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Abstract: Rice is one of the important crops grown worldwide and is considered as an important crop
for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in
huge yield losses every year. Deployment of resistance genes in various crops is one of the important
methods of disease management. However, identification, cloning and characterization of disease
resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important
to understand the molecular basis of plant host–pathogen interaction. With the advancement in rice
genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been
developed. However, resistance response of these varieties break down very frequently because of the
emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes
under field conditions, understanding the mechanismof resistance response and its molecular basis
should be well understood. Some emerging concepts like interspecies transfer of pattern recognition
receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad
spectrum resistant varieties of rice.

Keywords: rice; disease resistance; breeding; biotic stress; marker assisted selection; signaling pathways;
transcription factor

1. Introduction

Rice is one of the major cereal crops that fulfils more than 23% calorie needs of people worldwide
and is a staple food crop for half of the world population living in Asia, where its cultivation covers
approximately 92% of total acreage [1]. It is expected that the world population will exceed eightbillion
by the year 2025 and to meet the increased global food and calorie demands, the total grain production
has to be increased by up to 50% [2]. To fulfill this goal, it is imperative to decrease crop losses
due to biotic and abiotic stresses [3]. Rice cropsare affected by around 70 pathogens, especially
viruses, bacteria, fungi and nematodes that damage the crop severely and ultimately reduce yield [4].
Minimizing the losses caused by these diseases will thus increase total rice production. Deployment of
resistance genes in rice is the best practice to manage diseases and reduce environmental damageby
reducing the application of agro-chemicals. Development of disease resistance rice varieties has
beenachieved by the implementation of plant breeding approaches including conventional breeding
like introduction of exotic lines, backcross breeding, and modern biotechnological approaches such as
molecularmarker assisted backcross breeding, gene pyramiding, etc.Molecular mapping of disease
resistance genes, their cloning and generation of transgenic lines using genetic engineering methods
are very promising approaches. These techniques explore the natural diversity present within the
rice gene pools. However, natural diversity is not enough to continuously generate new resistance
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cultivars. To generate more variation, artificial mutations can be randomly created in the rice genome
or the genes involved in the resistance mechanism can be directly targeted. Development of new
resistant varieties is needed to protect crops from pathogens. Understanding themolecular basis of
resistance against multiple pathogens is also important for the sustainable use of resistance sources
under the pressure of global climate change.

We now understand that there are two tiers of defense in pathosystems: PAMP (Pathogen
associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI) which
act in a typical host plant against the pathogen attack. The PTI is the first level of defense barrier
in the plant and this process begins by getting the perception or through sensing of microbe-
or pathogen-associated molecular patterns (MAMPs or PAMPs). The second level of defense in the
plant is the ETI which recognizes effector molecules delivered by pathogens inside host cell that have
surpassed the PTI [5]. A primary characteristic of the plant innate immunity is activation of the PTI.
The perception of PAMPs and MAMPs by pattern recognition receptors (PRRs) directs to the foundation
of several downstream defense related signaling consequences. Thus, the virulence capability of
a pathogen depends upon the deactivation of PTIs by its effector molecules [6]. The stimulation of
PTI generates signaling networks of mitogen-activated protein (MAP) kinase, transcriptional recoding
facilitated by transcription factors such as WRKY and formation of different reactive oxygen species
(ROS) inside the host plant [7]. The ETI is activated by the binding of major R gene receptors of host
plant and effectors of pathogen that activates host defense mechanism and generally leads to localized
cell death surrounding the pathogen invasion [8]. In this review, molecular aspects of rice disease
resistance, including the general approaches used for developing resistant plants, the genetic basis of
host resistance, signal transduction pathways, defense mechanism, regulation of defense mechanism
by regulatory elements and their perspectives in rice resistance will be discussed in response to fungal,
bacterial and viral pathogens.

2. Mechanism of Plant Defense against Biotic Stresses

The defense system of plants comprises of multiple barriers ranging from outer barrier, like waxy
cuticles to internal barriers like resistance and defense response genes. Plant resistance is entirely
dependent on a network of signaling pathways involving innate immunity and a class of resistance
genes [9–11]. Primarily, defense systems of plants can be categorized into two classes, basal defense
and specific defense systems. The basal defense system checks the entry of pathogens in the plants
andprovides immunity at the beginning of infection. This defense system is much effective against
necrotrophic pathogens. The latter specific defense mechanism operates effectively against biotrophs
and hemibiotrophs through hypersensitive response (HR) developed by programmed cell death at
the surroundings of infection sites and thereby limits pathogen growth and disease development.
This mechanism comes forward to control the pathogen when first level defense is breached [9,12].
The basal defense system or innate immunity is a generalized barrier which does not discriminate
between pathogens, unlike the specific defense system which is mediated by a highly specific set of
genes called resistance (R) genes. In the beginning of infection, waxy cuticle, and the cell wall restrict
pathogens entry, however, most pathogens infecting plants like fungi harbor secretory proteins which
degrade these barriers [13–15]. After the entry of pathogens inside the host cell, molecules get released
(called Microbial/Pathogen Associated Molecular Pattern; MAMP or PAMP) which are composed
of peptidoglycan, ergosterol lipopolysaccharide, and bacterial flagelin proteins. The innate immune
system recognizes these proteins with the help of receptors present on the plasma membrane of host
cell called pattern recognition receptors (PRRs) to further restrict the progress of infection providing
MAMP-triggered immunity (MTI). PRRs also detect molecules that are native components of the host
which, however, get released when damage is done by pathogens and are known as damage-associated
molecular patterns (DAMP). The binding of these components also activates PTI and downstream
defense responses [16,17]. Overall, the recognition of MAMP/PAMP or DAMP leads to the activation
of PTI causing different reactive oxygen species (ROS) production, initiation of mitogen-activated
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protein (MAP) kinase activity and various transcription factoractivation restricting the spread of
pathogens completely [7].

Several studies have proven that expression of defense response (DR) genes like Chitinases and
Phenylalanineammonia-lyase (PAL) can directly correlate with host resistance [18,19]. Rice germin-like
proteins (OsGLP) are a class of DR genes, present in a QTL along with R genes and are potentially
associated with resistance of rice, as silencing of these genes increased the susceptibility against two major
fungal pathogens, sheath blight and rice blast [20]. OsPAL4 is associated with broad spectrum disease
resistance in rice [19]. A LysM receptor like kinase (RLK), OsCERK1, regulates cytoplasmic OsRLCK176 and
OsRLCK185, recognizes chitin and peptidoglycans activating immune signaling pathways in rice against
Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo). OsCERK1, OsRLCK176 and OsRLCK185 follow
the same signaling pathways; however, OsRLCK176 and OsRLCK185 function downstream in the signaling
pathway governed by OsCERK1. The phosphorylation of OsRLCK185 is mediated by OsCERK1 to activate
MAPK pathways. The Xoo effector Xoo1488 inhibits the phosphorylation of OsRLCK185 causing pathogen
resistance [21,22]. Three RLKs and OsWAK genes in rice are transcriptionally co-regulated as these RLKs
are known to be required for enhanced resistance against M. oryzae [23]. Transcriptome and micro RNA
analysis of two varieties of rice (resistance versus susceptible) revealed different signaling pathways as
well as variable micro RNA expression causing change in innate immunity against M. oryzae [24]. A lectin
RLK from rice is also found to show association with innate immunity and interacts with depolymerizing
factor of actins [25].

Most of the above-mentioned examples are mediated by pattern recognition receptors (PRRs).
Basically, PRRs belong to receptor like kinase (RLK) and receptor like protein (RLP) classes. The RLK has
a single membrane-embedded domain, a kinase domain present intracellularly and a domain present
extracellularly for sensing ligand molecules, whereas RLP has a membrane-embedded extracellular region
but lacks kinases region [26]. RLPs are structurally and functionally similar to Toll like receptors (TLR) of
animals [27]. The extracellular ligand-sensing domain of PRR is generally rich in leucine repeats [28,29].
In contrast to animals, plants are sessile and are affected by biotic, abiotic and multiple other factors,
therefore, plants may have higher numbers of RLK and RLP than animals. Approximately, 640 RLKs and
90 RLPs are reported in rice [30].

