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Abstract: Phenol is one of the organic pollutants which can cause water environment pollution. It is
not only enriched in aquatic organisms but is also a serious threat to human health. Chironomus
kiiensis is very sensitive to the contaminants in water and its cytochrome P450s are usually chosen
as biomarkers for water pollution. To examine whether CYP6EV11 plays a role in the oxidative
metabolism of phenol, we measured the silencing efficiency of CYP6EV11 and evaluated larval
susceptibility to sublethal phenol levels by RNA interference (RNAi) technology. The results showed
that the transcription of CYP6EV11 was found significantly up-regulated when the 4th instar C. kiiensis
larvae were exposed to three doses of phenol. However, the transcriptional levels of CYP6EV11 were
significantly suppressed by 92.7% in the 4th instar C. kiiensis larvae soaked in dsCYP6EV11 compared
with those soaked in dsGFP for 6 h. The CYP6EV11 expression and mortality of the 4th instar
C. kiiensis larvae with CYP6EV11 silencing were mostly decreased under phenol stress. Therefore,
the CYP6EV11 gene may be used as a molecular biomarker for earlier warning and monitoring for
water pollution.
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1. Introduction

Phenol (carbolic acid, phenolic acid, phenylic acid or oxybenzene) consists of an aromatic ring
linked a hydroxyl group and is widely used as the precursor to produce industrial compounds such as
kerosene, phenolic resin and pesticides [1]. The compounds penetrat ecosystems due to the drainage
off municipal or industrial sewage to surface water [2]. The Environmental Protection Agency (EPA)
specified the standard maximum of phenol contaminant level of 1 mg/L in wastewater [3]. Since the
phenolic compounds were stable over a long term and harmful to organisms at low dose, many of
them have been classified as hazardous pollutants due to their harmful damage to human health [4].
Although the standards of critical toxic concentration of phenol were much different, and varied
from 1.06 µM to 105.24 µM (105.24 mM in Malaysia,10.63 mM in the United States, 1.06 mM in
Australia) [5–7], there is no doubt that phenol is harmful and should be monitored. Our previous
research also found that the enzymatic activities in Propsilocerus akamusi were significantly altered in
response to phenol [8].

Cytochrome P450s (CYPs) belong to a superfamily, which is found in all organisms that play an
important role in many physiological processes such as the metabolism of fatty acids, steroids and
vitamin D as well as some other phytochemicals like pesticides [9]. It is well documented that CYPs are
associated with the process of detoxification in insects, and the elevated activity of CYP enzymes has
the ability to accelerate metabolism of pesticides. The CYP6 families in terrestrial invertebrates have
frequently been shown to play a role in the detoxification of xenobiotics and metabolic resistance to
insecticides [10–15]. Most CYP6 genes in insects have been shown to enhance metabolic detoxification,
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such as CYP6AB37, CYP6AB35, CYP6B53, CYP6AB3, CYP6AB32, CYP6AB33, CYP6AB36, CYP6CT4
and CYP6AN15v1 of Lymantria dispar [15]. It has been reported that CYP6BQ23 in Meligethes aeneus is
associated with the resistance to deltamethrin [16]. In several species of Chironomus, different toxic
compounds are affected by the expression of the CYP6 gene. For example, the mRNA levels of CYP6B7
in Chironomus riparius are evaluated after exposures to the ultraviolet filters benzophenone-3 (BP3) and
4-methylbenzylidene camphor (4MBC) [17] and the antibacterial agent triclosan [18]; in C. tentans the
transcriptional activities of CYP6EX3 and CYP6EV1, CYP6EV3 have been studied after atrazine and
chlorpyrifos exposures. Moreover, the present study has reported the effects of phenol on the expression
of ten CYP6 genes in C. kiinensis [19]. On the other hand, other cytochromes in different Chironomus
species have been analyzed as possible biomarker genes that could be useful in ecotoxicological studies,
risk assessment and bioremediation, such as CYP4G [20], CYP9AT2 [21], CYP4D2, CYP9F2 and CYP12A2
in C. riparius [18]; CYP4DG1, CYP4DG2 and CYP9AT1 in C. tentans [22,23].

