly endocrine
disrupting chemicals (EDCs). Emerging evidence suggests that prenatal exposure to selected EDCs
can have a deleterious impact on the fetus and long-lasting consequences also in adult life. The results
of the in vitro effects of commonly found EDCs, particularly Bisphenol A (BPA) and para-Nonylphenol
(p-NP), indicate that these substances can alter hCG production and through this action could exert
their fetal damage, suggesting that hCG could represent and become a potentially useful clinical
biomarker of an inappropriate prenatal exposure to these substances.

Keywords: endocrine disrupting chemicals; Bisphenol A; para-Nonylphenol; human placenta;
human trophoblast

1. Introduction

Human Chorionic Gonadotropin (hCG) is a molecule of considerable biological importance,
being implicated, nearly in all the major reproductive and developmental processes in humans.
The knowledge on the biological and evolutionary significance, as well as the functional importance of
hCG, has been enormously expanded in the last few decades. Consequently, many new concepts on
the role of hCG have been added to those traditionally established in the fields of reproductive and
non-reproductive biology. Moreover, these new concepts have led to many new potential therapies
with hCG. The therapies are for preterm labor, painful bladder syndrome/interstitial cystitis, overactive
bladder, chronic pain, breast cancer, HIV/AIDS, rheumatoid arthritis, Sjogren’s syndrome and few
other autoimmune diseases and tubal infections with Neisseria Gonorrhoeae [1]. Some of these therapies
have been validated in women (preterm labor, painful bladder syndrome/interstitial cystitis, chronic
pain) and the others in animal models [1]. All of them are waiting for validation by randomized
placebo controlled clinical trials.

One of the modern frontiers in hCG study is to investigate the effects of hCG disruption in
human pregnancy, which can be a consequence of, or lead to, very different pathologic conditions.
Abnormalities in the production and the circulating levels throughout specific periods of gestation and
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in the relative variations of the several glycoforms of hCG have been associated with a large array of
pregnancy complications, such as miscarriages [2], fetal chromosomal anomalies [3], preeclampsia [4,5],
disturbances in fetal growth and development [6], gestational trophoblast diseases [7], etc.

In the last two decades, interest has been growing on the potential role of several environmental
contaminants on the secretion of hCG as well as on the fetal well-being and the pregnancy outcome.

The objective of this article is to review the major currently recognized roles of hCG in pregnancy
and to examine the effects of selected environmental contaminants that have been shown to have the
capacity to impact the regulation of hCG secretion.

2. The hCG Molecules

hCG is an extremely complex molecule. Based on the structural and/or functional similarities,
hCG can be included in three families. First is the glycoprotein hormone family, which consists of
follicle stimulating hormone (FSH), luteinizing hormone (LH) and thyroid stimulating hormone (TSH).
Second is the cystine-knot growth factor family, which includes nerve growth factor, platelet derived
growth factor, fibroblast growth factor beta and transforming growth factor-beta. The third is the
therapeutic glycoproteins family, which contains prominent members like erythropoietin, interferons,
monoclonal antibodies and tissue plasminogen activator [8]. Like these therapeutic glycoproteins,
hCG has an unrealized potential in saving the countless number of human lives from some of the most
dreadful diseases [1,8].

hCG has endocrine, paracrine and autocrine actions [9]. It is a heterodimeric glycoprotein
composed by two subunits—α and β—and is considered a more active agonist of LH receptors [10].
The α subunit is common with TSH, FSH and LH and is encoded by a single gene (CGA) [9], whereas
the β subunit of each of the above hormones is encoded by different genes. In case of the hCG
beta subunit, a cluster of six non-allelic genes: CGB1, CGB2, CGB3, CGB5, CGB7 and CGB8 are
involved [9]. hCG β subunit is similar to that of LH, it shares 82% homology [11], and binds to the
same G-protein coupled LH/hCG receptors [12]. However, there is convincing evidence that the
downstream intracellular effects of hCG on relevant pathways such as the adenylate cyclase/protein
kinase A, the phospholipase C/inositol phosphate, the AKT and the ERK 1/2 are different from those
of LH after receptor binding [13–15]. Therefore, emerging evidence shows that important differences
exist between LH and hCG. LH is present in all vertebrates, whereas hCG is found only in primates,
which strongly suggests that LH is a strongly conserved molecule during evolution, whereas hCG is a
relatively recently evolved molecule from LH [13].