PAMP marker detection which lead to plant immunity is a widespread and effective mechanism
to restrict most of the pathogens. However, in spite of this, multiple pathogens including fungi and
bacteria possess a varietyof proteins that enter the plant and manipulate innate immunity of hosts
whileremaining undetected. In this scenario, a second line of defense comes into action that includes
resistance (R) gene, composed of mainly nucleotide binding site (NBS), Leucine Rich Repeat (LRR)
domains and other domains [5]. The R genes impart resistance against pathogens by recognizing
secreted effector proteins called avirulence (Avr) genes and provide immunity, i.e., effectortriggered
immunity (ETI). This resistance provided by R genes could be the result of either direct interaction
with the Avr gene or indirect interaction that involves other mediator proteins. The indirect interaction
of R-Avr involves finding modifications of other host proteins (effector targets) that interact with
the effectors. By this interaction, a cascade of defense response networks are activated leading to
HR, restricting pathogen growth at the infection site. The immunity provided by the innate immune
response and R genes is altogether mediated by a complex network of signaling pathways leading to the
activation of defense-responsive genes such as pathogenesis-related genes (PR), reactive oxygen species
(ROS), glucanases, chitinases, secondary metabolites, physiology of stomata closure, and deposition
of callose and lignin. The products of these genes largely act at the protein levels against fungal and
bacterial pathogens and are involved in regulation at the mRNA level. In contrast to the defense
mechanism against viral diseases, they generally actat the RNA level [31–34].

3. Resistance Gene Architecture and Resistance Hypothesis

Plant resistance R genes are generally a multi domain gene family having NB-ARC (nucleotide-binding
adaptor shared by APAF-1, R proteins, and CED-4) as a primary domain and Leucine Rich Repeats (LRR)
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as an associated domain. The nucleotide binding site (NBS) domains play a key role in host defense
mechanisms [35–37]. The LRR domain has a role in the recognition of pathogen gene products [9,38].
The NBS-LRR domains are functionally dependent on each other and are under simultaneous pressure [39].
In NBS domains, multiple motif sequences like MHDV, RNBS-A, RNBS-B and GLPL have also been
reported, that are crucial in maintaining the function of the NBS domain [40]. In eukaryotes, these are
collectively called NLRs (Nucleotide binding domain, Leucine-rich Repeat). In rice, approximately 438
putative NLR genes have been reported [41,42].

Various models have been given to describe the interaction of R- and Avr-genes. The very first model
put forward was the gene-for-gene hypothesis. According tothis hypothesis, the R gene product of the
host plant interacts directly with its corresponding Avr gene product of the pathogen [43]. This hypothesis
was followed by multiple cases of R-Avr interactions, i.e., a single NLR gene recognizes its counterpart Avr
effector and imparts resistance to the pathogen [5,44]. This type of direct interaction has been reported
in the case of the rice blast resistance protein Pi54 and its counterpart Avirulence protein, AvrPi54 [45].
Indirect interaction between R- and Avr-gene products is called the Guard–Guardee model, in which
R-genes monitor the target and interaction of effector molecules and modification of this target acts
as an indicator of pathogen attack. Two proteins of Solanum lycopersicum (tomato), Pto and Prf follow
this mechanism to interact with the AvrPto proteins of the bacterial pathogen Pseudomonas syringae [46],
however, recognition of effectors in multiple pathogens by indirect means lead to a modified hypothesis
called the decoy model which states that an effector protein may have generated multiple targets in the
host (decoy proteins) by duplication events [47]. The decoy model has been reported in multiple studies
for effector Pto, Bs3, RCR3, and RIN4 [47]. Recently, in some studies, the multiple decoy domain has
also been found to show a link with NLR proteins [48–50]. The NLR proteins with decoy domain were
firstly reported in poplar tree plants having BED domain as a decoy domain [51]. This type of R gene
function was reported in a study in which sugar transferase, BED-type zinc finger andcarbohydrate
esterase 4 superfamily acted as decoy domains in nine putative R genes and in a resistance gene (Xa1) of
rice, and further speculated that these domains may integrate in R genes to functions as sensors [52].

This type of R gene action has also been validated in rice-M. oryzae pathosystem [48,53,54],
where RGA5 and Pik-1, two proteins of rice contain RATX1/HMA domain whichare similar to gene
Pi21, interact physically with two effectors, Avr-Pia as well as with Avr-Pik of M. oryzae. In another
study, Kroj et al. [55] reported that the NLR and decoy domain association is extensive and common
in plants. Actually, they mined 31 plant genomes for finding NLR with putative decoy domains and
further evaluated the role of NLR-BED decoy domain protein in rice for resistance against M. oryzae
using overexpression and knockout mutant analysis. Although few R proteins arealready known to
contain decoy domains, e.g., the NLR CHS3 has zinc-finger domain [56], the rice resistance protein
Pi-ta contains a thioredoxin domain [57], Xa1 comprises a BED domain [58] and Pi54 contains a unique
zinc finger (NFX) domain [42,59]. Sarris et al. [60] also found that the fused domain with multiple NLR
proteins may act as bait for pathogen effectors as these domains areknown to interact with pathogens.

4. Signal Molecules and Their Networks Involved in Rice Defense Response

The plant cell initiates a network of defense signaling cascades on the perception of pathogen
elicitors through PRRs and disease resistance (R) proteins.This results in a defense response to
confine the pathogen within the infection site. The defense response includes changes in membrane
permeability and ion fluxes (Ca2+, K+, H+), generation of ROS and NO, production of pathogenesis
responsive (PR) proteins (glucanases, chitinases, defensins), cell wall strengthening (callose and lignin
deposition), phytoalexin synthesis and activation of kinase cascades accompanied by hypersensitive
response (HR) [5]. This defense response is mediated by cross-communicating sets of endogenous
signal molecules, including phytohormones, ROS and NO which in turn are regulated by numerous
transcription factors [61]. These Jasmonic Acid (JA), Salicylic Acid (SA), and Ethylene (ET) are the
archetypical players in the regulation of defense signal transduction cascades.
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4.1. Mitogen-Associated Protein (MAP) Kinase and Ca2+ Signaling

Following pathogen perception, plant receptors activate ion channels, GTP binding proteins,
and kinases, which in turn activate secondary messengers to amplify signals to the diverse set
of downstream cascades. The MAP kinase cascade is the prevalent component of plant defense
signaling, mainly in the PTI signaling pathway. It comprises of three interlinking proteins where
MAPKKK stimulates MAPKK which in turn stimulate MAPK. Thus, activated MAPK stimulates TF
and other downstream signaling molecules through trans-phosphorylation reactions [62]. A total of
17 MAPKs have been identified from O. sativa; however, only five MAPKs (OsWJUMK1, OsMAPK4,
OsMAPK5, OsMAPK6, and MAPK12 OsBWMK1, for blast and wound induced MAP kinase) have been
characterized for their function [63]. Ca2+ influx is another essential and conserved event in the plant
defense responses which stimulates intracellular signaling directly or through Ca2+ sensors. The Ca2+

sensors can be either Ca2+-dependent protein kinases (CDPKs), chimeric Ca2+/calmodulin-dependent
protein kinases (CCaMKs) or CDPK-related kinases (CRKs) [64]. Activation of typical CDPKs
stimulates the CCaMKs, enzymes or TFs in the downstream processes of defense response. The CDPKs
and MAPKs act either synergistically or independently in the innate immune responses.

4.2. Role of ROS and NO in Rice Defense Signaling

The generation of reactive oxygen species (superoxide, O2− and H2O2 accompanied by oxidative
burst) is a conserved early response in plant defense signaling cascades, generally accompanied by
programmed cell death/hypersensitive response during plant–pathogen interaction. The NADPH oxidase,
peroxidase and oxidases are the sources of ROS generation in cell organelles, including mitochondria,
chloroplasts and peroxisomes [65]. This oxidative burst drives the cell wall reinforcements or cell wall
strengthening for cellular protection. The pathogen avirulence factors induce the production of nitric
oxide (NO) which potentiate the induction of defense-related gene expression and secondary metabolite
synthesis [66], thereby, playing a key role in disease resistance in plants.