Chironomidae are known as non-biting midges belonging to a family of Diptera: Nematocera.
They often distribute in urban and residential areas in close proximity to polluted and eutrophic waters
causing a big problem worldwide [24]. Chironomus kiinensis is broadly distributed in Malaysia, Japan,
USA and South China [25]. C. kiinensis could be used extensively for acute or chronic bioassays in fresh
water ecosystems as it has a relatively short life cycle, and due to the ease of maintenance of laboratory
cultures and relative sensitivity to aquatic contaminants [26]. To provide molecular evidence of CYP
gene detoxification that will be of benefit to further monitor water pollution, we: (1) examined the
transcriptional responses of CYP6EV11 in C. kiiensis to the exposure of phenol at different concentration;
(2) revealed the phenol-induced down-regulation of CYP6EV11 contributing to decreased toxicity
of phenol to C. kiiensis using the RNA interference (RNAi) method. These results may potentially
develop sensitive molecular markers of Chironomidae for monitoring pesticide exposures in non-target
organisms in aquatic systems.

2. Results

2.1. cDNA Cloning and Characterization

In databases, full-length cDNA of CYP6EV11 was detected in the P450 family genes, with open
reading frames (ORFs) of 1476 bp encoding 491 amino acids, with predicted molecular masses of
56.79 kDa and isoelectric points (PI) of 9.12. Besides, there are no signal peptides in CYP6EV11.

2.2. Polygenetic Analysis

Based on the identities of CYP6EV11, phylogenetic trees were constructed with 22 genes of high
homologous amino acids in insects. The CYP6EV11 and CYP6EV10 (AHJ10931.1) in C. kiiensis shared
the highest sequence similarity (71%), and were clustered into a group. All the 22 CYP sequences
have been deposited in the NCBI database with their accession numbers as shown in the Figure 1.
Five similar motifs were found in typical CYPs, including helix-C, helix-I, helix-K, Meander domain
and heme-binding domain from N to C terminal (Figure 2). Helix-C is heme-interacting region with
typical sequences WxxxR; AGxET motif is located in helix-I and reportedly to make an oxygen binding
pocket; E/SxLR located in helix-K with the hydrogen bonding domain and PxxFxPxxF motif are
thought to form a set of salt bridge interactons (E-R-R) for stabilizing the structure of protein [27];
and the P450 heme-binding domain locates at the 3′-end with the FxxGxRxCxG/A sequences [28,29].
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Figure 1. Phylogenetic tree of 23 CYP genes are from 7 insects. These genes were downloaded
from the National Center for Biotechnology Information (NCBI) databases. The gene accession
numbers are parenthesized. The CYP genes are CtCYP6EV1 (ARO50426.1), CtCYP6EV2 (ARO50430.1),
CtCYP6EV3 (ARO50428.1), CtCYP6EV4 (ARO50429.1), CtCYP6EV5 (ARO50442.1), CtCYP6EX1
(ARO50434.1), CtCYP6EX3 (ARO50425.1), CkCYP6EV9 (AHJ10930.1), CkCYP6EV10 (AHJ10931.1),
CqCYP4A6 (XP_001867280.1), CqCYP6A8 (XP_001870174.1), AaCYP6N3v1 (AAF97936.1), AaCYP6N3v2
(AAF97937.1), AaCYP6N3v3 (AAF97938.1), AdCYP6A8 (ETN65670.1), AfCYP6M1a (AFM08393.1),
AfCYP6M1b (AFM08394.1), AfCYP6M1c (AFM08395.1), AfCYP6M4 (AFM08397.1), AfCYP6M7
(AIE17403.1), AfCYP6M8 (AFM08398.1), LeCYP6JN1 (ALX81394.1), CkCYPEV11. CkCYP6EV11 is
a target gene in this study from Chironomus kiiensis, which was obtained from transcriptome
sequencing in our previous study [26]. These genes are from Chironomus tentans, Chironomus kiiensis,
Culex quinquefasciatus, Aedes albopictus, Anopheles darling, Anopheles funestus and Liposcelis entomophila.
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Figure 2. Cont.
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Figure 2. The alignment of deduced amino acid sequences from 23 CYP genes from seven insects. The five important conserved motifs of the CYPs were framed
by only partial sequence alignment. The purple box shows helix-C with conserved sequences WxxxR; blue box indicates helix-I with typical sequences AGxET;
and dark box highlights helix-K with sequences E/SxLR. The heme-binding domain is boxed in pink with typical residues FxxGxxxCxG/A and the conserved
Meander domain was boxed in red with conserved sequences PxxFxPxxF. The similarity of CYP6EV11 with CkCYP6EV10, CtCYP6EV4, CtCYP6EV5, CkCYP6EV9,
CtCYP6EV2, CtCYP6EV3, CtCYP6EV1, CtCYP6EX3, AfCYP6M8, CqCYP6A8, AfCYP6M4, AdCYP6A8, AaCYP6N3v3, AaCYP6N3v2, AaCYP6N3v1, AfCYP6M7, CqCYP4A6,
AfCYP6M1b, AfCYP6M1a, CtCYP6EX1, LeCYP6JN1, AfCYP6M1c is 71%, 64%, 63%, 61%, 58%, 56%, 56%, 47%, 43%, 44%, 44%, 43%, 42%, 41%, 42%, 43%, 42%, 45%, 45%,
44%, 41%, 44%, respectively.
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2.3. Expression Profiling under Phenol Stress