hCG is a highly glycosylated molecule. In fact, 30% of its molecular weight is represented
by carbohydrate moieties [16,17]. There are two N-glycosylation sites in the α-subunit, whereas
the β-subunit of hCG contains two N-glycosylation and four O-glycosylation sites [9,16,17].
Currently, at least 5 variant glycoforms of hCG have been detected: hCG, sulphated hCG (S-hCG),
hyperglycosylated hCG (H-hCG), hCG free β-subunit (free β-hCG) and hyperglycosylated hCG free
β-subunit (H-free β-hCG). hCG variants can be generated by the degree, type as well as the location of
carbohydrate moieties on the protein back bone of the molecule. The glycosylation is responsible for the
hCG glycoforms circulating half-life (much longer for hCG than for LH) and biological activity [14–17].
It has been reported that pregnancy can be detected by an abundance as well as by glycoforms of
hCG [18].

3. Major Roles of hCG during Pregnancy

There is no doubt that hCG is a fundamental molecule for human pregnancy and of its actions
are directed towards pregnancy maintenance [19]. In fact, it became clear that hCG can act as an
endocrine as well as a paracrine/autocrine molecule. The classic actions of hCG—i.e., ovulation
induction (in addition to LH), maintenance of the corpus luteum and stimulation of its progesterone
production during the first 9 weeks of pregnancy—are exerted through its binding to the LH/hCG
receptors [13,18,20]. Additional recently discovered hormonal actions of hCG are inhibition of
myometrial contractility [20,21], stimulation of angiogenesis in uterine vasculature [22], promotion
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of umbilical circulation and placental growth [23] as well as many different immunomodulatory
effects [17,24–29]. They allow for an establishment and prolongation of maternal tolerance towards
the fetal semiallograft [17,30]. Moreover, it has been shown that several fetal organs like kidney, liver,
lung, spleen, bowel contain LH/HCG receptors [31]. These organs in adults are devoid of them,
suggesting that hCG could play a role in their growth and development. There is a consensus that
the endocrine actions of hCG are exerted by receptor binding followed by an activation of several
intracellular signalling pathways, such as adenylate cyclase/cAMP/PKA and the ERK1/2 MAPK
pathways [15,32].

Together with these endocrine actions of hCG, several important autocrine and/or paracrine
effects of hCG have now been unravelled: stimulation of cytotrophoblasts differentiation into
syncytiotrophoblasts [33], increased progesterone secretion by syncytiotrophoblasts [34,35], potent
in vitro angiogenic effect [36], etc.

4. Environmental Contaminants in Human Pregnancy: Implications for the Fetus

Much attention has been paid in the last several decades on the possible impact of environmental
contaminants, particularly endocrine disrupting chemicals (EDCs), on human pregnancy [37]. Maternal
contamination with these substances has been linked to several adverse consequences for pregnancy
and fetal health [38,39]. An important class of EDCs shares many similarities with the endogenous
estrogens and can interfere with the role of these important hormones in reproductive processes.
Like natural estrogens, these compounds act in fact on estrogen-responsive organs by binding to ERα
and ERβ and regulating target gene expression [40]. They can also activate non genomic pathways and
induce more rapid responses through activation of multiple kinases [41]. Estrogens are fundamental
hormones in pregnancy, therefore any interference with their action might be harmful for pregnancy
and fetal health.

The estrogen-like EDCs include a broad range of man-made chemicals used in industrial
lubricants, solvents, several pesticides, biocides, plasticizers, surfactants, pharmaceutical agents.
Some naturally occurring EDCs can also be found in plants or fungi.

Given the widespread distribution of these chemicals in the environment and their presence
in commonly used materials, it appears almost inevitable for humans to avoid their contamination.
The high human exposure is demonstrated by the EDCs levels found in tissues and body fluids of
most inhabitants in agricultural and non-industrialized areas [42,43]. Most of these chemicals can also
pass through the placenta and reach the fetus, as revealed by the concentrations in amniotic fluid,
cord blood and placental and fetal tissues [44,45].

Prenatal life is a critical and vulnerable period during which the environmental insults may lead
to permanent changes in cells, tissues and hence in the whole organs [46]. According to the “Barker
hypothesis”, also known as “Fetal origins of adult disease hypothesis”, any adverse influence early in
the development and particularly in the intrauterine life can result in a variety of disorders that may
become manifest later in life [47]. This can actually occur in the case of EDCs.