4.3. Phytohormone-Mediated Signaling

Plant immunity follows a binary model for phytohormone signaling, including SA- and
JA/ET-dependent pathways, which interact in a mutually antagonistic way to trade-off pathogens,
which is similarin rice. Moreover, SA often induces resistance against hemibiotrophs and biotrophs
whereas necrotrophs are usually deterred by JA/ET-dependent cascades [67]. However, rice crop reveals
new insights and unique features ofplant immunity as compared to Arabidopsis [68]. The endogenous
level of SA often increases substantially for induction of the pathogenesis-related (PR) proteins and
defense response. However, involvement of the SA in rice defense mobilization was more reliantupon
SA signaling rather than the variation in its endogenous level or its de novo synthesis [68,69]. The SA
pathway in rice shares OsNPR1/OsNH1, OsTGAs, OsWRKY13 [70] and OsWRKY45 (autoregulated) [71] as
downstream signaling components which in turn induce PR protein accumulation (Figure 1) to confer
resistance against rice blast and bacterial blight. JA is often considered to be predominantly effective
against necrotrophs but enhances susceptibility to biotrophs. However, monocots including rice did not
completely follow this dichotomy [72,73]. Accumulating evidence showsthat JA is a powerful signal
to trade-off hemibiotrophs and biotrophs including X. oryzae and M. oryzae in rice [74,75] as well as to
defend-off necrotroph including R. solani [75]. Moreover, ET functions synergistically with JA signaling
and acts as a two-faced regulator in rice defense signaling since its application enhances disease resistance
against pathogens such as rice blast, whereas it leads to disease susceptibility in case ofbacterial blight
depending on pathogen’s infection biology [76].
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Figure 1. Schematic representation of rice defense signaling cascades. Following the pathogen perception
bypattern recognition receptors(PRRs) and R proteins, the rice plant initiates the diverse set of signaling
cascades at different levels (PAMP-triggered immunity (PTI), left side and ETI, right side) involving
numerous signal molecules, viz. ROS, NO, MAPKs, CDPKs, phytohormones to trade-off the pathogen
invasion. In case of PTI, the host cell recognizes the common molecular pattern associated with most of
the pathogens using PRRs (OsLYP6, OsFLS2, OsCEBiP, OsCERK1, Xa21, Xa24) and initiates MAPK kinase
cascades (OsMKK4–OsMAPK6) that actually activate host defense responses via various transcriptional
regulatory factors (OsWRKYs, OsNACs, OsNPR1, OsTGAs, OsbZIPs). However, PTI is suppressed by
pathogen effectors, where they are encountered by the resistance genes (NBS-LRRs) that lead signaling to
activate defense responses through phytohormonal activities. The archetypical defense pathways, SA and
JA/ET pathways, mainly antagonistic to each other, are responsible for resistance against biotrophs and
necrotrophs, respectively. The defense response includes production of PR proteins (glucanases, chitinases,
defensins), production of ROS and NO, change in ion fluxes (Ca2+), cell wall strengthening (callose and
lignin deposition) to confine the pathogen dissemination and disease development. GA, CK and Auxin
act as negative regulators of plant innate immunity. BR prompts or suppresses disease susceptibility
based on pathogen lifestyle or colonization. Furthermore, abscisic acid (ABA), well-known in abiotic
stress tolerance, plays an ambiguous role, i.e., is both a positive and negative regulator of rice disease
resistance based on the type and stage of infection; however, it predominantly actsas a negative regulator.
The abbreviations used in the figure above represent viz. SA-salicylic acid; JA-Jasmonic acid, MeJA-Methyl
Jasmonate; GB-Gibberellins, BR-Brassinosteroid; ET-Ethylene, CK-Cytokinin; ABA-Abscisic Acid,
OsNPR1-Non-expressor of PR1 (NH1, NPR1 homolog1); OsCOI1-Coronatine Insensitive1 (JA receptor);
OsJAZ8-Jasmonate ZIM domain protein, HPL3-Hydroperoxide lyase; ACS2-Enzyme for ET biosynthesis
(ACC Synthase); OsEDR1-Enhanced Disease resistance 1 (TR1-like kinase); SLR1-slender rice1 (DELLA
protein); GID1-encodes GA receptor; BRI1-BR Insensitive 1 (RLK) BR receptor.

There is extensive crosstalk between various phytohormones in rice against biotic stresses.
For example, SLR1 (a rice DELLA protein) is an important regulator of GA signaling and suppresses
GA biosynthesis. In addition, SLR1 mediates resistance against hemibiotrophs and biotrophs,
but not necrotrophs in rice through integration and amplification of SA- as well as JA/ET-dependent
signaling [77]. Moreover, cytokinin (CK) acts synergistically with SA signaling and enhances resistance
against hemibiotrophic and biotrophic pathogens [78]. Moreover, auxin accumulation enhances disease
susceptibility in rice. For instance, over-expression of OsGH3.8, OsGH3.1, and OsGH3.2 prevents auxin
accumulation and is responsible for enhanced broad spectrum resistance against Xoo/M. oryzae/Xoc
pathogens in innate immunity [79]. Auxin signaling stimulates OsWRKY31-depending expression
of defense-related and auxin responsive genes which in turn suppress the auxin sensitivity and
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enhances the resistance against rice blast [80]. Furthermore, brassinosteroids (BR) are reported to
be involved in modulation of innate immunity based on BAK1-dependent and BAK1-independent
defense response [81]. Surprisingly, abscisic acid (ABA), often known to be involved in abiotic stress
tolerance is a negative regulator of biotic stress response. For example, exogenous applications of
ABA and ABA biosynthesis inhibitor suppress resistance and reduce susceptibility against cold stress
and rice blast, respectively [82,83]. In summary, the defense signaling network is a complex and
cross-communicating network of interaction between signal molecules, including ROS, NO, MAPK,
CDPKs and phytohormones, and any impairment in this signaling network enhances the chance of
disease susceptibility in rice plants.

5. Role of Regulatory Elements in Rice Disease Resistance

Plant responses towards biotic stresses are specially facilitated by the action of different
phytohormones in a network of signaling pathways, in which salicylic acid (SA) reaction to stress
are an antagonistic way of the responses generated by jasmonic acid (JA)/ethylene transport (ET)
pathways. In these signaling networks, the SA pathway is mainly associated with the responses
developed against biotrophic pathogens. However, the responses induced by necrotrophic pathogens
are synergistically regulated by JA and ET pathways. This synergistic action is also involved in plant
defenses against various insect pests [84]. Some chemicals are also known to induce SA-derived
responses in the plant (like probenazole, benzothiadiazole (BTH) which increase the level of SA in rice
plants to mimic as biotrophic pathogens) [85]. The SA pathway plays a key role in the systemic acquired
resistance (SAR) defense mechanism by activation of NPR1 gene. Afterward, this gene provides broad
spectrum resistance response against the pathogens. However, it does not provide immunity to the
plant alone; several signaling transductions simultaneously work altogether to produce the resistance
response [86]. NPR1 protein is active only in its monomeric form, otherwise, it is present in a dimeric
inactive form and the monomeric change is induced by the SA pathway, in which SAs breakdown the
disulphide bonds of dimeric protein to generate monomers [87]. This protein directly interacts with
transcription factors (TFs) of the TGA gene family to activate defense response [88]. Nevertheless, it also
negatively regulates SAR in the plants with the help of WRKY-TFs [89]. For instance, OsNPR1/NH1
functions as a repressor or negative regulator to provide resistance in rice against bacterial blight by
manipulating expression levels of other defense- and photosynthesis-related genes [69,90,91]. The key
WRKY-TFs involved in the the SA-derived resistance response is WRKY45, which is induced by
SA activity and treatment of plants with BTH. However, it has been reported that WRKY45 works
independently and is not directly related to the NH1 (homolog of NPR1) in rice [92]. This TF is
reported to activate resistance response in transgenic lines against M. oryzae after treatment with
BTH. Its physical interaction with a panicle blast resistance gene Pb1 has been reported to provide
broad spectrum resistance to M. oryzae [93]. In many studies, it has been concluded that WRKY45
plays a major role in defense response of rice against rice blast and bacterial blight pathogens [92,94].
However, rice WRKY45 has two different alleles (OsWRKY45-1, OsWRKY45-2) in indica and japonica
subspecies and both the alleles were found to show resistance to M. oryzae, but, not to bacterial
diseases [94]. The allele OsWRKY45-1 does not provide resistance to the bacterial pathogens Xoo and
Xoc, whereas, OsWRKY45-2 shows direct involvement in bacterial resistance [94].

Very few TFs act as master regulators in responses to various biotic stresses in plants besides
WRKY45 [94]. WRKY13 is another major regulatory factor to transmit signals from WRKY45 to
downstream functioning WRKY-TFs such as WRKY42. WRKY13 follows the SA-pathway-dependent
disease resistance mechanism and shows association with resistance responses against M. oryzae and
Xoo [95,96]. Furthermore, this regulatory factor has two cis-elements (PRE2 and PRE4), which are
identified as pathogen-responsive regulatory elements [70,97]. Overall, WRKY13 regulation is mediated
by the SA pathway and pathway-related genes, while JA pathway-related signals are suppressed
during this regulation [95]. Several WRKY-TFs other than master regulators have been identified and
characterized; these play a role in rice resistance response for M. oryzae [79,98–102], X. oryzae [103] and
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Rhizoctonia solani [104,105]. Hence, the WRKY-TFs family is one of the major transcription regulatory
elements involved in rice resistance response through SA, JA, ET and ABA signaling networks, because
all these signals are interlinked and have crosstalk between them.