QRT-PCR analysis was performed to compare the transcription levels of CYP6EV11 under the
three doses of phenol stresses. The CYP6EV11 was significantly up-regulated by 1 and 100 µM of
phenol, respectively. However, CYP6EV11 was suppressed by phenol at the dose of 10 µM at 6 h.
After the larvae were stressed for 12~96 h, the expressions of CYP6EV11 were significantly up-regulated
under three doses of phenol stresses. As the results of induced expression of CYP6EV11 at 1 µM
phenol stress, 1 µM was chosen as the dose of treatment to explore the effects of gene silencing on
development and response to phenol stress (Figure 3).

Figure 3. Transcriptional profiles of CYP6EV11 in the 4th instar C. kiiensis larvae following exposure
to three doses of phenol (1, 10 and 100 µM) during a 96-h period. The larvae without phenol
treatment were regarded as controls. The standard error (SE) bars were calculated based on three
experimental replicates. The bars with different letters (a–c) are significantly different at p < 0.05 based
on one-way ANOVA followed by Duncan multiple comparisons. All of the relative expression levels
were log2 transformed.

2.4. Gene Silencing Analysis

To determine whether dsCYP6EV11 could inhibit the expression of CYP6EV11, the 4th instar
larvae of C. kiiensis were soaked in dsCYP6EV11 and larvae soaked in dsGFP were chosen as the
controls; qRT-PCR analyses showed that the CYPEV11 transcript level was reduced at three of four
times, especially, the CYPEV11 transcript level was reduced by 92.7% at 6 h compared with those
soaked in dsGFP (p < 0.05). However, the CYPEV11 transcript level was increased by 182.3% at the
time point of 24 h (Figure 4).

Meanwhile, the mortality rate was recorded to explore the effects of gene silencing on the growth
of larvae. The results showed that the mortality rate of each treatment gradually increased with
the increasing of silencing time. However, there were no statistical differences in the mortality rates
between the larvae soaked in dsCYPEV11 and dsGFP at the period of 3~24 h. The mortality rate of
larvae soaked in dsCYP6EV11 reached the highest at 72 h, which was 24.9% more than observed for
the dsGFP treatment (Figure 5).
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Figure 4. The CYPEV11 transcriptional level in C. kiiensis soaked in dsCYPEV11 compared with those
soaked in dsGFP. The asterisk (*) on the SE bars indicate significant differences between treatments and
controls (p < 0.05).

Figure 5. The mortality rate of C. kiiensis larvae with CYP6EV11 gene silencing and the groups soaked
in dsGFP.

2.5. Effects of Gene Silencing on Development and in Response to Phenol Stress

Since the transcript levels of CYP6EV11 were successfully suppressed in larvae soaked in dsRNA,
we further examined whether the suppression of CYP6EV11 transcript had effects on CYP6EV11 in
response to phenol stress. CYP6EV11 was mostly suppressed after 3-h treatment, the transcript level
was reduced by 99.9% compared with what was observed in those soaked in dsGFP (p < 0.05). However,
the CYPEV11 transcript level was increased by 180.5% compared with the larvae soaked in dsRNA for
6 h. After 72 h of stress, the susceptibility of larvae to phenol gradually decreased and the transcript
level was reduced by 77.9% (Figure 6).

The mortality rates of dsCYP6EV11 and dsGFP treatments gradually increased with the increase
of silencing time. After the larvae were treated with a mixture (phenol at 1 µM and dsRNA at 2 µg/µL)
for 24 h, all the mortalities of dsCYP6EV11 groups were significantly higher than those of dsGFP groups
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(p < 0.05, Figure 7). Especially, the mortality of dsCYPEV11 treatment increased by 70.5% compared
with the larvae soaked in dsGFP at the 72-h time point.

Figure 6. Transcriptional levels of CYP6EV11 in silenced C. kiiensis larvae in response to phenol
stress. The larvae treated with dsGFP were regarded as control. The SE bars were calculated based on
three experimental replicates. The asterisk (*) on the SE bars indicate significant differences between
treatments and controls (p < 0.05).