Among the health disorders that can be potentially attributed to EDCs are type 2 diabetes, several
metabolic and neurologic disorders as well as reproductive defects and increased cancer risk [48–51].
It is therefore essential to fully understand how these chemicals act during the intrauterine life
and to prevent complications in new-borns as well as in their adult life. In this context, emerging
experimental evidence suggests that interference with hCG production by the placenta could be a way
by which selected EDCs can exert their effects on the fetus. This issue will be discussed in detail in the
following section.

5. In Vitro Effects of Selected EDCs on Human Placenta

The placenta, which is interposed between fetal organs and the maternal circulation, transfers
substances and gases. In addition, placenta is an active organ involved in the metabolism and synthesis
of hormones fundamental to pregnancy establishment and development. The placenta also acts as an
immune barrier protecting the fetus against maternal rejection. However, the placenta is not adapted to
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act as a barrier to the many man-made chemicals commonly present in the environment [52]. Therefore,
many environmental contaminants elude placental barrier and potentially harm the fetus. In addition,
the placenta is a highly sensitive organ to environmental contaminants with estrogenic activity as it
expresses ERα and ERβ [53]. It is conceivable that while passing through placenta, EDCs can act on it
as well. Given the key role of placenta in maintenance of pregnancy and assuring the fetal growth and
development, any alterations in placental functions, caused by exposure to potentially harmful EDCs,
may lead to dangerous consequences to the health of pregnancy and fetus.

Many efforts have been made to test the effects of EDCs in human placenta. In vivo administration
cannot be used in human pregnancy, for obvious ethical reasons. On the other hand, animals are
not completely suitable for studies on the placenta because this organ varies from one species to
another. Therefore, in vitro models of human placenta have become key to evaluate the potential
damaging effects of EDCs. These are mainly represented by established trophoblast cell lines and
primary cultures of isolated trophoblasts or placental explants [54].

Although there are many reports in the literature on the in vitro action of different EDCs in
human placenta, some controversies remained particularly regarding the timing, dose and duration
of exposure. We discuss here only experimental studies involving low non-toxic doses of EDCs with
emphasis on Bisphenol A (BPA) and para-Nonylphenol (p-NP), two EDCs that attracted the attention by
many researchers and including our laboratory during the last ten years. However, when appropriate,
effects of other chemicals on human placenta will be also discussed.

BPA is one of the highest volume EDC produced worldwide and a component of many everyday
products including plastic bottles, detergents and food packaging. Although its use in items for
children aged 0–3 was banned (European Commission 2011; U.S. Food and Drug Administration
(FDA) 2012), BPA is still used in many other products so that its presence is largely documented in the
environment and as well as in the general populations [55].

In collaboration with a Danish group, the research group of the University of Siena, co-author
in this review, showed that BPA is transferred through placenta [56]. In vitro studies on BeWo cells
and chorionic villous explants from human placenta have demonstrated that low BPA concentrations,
that do not affect the cell viability, have adversely affected key functional processes of placental
development. In particular, BPA was found to increase the secretion of β-hCG and cell apoptosis, two
markers of syncytialization/differentiation of the epithelial layer of chorionic villi, which is in direct
contact with maternal blood [56]. By using the HTR-8/SVneo, an invasive cell type representative of
the extravillous trophoblast, it was demonstrated that very low BPA concentrations reduced the cell
migration and invasion, without affecting the cell proliferation [57]. A study on primary trophoblasts
isolated from term pregnancy placentas showed that BPA also induced 11b-HSD2 activity, protein and
mRNA, aromatase, glucose transporter-1, CRH and hCG mRNA levels [58].

Several reports compared the effect of different EDCs under similar experimental conditions.
In our studies, the effect of BPA was compared with that of p-NP, a potentially hazardous chemical
known to have estrogenic activity since 1991 [59]. p-NP is mainly used as plasticizer and surfactant
in the manufacturing industry and present in detergents, paints, pesticides, personal care products,
and food and drink packaging. The in vitro studies showed that similar to BPA, p-NP could increase
β-hCG secretion, cell apoptosis and reduce trophoblasts migration and invasion [57]. The studies on
cell migration/invasion also revealed that p-NP was more potent than BPA, because it is active at
lower concentrations and after a shorter duration of exposure [57]. p-NP exerted also a statistically
significant effect in reducing trophoblast/endothelial cells interaction, while BPA did not.