Several other major and minor non-WRKY-TFs have also been identified in rice. NAC is a major
regulatory element that has been recognized to induce and impart resistance response in rice plant
through the activation of PR genes. Many NAC-TFs are reported to provide innate immunity in rice,
mainly against M. oryzae. Several findings have been documented with reference to NAC-TF induced
resistance in rice and these are, ONAC122, ONAC131, OsNAC6, OsNAC19and OsNAC111 [106–109].
Another transcription factor, basic leucine Zipper (bZIP), was found to regulate the signal transduction-
and the defense-related genes in rice, thus restricting M. oryzae infection [110]. In a study based on bZIP,
OsBBI1, a bZIP gene was identified that regulates the resistance spectrum in rice for diverse groups of
M. oryzae by altering the first level of defense mechanism in host plant [111]. In addition, OsBRR1 was
also found to have resistance regulating action in rice against a certain set of M. oryzae isolates [112].
Therefore, various types of transcription factors play an important role in inducing immune response in
rice via positive or negative gene regulation. C2H2-type TF was discovered to regulate rice resistance
in a manner of non-race-specific to M. oryzae, while another AP2/ERF (OsEREBP1) controlled the
rice resistance mechanism in a specific manner against X. oryzae [113,114]. Expression of ethylene
responsive transcription factors OsBIERF1, OsBIERF3 and OsBIERF4 was induced by infection with
M. oryzae, suggesting their role in biotic stresses [115]. Other rice TFs associated with resistance
response towards biotic stresses are OsDR10, OsGAP1, OsRac1, for X. oryzae [116–118], OsAOS2, Rir1b
for M. oryzae [119,120], OsPLDβ1, OsDR8, OsSBP for X. oryzae and M. oryzae [88,121,122]. Interestingly,
some regulatory elements in rice like Rir1b are expressed at a much higher level when rice is infected
with its non-host pathogen Pseudomonas syringae pv. syringae and that accumulated transcript of the
Rir1b gene produced an enhanced resistance response in rice against M.oryzae [120]. Furthermore,
OsRac1 is reported to be essential for innate immunity in rice to M. oryzae, however, it also directly
interacts with Pit, an NBS-LRR resistance gene. This interaction enhances effectiveness of the resistance
in rice to M. oryzae [123]. Another OsGH3.1 regulatory element is reported to help rice by providing
resistance against a fungal infection [124].

6. Breeding Approaches to Control Diseases in Rice

The genus Oryza contains 23 species, of which only twoare cultivated and the rest 21 are wild
types [125]. Oryza sativa (Asian rice) and O. glaberrima (African rice) are the cultivated species of rice and
O. sativa is the only species of rice grown worldwide, whereas O. glaberrima is limited to some parts of
West Africa. The O. sativa also has two subspecies indica and japonica. Japonica subspecies are further
grouped into temperate and tropical rice with their growing suitability, and tropical japonica is known
as javanica, which is considered as a separate subspecies of O. sativa. Now, it is a well-established
fact that genetic diversity iskey to the improvement of any crop plant by transferring the genes for
useful traits from the land races and wild-relatives into elite cultivars. Thus, natural genetic diversity is
a major resource for various plant breeding programs, including resistance breeding for biotic stresses.
Only 6 of 21 wild species, namely O. glumaepatula, O. breviligulata, O. meridionalis, O. longistaminata,
O. rufipogon and O. nivara, and two cultivated Oryza species O. sativa and O. glaberrima have been
utilized in rice crop improvement programs via breeding techniques, because they make the primary
gene pool (AA genome) and share genetic constituents without any hindrance [126–128]. Besides,
two additional gene pools, secondary and tertiary are reported for rice, but they are not suitable for
traditional breeding programs, however, several useful traits taken from them have been exploited with
the help of biotechnological tools and other approaches in conjunction with the breeding programs.
Conventional breeding methods are the same for all kinds of agronomically important traits used in
rice improvement programs. There are two types of resistance reported in the plant against biotic
stresses, i.e., partial and complete resistance [129]. Partial resistance is governed by more than one gene
and also called quantitative resistance or polygenic resistance. It provides non-race-specific resistance
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against the pathogens through quantitative resistance loci [130], while complete resistance is controlled
by a single gene. It possesses a qualitative character and provides race-specific resistance against the
pathogens. Nevertheless, sometimes, a single gene acts both ways and provides complete as well as
partial resistance towards pathogens. Both cases of resistance have been reported in rice to control
various plant pathogens. Major techniques employed in the rice resistance breeding are given below.

6.1. Introduction of Resistant Exotic Lines

Introduction of new germplasm lines and local landraces is an alternative way to augment the
genetic diversity of crop plants in a confined area where local germplasm lacks resistance to biotic
stresses [131]. It is a process to bring foreign genetic material for evaluation and utilize selected
agronomically superior lines as a resistant variety in such areas where a certain pathogenic strain
causes disease to all the local cultivars. It is a quick method to resolve the problem, but bringing
genetic material across the globe is very tough due to country-wise laws that make this method
very limiting in disease resistance breeding programs. However, the introduction of exotic lines was
reported to be an efficient method for development of disease resistant cultivars [132]. For instance,
Thippeswamy et al. [133] reported that the most of exotic rice germplasm taken from the International
Rice Research Institute (IRRI) have shown resistance to local South Indian races of blast fungus,
indicating high potential of this method in resistance breeding.

6.2. Introgression of Resistance Genes

Management of diseases in rice through the use ofresistant cultivars is one of thebest ways to
tackle the problem because it reduces the pesticide application in rice fields, hence, minimizing the cost
of crop production and subsequently lowering agrochemical pollution in the fields. The deployment
of resistant cultivars to various rice diseases has already been published [134–136]. Land races and
wild relatives of rice are usually used as sources for introgression of a new resistance gene into elite
cultivar. Nevertheless, introgression of a resistance gene is challenging with conventional breeding
methods because of the linkage-drag of undesirable traits that is very hard to break in spite of many
generations of back-crosses [137]. Backcross breeding is normally employed for the introgression of
resistance genes by inserting single disease resistant genes into a susceptible high yielding elite cultivar.
Many near isogenic rice lines (NILs) have been generated through backcross breeding and employed
in the development of resistant rice variety. Plant breeders also develop disease-resistant hybrids
and cultivars using a conventional hybridization method. In this method, combining the genes of
agronomically important traits, including disease resistance from different sources are practiced to
improve the crop plants. Several cultivars of crop plants have been developed to enhance the disease
resistance using this method [138].

6.3. Pyramiding of Resistance Genes

Gene pyramiding is one of the most effective plants breeding strategies for achieving multiple
and durable resistance against many plant diseases. In this breeding method, genes pyramided from
different genotypes in single cultivars offer long-term resistance towards pathogens and has turned into
a plant breeders’ tool to generate broad-spectrum disease-resistant cultivars which restrict emergence
of various pathogen races. Many different approaches such as composite breeding [139,140], synthetics
crosses, and multiline crop breeding [141–143] have been utilized for developing gene pyramided
lines of crop plants against various biotic stresses. Multiline breeding is also an important method
of resistance improvement in crop plants [141–143]. It is also known as the “dirty crop” breeding
method as in this approach, an elite cultivar is improved by developing many isogenic or near isogenic
lines (NILs). The NILs are created by transferring a single resistance gene from various sources in
different single plants by several rounds of backcrossing and, thus, each line has a separate resistance
gene. Afterward, the NILs are bulked and the bulkedlines are called multiline as they have many lines
containing separate resistance genes. This tool assists in gene pyramiding to pool several resistance
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genes together into a single genotype offering durable resistance. These lines are morphologically
similarplants that may be genetically less different [141]. Rice breeders have generated many blast
disease-resistant cultivars using this breeding method [143–145].

7. Molecular Breeding Approaches for Disease Resistance

There are various problems associated with the classical breeding methods for development of
resistant cultivars; they require longer time periods, are more effort and labor intensive, they transfer
undesirable genes along with the resistance genes by hybridization, they exhibit frequent resistance
breakdown due to high mutagenic ability of pathogen and develop new pathogenic races. There are
limited natural sources for resistance, and poor understanding ofthe resistance mechanism in the traditional
breeding methods. Hence, there isa necessity to advance innovative and more efficient methods to
overcome these problems. With the improvement of molecular genetics and biotechnological knowledge,
several modern tools have been derived for this rationale. Considering these facts, some modern techniques
of plant breeding related to disease resistance in rice against various fungi, bacteria and viruses have
been employed.