Figure 7. The mortality rates of C. kiiensis larvae with CYP6EV11 gene silencing under phenol stress.
The larvae were soaked in the mixture phenol at 1 µM and dsRNA at 2 µg/µL, and the groups soaked in
dsGFP were regarded as controls to compare the susceptibility to phenol after CYP6EV11 gene silencing.

3. Discussion

Insect cytochrome P450s are known to play an important role in detoxifying insecticides and
plant toxins [15,30]. The up-regulation of CYPs, especially the members of the CYP6 family, has been
confirmed to be associated with enhanced metabolic detoxification of insecticides in insects [16,31–34].
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In this study, the transcripts of CYP6EV11 treated with phenol were found to be significantly
up-regulated compared to those in the untreated groups. The increased expression of CYP6EV11 may
imply an enhanced ability to metabolize exogenous compounds. Our pervious study also found that
the CYP6FV2 and CYP6FV1 in 4th instar C. kiinensis larvae were mainly up-regulated during a 96-h
phenol exposure [19]. As a result of stress, similar differential transcriptional expression levels have
been reported in C. tentans. Tang et al. (2018) reported stress-related genes in C. tentans, including two
cytochrome P450 genes (CYP6EV1 and CYP4DG2), have considerable potential as sensitive biomarkers
for the diagnosis of chlorpyrifos contamination [22]. The expressions of CYP6EX3 and CYP6EV3 in
C. tentans can also be significantly up-regulated by atrazine at 1000 and 5000 mg/L, respectively [23].
Thus, upregulation of the CYP4G gene in Chironomus riparius was found after exposures to TBTO
(1 ng/L 24 h–0.1 ng/L 96 h) [20].

To reveal the role of CYP6EV11 in pollutant metabolism, RNAi technology was used in this study.
RNAi has been successfully used in most insects like Lepidoptera and Coleoptera, but rarely used in
Chironomidae [35–37]. Lu et al. (2012) had successfully revealed two acetylcholinesterase genes (TcAce1
and TcAce2) in Tribolium castaneum by the method of gene silencing [38]. Knockdown of CYP6EV11
was successfully conducted by this method, and a similar method was also applied for CYP6EX3
silencing to investigate the susceptibility of C. tentans larvae to chlorpyrifos [23]. Compared with
dsGFP groups, CYP6EV11 expression was significantly decreased in C. kiiensis larvae soaked in
dsCYP6EV11 under phenol and non-phenol stresses. The results showed that CYP6EV11 played a
role in oxidative metabolism to phenol. Interestingly, the C. kiiensis larvae decreased susceptibility to
phenol when the CYP6EV11 was silenced resulted in low mortality indicating other CYP family genes
may be triggered to increase resistance to phenol stress. This result is consistent with the report of
Cao et al. (2016) [19]. RNAi technology with dsRNA soaking was used to further study gene function
of Chironomidae. Our results have provided, for the first time, crucial evidence with regard to which
CYP6EV11 in C. kiiensis may be a new molecular biomarker for monitoring phenol pollution and,
therefore, the extension in other species is available. Further studies should validate the metabolism
ability by heterologously expressed CYP6EV11 in C. kiiensis.

4. Materials and Methods

4.1. Experimental Midge Rearing

The Chironomus kiiensis were obtained from Shenzhen Municipal Water Affairs Bureau, China,
and were cultured according to the method of Cao et al. (2013) [26]. Briefly, the C. kiiensis were
reared in mixed-age cultures by generation to generation under the condition of 20 ± 2 ◦C and L16:D8.
The midges were fed with goldfish granules (Beijing San You Beautification Free TECH. Co., Ltd., Beijing,
China) and maintained in a glass tank (50 cm × 20 cm × 30 cm) that was covered with nylon net.

4.2. Cloning and Identification of CYP6EV11

Total RNA was isolated using an RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following
the manufacturer′s guidelines and treated with RNase-free DNase I (Qiagen, Madison, WI, USA).
RNA concentrations were measured using a spectrophotometer, and RNA integrity was checked by
analysis on a 1.0% w/v agarose gel. The C. kiinensis transcriptome was profiled by conducting Solexa
sequencing at the Beijing Genomics Institute (BGI) (Shenzhen, China) [26].

The cDNA of CYP6EV11 was cloned by the method of RACE using 3′-Full RACE Kit and 5′-Full
RACE Kit (TaKaRa, Kyoto, Japan), and was purified using E.Z.N.A. Gel Extraction Kit (Omega,
Norcross, GA, USA). After purity and quality checks, the open reading frames (ORFs) were confirmed
using the ORF finder (Available online: http://www.ncbi.nlm.nih.gov/gorf.html). The molecular
masses, isoelectric points (PI) and the conserved domains were derived using ProtParam (Available
online: http://au.expasy.org/tools/protparam.html) and Conserved Domains (Available online:
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) of NCBI, respectively. SignalP3.0 Server
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(Available online: http://www.cbs.dtu.dk/services/SignalP) was used to compute signal peptide of
the CYP6EV11 h.