A key role of human placenta is to protect the fetus against potentially harmful substances. This is
accomplished by transporter proteins in the epithelium of chorionic villi, which move away chemicals
from the fetal circulation [60]. Insufficiency of these transporters can have effects on the clearance
of molecules, impacting fetal growth and development [60]. In a collaborative study with a research
group in Kuopio, Finland, the research group of Siena showed that exposure of placental explants
to BPA and p-NP down-regulated expression of ABCG2, a key efflux ABC (ATP-binding cassette)
transporter for xenobiotics [61]. Activity of both chemicals was at 1 nM while higher concentration
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(100 mM) did not have a significant effect. Importantly, ABCG2 showed changes dependent on the
gestational age with a higher expression in tissues at first trimester than at term pregnancy and
susceptibility to chemicals only in tissues at term [61].

It is important to emphasize that the effects of EDCs in human trophoblasts are dose-dependent
with low doses being more effective than high doses [62]: This fact causes very great concern because
the efficacious low doses correspond to the levels detected in the human population. With regard to
p-NP, the highest dose of 1 nM corresponds to 0.220 ng/mL, a similar value recovered in human blood
samples [63]. Concerning BPA, 1 nM corresponds to 0.228 ng/mL with cconcentrations of BPA ranged
from 0.3 to 18.9 ng/mL in maternal plasma [44,45].

6. EDCs and hCG

The particular effects of EDCs at low, non-toxic doses, have been better demonstrated by
measuring hCG secretion in cultures exposed to different compounds. Among the other endpoints of
EDCs in human placenta, hCG has the advantage of being a measurable parameter, thus allowing to
detect even subtle changes caused by different EDC concentrations. For this purpose, studies had been
performed with different chemicals in a large range of concentrations, not affecting cell viability. These
chemicals included a pesticide, (Atrazine), a non-steroidal estrogenic compound used in the past as a
therapeutic tool for reproductive disorders (Diethylstilbestrol), a phytoestrogen (Resveratrol) as well
as BPA and p-NP [56,64,65]. The studies showed that all chemicals tested altered β-hCG secretion in a
dose dependent U-shaped curve with Atrazine, BPA and p-NP and an inverted U-shaped curve with
Diethylstilbestrol and Resveratrol.

This nonlinear behavior of EDCs revealed that chemicals were stimulating or inhibiting β-hCG
secretion, depending on their concentration. As reported in Table 1, concentrations as low as 0.1 pM
could inhibit β-hCG secretion in the case of Diethylstilbestrol and Resveratrol, while p-NP had
a stimulating effect. For a more complete information, this table includes data on an insecticide
(Chlorpyrifos), two isomers of 1,1,1,-trichloro-2,2-bis(p-chlorophenil)ethane) (p,p′-DDT and o,p′-DDT)
and their metabolites 1,1,-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′-DDE and o,p′-DDE), although
these substances have been tested only at a narrow range of concentrations [66,67]. These data also
show differences in hCG secretion depending on the duration of exposure to these chemical agents.

Table 1. Disruption of hCG (human chorionic gonadotropin) secretion by human placenta/trophoblast
cells exposed to various EDCs (endocrine disrupting chemicals) at different concentrations and times.

hCG Secretion Reference

Atrazine
Decrease in BeWo cells at 10 pM–1 nM [64]
Increase in BeWo cells at of 0.1–1 mM [64]

BPA
Decrease in BeWo cells at 30 µM [56]

Increase in primary trophoblast cells from human placenta term at 0.44, 1.1, 2.2, 4.4 or 8.8 µM [58]
Increase in placental explants from first trimester placenta at 1 or 0.5 nM [65]

Chlorpyrifos Increase in primary trophoblast cells from human placenta at term at 50 or 100 µM [66]

DES Decrease in BeWo cells at 0.1 pM, 10 nM or 0.1 µM [64]

p-NP
Increase in BeWo cells at 0.1 pM [64]

Decrease in BeWo cells at 10 pM–1 nM [64]
Increase in placental explants from first trimester placenta at 1 nM [53]

Resveratrol Decrease in BeWo cells at 0.1–1 pM [64]

p,p′-DDT/DDE Decrease in JEG3 cells at 1, 10, 100 ng/mL, 1 µg/mL after 24 h [67]

o,p′-DDT/DDE Increase in JEG3 cells at 1, 10, 100 ng/mL, 1 µg/mL after 72 h [67]