7.1. Marker-Assisted Selection and Mapping of Resistance Genes

Traditional plant breeding for resistance is mostly dependent upon the phenotypic symptoms which
are strongly related to environmental conditions in the field, consequently, newly emergingvirulent race
of pathogens cannot be easily identified, and the introduction of improved resistant varieties cannot be
reliable [146]. Unlike conventional breeding, marker-assisted selection (MAS) is very effective in disease
resistance breeding because major resistance in the plant is operated by single or a few genes [130]. It is
very useful in such host–pathogen interaction where both resistance (R) gene and avirulence (Avr) gene
show interaction in the manner of gene-for-gene fashion [147]. Molecular markers increase the efficiency
of conventional breeding by choosing the markers that are tightly linked to the desired traits. Similarly,
molecular markers are also beneficial for identifying loci that operate quantitative traits [148]. Molecular
markers, SSR, SNP, EST, RAPD, AFLP and RFLP are normally used to map several major resistance genes
and QTLs in rice (Tables 1 and 2).

Table 1. Details of the resistance genes identified from rice.

Chromosome Genes References

1 (Xa29(t)), (Pit, Pitp(t), Pi37, Pi35(t), Pi24(t), Pi27, Pish) [136,149–155]

2 (xa24(t)), (Pi-b, Pi25(t)) (Pid1(t), Pi-Da(t)), (Pi-y1(t),
Piy2(t)), (Pig(t), Pi-tq5, Pi14(t), Pi16(t)) [149,153,156–163]

3 (Xa11), (xa42), (Pi66(t)) [164–167]

4 (Xa1), (Xa2), (Xa12), (Xa14), (xa31(t)), (Pi39(t), pi21,
Pikur1, Pi(t)) [58,168–178]

5 (xa5), (Pi26(t), Pi23, Pi10) [153,179–182]

6
(Xa7), (Xa27), (xa33(t)), (Pi27(t), Pi-tq1, Pi8, Pi13(t),
Pi22(t), Pigm(t)), (Piz-5, Piz-t), (Pi40(t), Pi59(t), Pi9,
Pi2-1, Pid2), (Pi25(t), Pi26),(Piz), (Pi13), (Pi2-2, Pi50(t))

[153,161–163,181,183–201]

7 (xa8), (Pi17(t)) [202,203]

8 (xa13), (Pi29(t), Pi33, Pizh, Pi36, pi55(t), PiGD-1(t)) [153,204–213]

9 (Pi15, Pi2(t), Pi3(t), Pi5(t), Pi56(t)) [214–218]

10 (Pi28(t), PiGD-2(t)) [153,213]
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Table 1. Cont.

Chromosome Genes References

11

(Xa3/Xa26), (Xa4), (Xa6, xa9), (Xa10), (Xa21), (Xa22),
(Xa23, Xa30(t), Xa32(t), Xa35(t), Xa39, Xa40(t)),
(Pi7(t)), (Pik, Pik-p), (Pi30(t), Pi60(t), Pilm2,
Pikg),(Pik-h, Pik-s), (Pi-hk1), (Pi54), (Pi-1(t), (Pb1, Pise1,
Pikur2, Pi38, Pif, Pi34, Pia, PiCO39(t), Pi44(t), Pi49,
Pik-m, Pi18(t), Pi47), (Pi1)

[129,149,153,159,161,162,183,197,219–254]

12

(xa25/Xa25(t)), (Pita-2), (Pi31(t), Pi32(t)), Pi61(t),
Pi-tq6, (Ipi(t), IPi3(t)), (Pi21(t), Pi58(t), Pi51(t),
Pi-GD-3(t), Pi48,Pi24(t), Pi-42(t), Pi62(t)), (Pi6(t),
Pi4(t)), (Pi12(t), Pi19(t), Pita, Pi39(t), Pi20(t))

[149,153,159,161,178,181,192,194,213,252,255–264]

Xa indicates resistance gene to bacterial blight disease (Xoo) and Pi represents resistance gene against blast disease
(M. oryzae).

Table 2. Chromosome wise list of identified QTLs against various pathogen induced diseases in rice.

Chromosome QTLs References

1

(1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),(AQEN002, AQEN011,
AQEN076, AQEN078), AQGJ001,( ch1q1, ch1q2, ch1q3a, ch1q3b,
h1q4, ch1q5),(GWr, H30r, HDr, HMr, T30r, VC1,VC2), Pi-24(t),
qABB-1, qBBR1,(qbk1.1, qbk1.2, qbk1.3), qBK1_628091, qBLASTa-1,
qBlsr1,(QBr1a, QBr1b), qBSfR1,(qDLA1, qLN1-1, qLN1-2, qLS1),
qDLA-1-1, qFSR1, qrbr-1.2,(qRBR-1-1(t), rbr1a, qRBR-1-2(t), rbr1b,
qRBR-1-4(t), rbr1d), qSB-1,(QSbr1a, QSbr1b), qShB1, qStv1,

[129,153,196,199,265–283]

2

(2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7),(AQEN032, AQEN069),(BSq2.1v&i,
BSq2.2v&i),(ch2q1, ch2q2, ch2q3, ch2q4, ch2q5, ch2q6, ch2q7),
Pi-25(t), qBLASTads, qBlsr2, qBR2.1,(QBr2a, QBr2b, QBr2c),
qBS2,(qDLA2, qLN2), qFSR-2-4„(qRBR-2(t), rbr2),(qrbr-2.2,
qrbr-2.3), qSB-2,(QSbr2a, QSbr2b), qShB2,(qShB2-1,
qShB2-2),(qStv-12,qStv-9), Rh-2,(S, VC2)

[129,153,196,199,266,267,272–274,278,280–
282,284–292]

3

(3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, qFSR-3-5, qFSR-3-9),
AQEN012,(ch3q10, ch3q2, ch3q3, ch3q4, ch3q5, ch3q6, ch3q7, ch3q8,
ch3q9), qBBR-3, qBBR3-1, qBFR3, qbk3.1, qBLASTads-3,(qBlsr3a,
qBlsr3b, qBlsr3c, qBlsr3d), QBr3,(qDLA3-1, DLA3-2, qLN3, qLS3),
qDLA-3-3 ,(qrbr-3.1, qrbr-3.2), qRBSDV-3, qSB-3,(qSB-3-1,
qSB-3-2), QSbr3, Qsbr3a, qShB3,(qShB3-1, qShB3-2, qShB3-3),
qSTV-3, Qxa-3, Rh-3

[129,196,199,266,269,270,272–274,276,278,
280–282,288,290,292–298]

4

(4.1, 4.2, 4.3, 4.4, 4.5, 4.6), qFSR-4-1,( AQEN022, AQEN063,
AQEN065), AQGJ003, BSq4.1v&i,(ch4q1, ch4q2),(CQAC1, pi21,
CQAC2), GWr, qBB-4, qBBR-4,(qBFR4-1(t), qBFR4-2(t)),
qBK4_31750955,(qBlsr4a, qBlsr4b), QBr4, qBSfR4, qDLA’96-4,
qFSR4, qLS4,(qrbr-4.1, qrbr-4.2),(qSB-4-1, qSB-4-2),(QSbr4a,
QSbr4b, QSbr4c), qStv-4

[129,196,199,265–268,271,273–278,280,281,
284,286,291,293,299,300]

5

(5.1, 5.2, 5.3, 5.4, 5.5), AQEN004, ch5q1, Pi-26(t), qBB-5,
qBBR-5,(qBlsr5a, qBlsr5b), QBr5,(qDLA’95-5, qNBL-5),(qrbr-1.1,
qrbr-11.1, qrbr-11.3, qrbr-2.1), qSB-5,(QSbr5a, QSbr5b), qShB5,
qSTV5, xa5

[129,153,199,266,268,273,274,276,278,281,
282,290,293,298,301,302]

6

(6.1, 6.2, 6.3, 6.4, 6.5), qFSR-6-7,(AQEN005, AQEN014),(AQGJ005,
AQGJ007, AQGJ024),(BSq6.1v, BSq6.2i),(ch6q1, ch6q2, ch6q3a,
ch6q3b, ch6q4, ch6q5, ch6q6a, ch6q6b, ch6q7), Pi-27(t),
qBBR-6,(qBLASTads-6, Pi-tq1), qBR6.1,(qDLA-6,
qLSNN-6),(qrbr-6.1, qrbr-6.2),(qSB-6-1, qSB-6-2), qShB6, xa7

[129,153,199,265,266,272,276,278,280,282,
284,286,293,298,303]

7
(7.1, 7.2, 7.3, 7.4, 7.5, 7.6), AQEN007,(AQGJ009, AQGJ010),(ch7q1,
ch7q2, ch7q3, ch7q4, ch7q5), qABB-7, qBBR7, qBLASTa-7, QBr7,
qDLA7,(qRBR-7-2(t), rbr7b), qSB-7, qStv7, Rh-7

[129,196,199,265,266,268,269,272,274,279,
288,292,302]

8

(8.1, 8.2, 8.3, 8.4, 8.5), qFSR-8-3, AQEN008,(BSq8.1i,
BSq8.2v),(ch8q1, ch8q2, ch8q3, ch8q4, ch8q5, ch8q6, ch8q7),
Pi-29(t),qBB-8-2, QBr8,(qDLA8, qLN8, qLS8),(qRBR-8(t),
rbr8),(qrbr-8.1, qrbr-8.2, qrbr-8.3),(qSB-8-1, qSB-8-2), Qsbr8a, VC2

[129,153,196,199,266–268,274,278–280,284,
286,296]
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Table 2. Cont.