4.3. Multiple Sequence Alignment and Polygenetic Analysis

Amino acid sequences corresponding to CYP6 in other insects were retrieved from the NCBI
database (Available online: http://www.ncbi.nlm.nih.gov/BLAST/) for multiple sequence alignment
using CLUSTALX 1.83(Institut de Genetique et de Biologie Moleculaire et Cellulaire, Illkrich, France).
The phylogenetic tree was constructed by the neighbor-joining method and bootstrapped with
1000 replicates to evaluate the branch strength using MEGA 5.1 software(CEMI, Temp, AZ, USA) [39].

4.4. C. kiiensis Larvae Stress and RNAi Analysis

The larvae were exposure to phenol (0, 1, 10, 100 µM) with ten replicates of each treatment.
Thirty 4th instar larvae with similar size and body color were randomly assigned in each replicate.
The controls were maintained without any exposure to chemicals for the different durations and
concentrations along with the phenol-exposed samples. After exposure, two living larvae were
randomly collected from each replicate at 6, 12, 24, 48, 72 and 96 h, and immediately frozen in liquid
nitrogen before being stored at −80 ◦C Twenty frozen midges were randomly selected from each
treatment at each time interval for RNA preparations.

The dsRNAs were synthesized with cDNA of CYP6EV11 and GFP using MEGAscript T7 Kit
(Ambion, Austin, TX, USA) following the manufacturer′s instructions and were purified with
ammonium acetate, water saturated phenol and chloroform. The dsRNA was resuspended in RNase-free
water, and quantitated at 260 nm using Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific
Inc., Carlsbad, CA, USA). The quality and integrity of dsRNA were verified by 1.0% agarose gel
electrophoresis. The larvae were soaked in dsRNA of CYP6EV11 (2 µg/µL), ten replicates containing
thirty 4th instar larvae in each replicate. The controls were soaked in dsRNA of GFP (2 µg/µL) along
with the dsRNA of CYP6EV11 samples. Two living larvae were collected for each replicate at 3, 6, 24
and 72 h, respectively, and then stored at −80 ◦C for RNA extraction to measure the silence efficacy.
To explore CYP6EV11 silencing in response to phenol stress, the survival larvae after soaking with
the 1µM phenol for 1 h were soaked in the mixture of 2 µg/µL CYP6EV11 dsRNA and 1 µM phenol.
Twenty healthy larvae were collected at 3, 6, 24, 48, and 72 h, respectively, and stored at −80 ◦C for
RNA extraction to obtain CYP6EV11 gene expression profiles. The groups soaked in the mixture
of 2 µg/µL GFP dsRNA and 1 µM phenol were regarded as controls. All mortalities were recorded
among treatments.

4.5. Real-time RT-PCR Analysis

Approximately 1 µg of total RNA was reverse transcribed to cDNA using 1 µM oligodeoxythymidine
primer. Synthesized cDNAs were diluted to 100 µL with sterile water and used as template for
real-time PCR. The following primers were designed for amplification of the CYP6EV11 gene,
F: 5′-GGCGGACAAGAATGGAAAGA-3′ and R: 5′ -GGCTGTCCAAGACACTTGAT-3′. The Actin
(F: 5′-AATGGGATCGCTTGGGTGCTTT-3′ and R: 5′-TCAGCTTCACCCAATGTTGCCT-3′) was selected
as internal controls to calculate the relative expression level by the method of delta–delta CT method [40]
and 2−∆∆Ct [41]. Amplifications were performed with the following parameters: 94 ◦C for 30 s followed
by 45 cycles at 94 ◦C for 12 s, 60 ◦C for 30 s, 72 ◦C for 40 s, and 82 ◦C for 1 s for plate reading.

5. Conclusions

The CYP6EV11 in C. kiiensis was firstly identified and was found to be mostly upregulated
under phenol stress. Compared with dsGFP, the CYPEV11 was effectively 92.7% silenced by RNAi
in 4th instar C. kiiensis larvae soaked in dsCYP6EV11 for 6 h. The CYP6EV11 transcript level and
susceptibility of the C. kiiensis larvae were markedly decreased under phenol stress after CYP6EV11
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silencing. Therefore, the CYP6EV11 gene may be used as a sensitive molecular marker for phenol
pollution monitoring.
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