7. hCG as a Potential Biomarker of EDCs Action in Human Pregnancy

Altogether the data on EDCs in human pregnancy show that maternal exposure to lower
concentrations corresponding to the levels detected in the human populations may harm placental
development and hormone (hCG) secretion in a concentration- and time-dependent manner. Although
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it is difficult to translate the data obtained in vitro into the pathophysiological conditions, placental
dysfunction could be a contributory cause of the adverse pregnancy outcomes reported with maternal
contamination by EDCs. These studies show association of EDCs levels in maternal blood and/or
urine with increasing risk of miscarriages [68,69], preterm birth [70,71], reduced birth weight [72] and
increased risk of preeclampsia [73,74]. Despite the well demonstrated impact of EDCs on human
placenta, the current available information on placental biomarkers—particularly on measurable
parameters during pregnancy—in the above conditions is scant. Ferguson et al., 2015 [75] investigated
the possible association between selected plasma biomarkers of angiogenesis—namely fms-like
tyrosine kinase-1 (sFlt-1) and Placental growth factor (PlGF)—and urinary biomarkers of exposure to
phthalate and BPA. The authors found a positive association between BPA levels and an increase of
plasma sFlt-1 as well as an increase in the ratio of sFlt-1 to PlGF [75]. These findings are suggestive
of an altered placentation and trophoblast function. In other studies, the same group showed an
association of EDCs exposure during pregnancy with plasma biomarkers of inflammation and/or
oxidative stress [76]. These observed effects might be the result of activity of EDCs in trophoblast as
these substances, BPA and NP, have been shown to induce generation of reactive oxygen species (ROS)
in JEG-3 cells [77].

Nevertheless, we are not aware of any information on hCG blood level in association with
maternal contamination by EDCs, in pregnancies complicated by disorders. The only exception is the
use of serum β-hCG level <6 mIU/mL for identification of implantation failure, in women undergoing
in vitro fertilization [78]. Low hCG level is indeed a marker of early miscarriages [79,80]. By contrast,
preeclampsia, a severe disease occurring in late gestation is linked to high levels of hCG [81]. Serum
β-hCG measurement is not only diagnostic but also has a good predictive value for pregnancy outcome.

Considering the importance of hCG levels, and on the basis of the in vitro data showing disruption
of hCG secretion by exposure to EDCs as well as the association of maternal contamination by EDCs
with pregnancy complications, we suggest altered serum hCG concentration as a link between maternal
exposure to EDCs and adverse pregnancy outcomes.

An hypothetical scenario is graphically represented in Figure 1: (a) The placenta is a sensitive
target of environmental EDCs in maternal blood; (b) in response to these chemicals, the placenta
undergoes changes in its development and hormone (hCG) secretion; (c) placental dysfunction and/or
any resulting change in maternal blood may lead to various pregnancy and fetal disorders.

The in vitro data discussed here allows us to propose that changes in hCG maternal serum
concentration might be a putative biomarker of EDCs actions during pregnancy.
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Of course, future clinical-experimental studies should be addressed to examine the possible
association between EDCs levels in maternal blood and serum hCG concentration, at different times of
pregnancy and in relation to pregnancy and/or fetal disorders.

8. Concluding Remarks

There is a growing evidence on the potential dangerous effects of prenatal exposure to environmental
contaminants, particularly EDCs, on the pregnancy outcome and the fetal development. These
substances can diffuse into placenta and end up in fetus. Nearly everybody comes in contact with
them in the everyday life. Research in this field is at the beginning, despite a large number of studies
have already been published. In fact, several environmental contaminants have been demonstrated or
strongly suspected to have short-term adverse effects on the fetus, the neonate and possibly long-term
effects also in the adult life. However, the debate is still continuing [82,83], not only on many specific
substances but also on the mechanisms and pathways involved in the genesis of the damage [84,85].
The in vitro studies carried out on the effects of selected EDCs on human trophoblasts indicate
that these substances can exert significant effects on the production and release of hCG, which is a
major molecule promoting pregnancy. Therefore, it is not unreasonable to hypothesize that maternal
contamination with EDCs could disrupt placental endocrine activity which, in turn, could lead to
changes in hCG concentration in maternal blood.

Further studies are needed to fully confirm this hypothesis which, if validated, could lead to
consider hCG could serve not only as an expression of fetal well-being, but also serve as a useful
clinical biomarker in determining the degree of prenatal exposure to EDCs.
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