Chromosome QTLs References

9

(9.1, 9.2, 9.3, 9.4), AQGJ027, BSq9.1v,(ch9q1, ch9q2, ch9q3, ch9q4,
ch9q5, ch9q6), CQAC3, qABB-9, qBLASTads, QBr9, qBR9.1,
qBS9,(qDLA’95-9, qLSNN’96-9, qNBL-9),(qrbr-9.1,
qrbr-9.2),(qRBR-9-1(t), rbr9a, qRBR-9-2(t), rbr9b), qSB-9,(qSB-9-1,
qSB-9-2),(QSbr9a,QSbr9b), qShB9-1, qStv-9, s

[199,213,265–268,272,274,276,278–282,284,
285,289,291,299,301]

10
(10.1, 10.2, 10.3, 10.4),(qFSR-10-2, qFSR-10-5),(ch10q1a, ch10q1b,
ch10q2, ch10q3, ch10q4, ch10q5a, ch10q5b, ch10q6), Pi-28(t),
qABB-10, QBr10, qFSR10, qLS10, qRBSDV-10, qSB-10

[153,196,199,266,268,277,280,281,286,295]

11

(11.1, 11.2, 11.3, 11.4, 11.5), qFSR-11-2,(AQEN009, AQEN028,
AQEN066), AQGJ013,(BSq11.1v&i, BSq11.2v),(ch11q1, ch11q2,
ch11q3, ch11q4, ch11q5), Pi-30(t), Pi-lm2, qABB11, qBFR11, qBlsr11,
QBr11a, QBr11b, qBS11, qBSfR11,(qDLA11, qLN11, qLS11-1,
qLS11-2), qRBSDV-11, qSB-11, qStv11,(qSTV-11a, qSTV-11b,
qSTV-11c)

[129,153,196,199,265,266,268,274,277,281,
284,286,294,297,304,305]

12

(12.1, 12.2, 12.3, 12.4, 12.5), qFSR-12-5,(AQEN025, AQEN043,
AQEN072),(AQGJ014, AQGJ015, AQGJ016), BSq12.1v,(ch12q1„
ch12q2, ch12q3, ch12q4, ch12q5, ch12q6, ch12q7, ch12q8, ch12q9,
ch12q10, ch12q11), CQAC4,(Pi-31(t), Pi-32(t)),
qBB-12,(qBLASTa12-2, qBLASTads-12-1, Pi-tq6), (qDLA-12-2,
qDLA-12-5), qFSR12,(qrbr-12.1, qrbr-12.2), qSB-12,(QSbr12a,
QSbr12b, QSbr12c), qStv-12,(s, VC2)

[129,153,199,265–268,272,276–278,280,281,
284,286,291,299]

In this regard, resistance to blast disease has been recorded in rice as qualitative and quantitative [4].
Over 100 genes giving complete/partial blast resistance in rice have been documented [1,306]. Moreover,
most of the blast R genes were characterized by a map-based cloning approach. For instance, Pi54 is a major
blast R gene and provides broad-spectrum resistance against many races of M. oryzae; it was cloned by
map-based cloning approach from chromosome 11 of rice [238]. Similarly, Kumar et al. [257] also identified
a broad-spectrum blast resistance gene Pi42(t) that was mapped on the chromosome 12 using the molecular
marker techniques, but it is yet to be cloned and characterized. Both chromosomes 11 and 12 are the
major blast resistance-gene-containing chromosomes. Besides, chromosomes 2 and 6 are also reported to
have a large number of blast resistance genes (Figure 2). Another molecular marker-based approach allele
mining was reported to clone and characterize many orthologues and alleles of blast R genes from wild
rice [307–311]. Sheath blight considered the second most devastating fungal disease of rice which is caused
by the necrotrophic fungus Rhizoctonia solani worldwide. Developing resistant cultivars against R. solani is
very difficult due to the absence of a single major resistance gene, even though some resistance QTLs have
been identified and used in rice improvement programs [312]. Brown spot caused by the necrotrophic
fungus Cochliobolus miyabeanus (formerly known as Helminthosporium oryzae) is third in a row to damage
rice crops by fungi. This fungus causes yield losses up to 52% [313]. For this fungus, only resistance QTLs
have been detected [314]. Bakane disease does not have aneconomic importance as other major fungal
diseases of rice, such as blast and sheath blight. It is caused by the Gibberella fuzikori species complex
(GFSC). This complex comprises many species of Fusarium fuzikori, F. proliferatum, F. concenticum and
F. verticillioides. The fungus causes infection through roots or crowns resulting in partially filled or chaffy
grains. Only eight QTLs have been identified for the disease [270,315,316]. In addition, false smut caused
by Ustilaginoidea virens is another minor fungal disease of rice. So far, except for tenQTLs, no major
resistance-conferring gene has been identified from rice against this disease [286,317,318].



Int. J. Mol. Sci. 2018, 19, 1141 13 of 39

Figure 2. Chromosome-wise distribution of major resistance genes identified from rice. Numbers 1–12
represent the chromosome of rice. Percentage of resistance gene sharing on each chromosome is shown
in green solid line, while blue and red bars represent number of resistance genes on each chromosome
and chromosome size (Mb), respectively.

Several bacterial diseases also damage rice crops and major bacterial disease that cause significant
yield losses in rice arediscussed here. A bacterial blight disease caused by the biotrophic bacterium
Xanthomonas oryzae pv. oryzae (Xoo) is the utmost significant bacterial disease of rice, especially in
tropical and subtropical areas. So far, more than 40 major resistance genes and several QTLs have
been identified in rice using the marker-assisted selection method [319].Another bacterial disease,
bacterial streak is caused by X. oryzae pv. oryzicola (Xoc) and it is a serious problem in Asian rice
cultivation [320]. In this case, one Xo1 locus in rice has been found to confer complete resistance
to Xoc [321]. Numerous QTLs showing resistance to Xoc have been registered [319]. Two bacterial
diseases, bacterial grain rot and bacterial seedling rot, produced by a necrotrophic bacterium called
Burkholderia glumae, are important diseases of rice at the global level [322]. No single major resistance
gene against B. glumae has been identified yet, but resistance QTLs have been reported through
marker-assisted selection [314].

Many viral diseases havealso been reported in rice and some of them are mentioned here, like rice
stripe disease [323], rice yellow mottle disease [324,325] and rice tungro disease [326]. Rice stripe
disease iscausedby the infection of Rice stripe virus which is an RNA virus transmitted by small vector
brown plant hoppers. Five major resistance QTLs have been reported with the help of molecular marker
techniques, and one of them wasmolecularly characterized at the nucleotide sequence level [327].
Rice tungro disease (RTD) consists of a Rice tungro spherical virus (RTSV) and a Rice tungro bacilliform
virus (RTBV) and the disease is one of the most destructive diseases that causes yield constraint
in rice-growing areas of tropical Asia. Both RTSV and RTBV are transferred in the host plant by
an insect vector green leaf hopper (GLH) [328]. RTSV is freely transmitted by GLH, while RTBV can
be transferred by GLH only in the presenceof helper virus RTSV [329]. Marker-assisted selection for
resistance against RTSV has been effectively applied to develop RTSV-resistant rice lines [330]. Most of
the major resistance genes and QTLs are plotted by chromosome-wise and remaining genes and QTLs
could not be positioned on the respective chromosomes due to lack of their physical location (base
pair) information (Figures 3 and 4). Chromosomal distribution analysis showed that chromosomes 1,
6 and 11 had greater numbers of major genes and QTLs than other chromosomes, whereas considering
only QTLs 2/3 rice chromosomes shared more or less equal numbers of loci (Figure 3). Chromosomes
4, 5, 7 and 10 contained less QTLs for disease resistance in rice (Figure 4).
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Figure 3. Distribution of major resistance genes according to theirphysical location on the respective
chromosomes. Different disease resistance gene categories plotted on the chromosomes are indicated
by five color codes. The plot was generated on the basis of the nearest linked molecular makers.
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Figure 4. QTLs distribution on rice chromosomes. Separate color codes are given for each group of QTLs.
The physical distribution of QTLs is derived by the nearest linked molecular markers on each chromosome.
BK, BS, FS, RSV and RYMV represent Bacterial Streak, Brown Spot, False Smut, Ricestripe virus and
Rice yellow mottle virus resistance QTLs, respectively.

7.2. Resistance Gene Pyramiding by MAS

Pyramiding is combining of genes into a single cultivar or line using back cross breeding. On the
other hand, it is a strategy to combine two or more than two genes present in multiple parents
into a single genotype with all of the target genes. Gene pyramiding is widely used for combining
multiple pest or disease resistance genes for specific races of an insect or pathogen to generate durable
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resistance. By applying marker-assisted selection (MAS) and molecular marker back cross breeding
(MMBC), it reduces the breeding duration in gene pyramiding and helps in crop improvement
program. Different R genes often provides resistance to a number of different biotypes, races or
isolates, thus making it durable. Several studies related to gene pyramiding have been reported in
rice for disease resistance [331–336]. Recently, a group of four QTLs was pyramided in a rice line,
giving resistance against a population of diverse M. oryzae isolates in different field conditions [337].
Similarly, many bacterial blight resistance genes have been pyramided and have developed improved
rice cultivars using marker-assisted selection [338].

7.3. Genome-Wide Association Study of Resistance Genes

Association mapping is an alternative QTL mapping approach, conducting association analysis
of genotypes versus phenotypes of a large population; it is based on linkage disequilibrium (LD)
or the non-independence of alleles. In this method, SSR and SNP markers have been widely used
to effectively identify marker and disease resistance associations in rice [339–341].Genome-wide
association studies (GWASs) reflect association relationships of genome-wide distributed marker traits;
such studies have become gradually popular in rice genetics with the advancement of high-throughput
next generation sequencing (NGS) approaches and SNP chip techniques [342,343].GWAS is a very
potent strategy which can be used for the understanding of the genetic basis of complex traits that has
been exclusively useful for rice [332]. Nowadays, GWAS has been used in combination with NGS like
genotyping by sequencing (GBS) to identify the SNP markers associated with resistance phenotypes in
rice. Recently, an association study was performed based on 184 000 SNPs generated by GBS which
helped in associating25 genomic regions with blast resistance in the rice genome [344].

7.4. Mutation Breeding for Rice Resistance

Mutation breeding is also known as the reverse genetics approach, in which mutants are
generatedusing physical or chemical mutagens and evaluated for their resistance to various diseases.
Most of the mutants generated by this method are deleterious in nature, but very few show promising
effects for agronomically important traits including disease resistance. This approach is very useful in
those crops which do not have much genetic diversity, but it has been routinely used in rice for disease
resistance [345–347]. Various mutagenic agents like γ, UV, X-rays irradiation (Physical mutagens),
ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS) and colchicine, (Chemical mutagens)
are generally used for the induction of mutations. However, biological mutagens like T-DNA insertion
and transposable elements have been widely exploited by plant breeders to generate mutant lines [348].
The main drawbacks of mutation breeding arethe restricted influence in producing dominant alleles
with less efficiency and also its random nature.

8. Transgenic Approaches for Disease Resistance in Rice

With the recent advances in sequencing technologies, various genes involved in pathogenesis
pathways and plant innate immunity have been dissected and used for developing durable disease-resistant
crops through transgenic approaches like over-expression/gene complementation tests, Small RNA
(microRNA), RNA interference (RNAi), CRISPR/Cas systems [349]. However, genetically modified
(GM) plants derived usingthese approaches have been adapted in the main stream of agriculture at
a very small scale. Due to various potential biosafety issues, introduction of new allergens into food,
horizontal gene transfer from GM plants to non GM plants or microbes, genetic diversity loss, affecting
non target organisms, and socioeconomic and ethical concerns [350–353], involved with the transgenic
approaches. Although there is no doubt that the GM technology has played an important role to fulfil our
increased demands in the field of medicine and some non-food crop plants, plant molecular biology and
biotechnology techniques have taken a rapid progress in the identification and cloning of genes involved
in plant defense responses. In the following sections, various transgenic approaches being used for the
development of disease resistance in rice are explained.
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8.1. Over-Expression/Functional Complementation Test in Rice Resistance

The term “overexpression” means increased expression of targeted genes beyond the normal
expression level. The functional complementation assay (FCA) is an in vivo assay commonly used
to validate gene function and its essentiality. For biotic stresses, the number of genes has already
been characterized using the complementation test. For developing resistance, several blast resistance
(R) genes from rice have already been identified and characterized [1,311,354].Now, many R genes
have been fully characterized in rice and their effectiveness has beentested using various approaches
(Table 3). The resistance spectrum of R gene orthologues by mining superior alleles from wild species
with a broader defense spectrum has also been reported [307,311].

Table 3. List of selected rice resistance and defense response genes characterized by genetic engineering.

Gene Type Method Pathogen Reference

Pib NBS-LRR OE M. oryzae [355]
Pi-ta NBS-LRR OE M. oryzae [262]
Pi9 NBS-LRR OE M. oryzae [193]
Pi-2 NBS-LRR OE M. oryzae [190]
Pi5 CC-NB-LRR OE M. oryzae [356]
Pi21 Proline-rich protein RNAi M. oryzae [357]
Pi36 CC-NB-LRR OE M. oryzae [263]
Pi37 NBS-LRR OE M. oryzae [151]
Pi54 NBS-LRR OE M. oryzae [358]
pi-d2 B-lectin domain OE M. oryzae [195]
Pik CC-NBS-LRR OE & RNAi M. oryzae [359]

Pikm NBS-LRR OE M. oryzae [360]
Pik-p CC-NBS-LRR OE & RNAi M. oryzae [361]

Pi54rh NBS-LRR OE M. oryzae [307]
Pi54of CC-LRR OE M. oryzae [311]

Pi54 and Pi54rh NBS-LRR OE M. oryzae [362]
mpi and pci Proteinase inhibitors OE M. oryzae& Insect pests [363]

chi11 and ap24 Rice chitinase & Tobacco osmotin OE R. solani [364]
OsBRR1 LRR-RLK OE M. oryzae [112]
OsWAK1 Protein kinase OE M. oryzae [365]

Dm-AMP1 Antifungal plant defensin OE M. oryzae&R. solani [366]
OsACS2 Ethylene biosynthetic gene OE M. oryzae&R. solani [367]

At. NPR1 Defense gene OE R. solani [368]
(Loc_Os11g47510) Chitinase OE R. solani [369]

PR-5 Thaumatin-like protein OE R. solani [370]
RCH10 and AGLU1 Chitinase & Alfalfa β-1,3-glucanase gene OE M. oryzae&R. solani [371]

OsCPK4 Protein kinase OE M. oryzae&R. solani [372]
OsCPK10 Protein kinase OE M. oryzae&R. solani [373]

miR160a and miR398b miRNA OE M. oryzae [374]
miR169a miRNA OE M. oryzae [375]

osa-miR7695 miRNA OE M. oryzae [376]

OsPGIP1 Polygalacturonase
inhibiting proteins OE R. solani [377]

BSR1 Receptor like kinase OE
Xoo, M. oryzae,

Burkholderiaglumae,
Cochliobolusmiyabeans, RSV

[378]

OsOSM1 Osmotin protein (PR) OE R. solani [379]

OsPGIP1 Polygalacturonase
inhibiting proteins OE R. solani [380]

OsPR1b PR OE Xoo [381]
OsSAMS1 S-adenosyl-L-methionine synthetase RNAi RDV [382]
OsDCL1 Dicer-like RNAi M. oryzae [383]
miR528 miRNA OE RDV [384]
miR168 miRNA RNAi RDV, RSV [385]

ALS Acetolactate Synthase CRISPR/Cas9 Herbicide [386]
OsSWEET13 Sucrose transport TALENs Xoo [387]

MoHrip1 and MoHrip2 Effector protein OE M. oryzae [388]
MoSM1 Secreted protein OE M. oryzae&Xoo [389]

RPMK1-1 and RPMK1-2 Kinases RNAi R. solani [390]
chi11 Chitinase OE R. solani [391]

OsSWEET11, OsSWEET14 Sucrose transporter CRISPR/Cas9 Xoo [392]
OsSWEET14 Sucrose transporter TALEN Xoo [393]
OsERF922 ERF CRISPR/Cas9 M. oryzae [394]

Over-expression: OE, Rice sheath blight pathogen: R. solani, Rice stripe virus: RSV, Rice dwarf virus: RDV, Ethylene
Responsive Factor: ERF.

Due to continuous selection pressure, pathogens overcome R-mediated host resistance in a few
years [395]. To overcome such a scenario, gene stacking methods are used, i.e., combing two or more
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genes for developing crops with combined protection against several pathogens. Recently, two R gene
alleles, i.e., Pi54 and Pi54rh were stacked together in a susceptible rice variety to confer enhanced
combined host resistance against M. oryzae [362,396].Similarly, transgenic rice expressing two fusion
genes mpi and pci (proteinase inhibitors) has displayed high resistance towards insect attack and rice
blast infection [363]. Richa et al. [369] also developed transgenic rice plants harboring novel chitinase
gene (LOC_Os11g47510) through genetic transformation resulting in much higher resistance against
sheath blight (ShB) disease. Over-expressing thaumatin-like protein (TLP) in a rice line showed an
enhanced level of ShB resistance compared to the control plants [370].Using a gene stacking method,
chitinase gene (RCH10) and glucanase gene (AGLU1) together provide resistance to both ShB and rice
blast pathogen in a susceptible rice variety [371]. SA, JA and ET plant hormones play key roles in
defense responses and signaling [397,398]; they are also known to activate many defense-associated
kinases, different transcription factors and various PR genes, as these genes have been reported to
increase the host resistance in many transgenic rice lines [399]. Transgenic rice expressing OsACS2 gene
encoded 1-aminocyclopropane-1-carboxylic acid synthase, which is a key enzyme of ET biosynthesis,
under the regulation of a pathogen-inducible promoter resulted in higher ET production and enhanced
resistance against rice blast and sheath blight diseases [367]. In a similar study, MoSM1-overexpressing
transgenic rice showed an improved resistance against M. oryzae, and Xoo by modulating SA/JA
signaling pathways [389]. Interestingly, some reports mentioned increasing host resistance because
of protein elicitors produced by plant pathogens. Two elicitors, namely, MoHrip1 and MoHrip2
cloned from M. oryzae fungus, when overexpressed in rice result in lower levels of disease severity
compared to the controls [388]. Small RNAs including siRNAs (short-interfering RNAs) and miRNAs
(microRNAs) are the major groups associated with post-transcriptional gene regulation affecting
eukaryotic immunity. These are the short non-coding RNAs having a consistentmode of biogenesis
and mechanism of action. With the advancement in sequencing technology, large sets of miRNAs have
been identified and characterized in various crops for both biotic and abiotic stresses. Using deep
sequencing, Li et al. [374] explored miRNA for rice immunity against M. oryzae. Transgenic rice plants
with over-expressing miR160a and miR398b resulted in up-regulated defense-related genes followed
by enhanced resistance against M. oryzae. Similarly, Campo et al. [376] identified and overexpressed
novel osa-miR7695 miRNA in rice. Transgenic plants harboring osa-miR7695 have ahigh resistance
spectrum against the rice blast pathogen; miR169a overexpressing rice lines were found to be highly
affected by M. oryzae infection by altering defense related responses [375]. Thus, the miRNA acts in
both ways as a positive- as well as negative-regulator towards plant immunity.

8.2. Role of RNA Interference (RNAi) in Disease Resistance

The RNA interference (RNAi) approach involves sequence-specific gene regulation mediated by
small RNAs (sRNAs). In eukaryotes, RNAi emerged as one of the most precise, efficient mechanism
resulting in gene regulation both at the transcriptional and post transcriptional level. RNAi plays
critical roles in developmental regulation, stress response, and host defense against transposons and
viruses. It involves a two-step mechanism, wherein its initial step is to degrade dsRNA and thereby
generates 21–25 nucleotides long small interfering RNAs (siRNAs) through the action of RNase III-like
molecules. In the final step, siRNAs associate with an RNase and make RNA-induced silencing complex
(RISC), which precisely acts on the cognate partner of double-stranded mRNA and ultimately degrade
the targeted mRNAs via a homology dependent manner [400–402].Various target traits have already
been modified through RNAi approaches towards crop improvement (Table 3). RNA-dependent RNA
polymerases (RDR) play a crucial role in gene silencing that provide resistance against the pathogens.
Wagh et al. [403] reported the mutantrice line of RDRP6 gene increased susceptibility response against
Cucumber mosaic virus (CMV), Rice necrosis mosaic virus (RNMV), X. oryzae pv. oryzae and M. oryzae.
Host-induced gene silencing (HIGS) is a mechanism that involves the silencing of pathogen genes
using the RNAi tool [404]. The target genes of pathogens are expressed and dsRNA is generated
using the plant machinery. This dsRNA is used as a precursor for generating smaller RNA fragments
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complementary to the genes expressed distantly in the pathogen [405]. There are transgenic rice lines
carrying a hybrid RNAi construct targeting two pathogen genes where pathogenicity MAP kinases
RPMK1-1 and RPMK1-2 shows increased sheath blight resistance compared to the control lines [390].
VIGS (Virus Induced Gene Silencing) is an important tool for triggering RNAi silencing with the use of
viral vectors like BMV (Brome mosaic virus). VIGS acts as an efficient and rapid tool for assigning gene
function in plants. Using BMV-HIGS, Zhu et al. [406] reported that MoABC1, MoMAC1 and MoPMK1
M. oryzae genes were responsible for disease development.

8.3. CRISPR/Cas9 Immune System

With sequence-specific nucleases (SSNs), genome editing where gene insertion, deletion or replacement
in the genome become a reality with enormous possibilities. SSNs are also considered as “molecular
scissors” which belong to four categories, i.e., MegaN (mega nuclease), ZFNs (Zinc finger nucleases),
TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced
short palindromic repeat/CRISPRs-associated protein 9) [407,408]. CRISPR/Cas9 system is considered
as one of the most important and simple genome editing tool. Due to high simplicity and efficiency,
this system becomes a powerful tool for understanding various biosynthetic pathways and resistance
response mechanisms in crop plants [392]. This system is not an exception of off-target problems associated
with other genome editing tools ZFNs and TALENs. In this system, the off-target percentage is usually
insignificant and it can be further diminished by considering a few points like designing specific guide
RNA (sgRNA) sequences, complete whole genome sequence information of the experimental crop plant
and selection of highly precise computational tools for target identification [409–411]. Rice as a diploid and
a monocot plant is considered one of the best choices for the CRISPR/Cas9 system. The OsSWEET14 gene
in rice results in the pathogenesis of X.oryzae. Modifying effector-binding sites present in the OsSWEET14
gene promoter results in reduction ofpathogen virulence [393]. For addressing biotic stress resistance in rice
using CRISPR/Cas9, Wang et al. [394] developed targeted knockout of the OsERF922 gene and achieved
improved rice blast resistance without affecting agronomic traits.

9. Conclusions and Future Perspectives

Rice wasthe firstcrop plant to be decoded at the genome level, and its sequence information has
been publicly available since 2005. Thereafter, this crop has attracted lots of attention from plant
molecular biologists in relation to study the disease resistance and other agronomically important
traits.Although substantial advances have been attained regardinginsights into the genetic nature of
disease resistance genes and signal transduction pathways along with influencing regulatory factors
heading to defense response activation in rice, the complete story is still far from well-defined. Rice is
a well-known model crop plant for various research activities, however, it has lesser information than
other model plants like Arabidopsis and tobacco with reference to disease resistance. Host resistance
response can be very effectively improved by using modern molecular biology and genetic engineering
techniques. However, such resistance responsesaregenerally broken down by the emergence of
more virulent races of the pathogen. By characterizing additional R genes from rice [238,262] wild
species and local rice landraces, plant genotypes with varying degree of disease resistance can be
obtained [412]. Understanding the signaling cascades involved in disease resistance and the host
defense pathway-associated genes can be achieved by the application of the latest molecular biology
approaches. These signaling genes will be very helpful for developing rice varieties with sustainable
and broad spectrum resistance against various pathogens. Thus, long-term durable and broad spectrum
resistance rice is our current need in view of global climatic changes which may help in the emergence
of new and virulent races of the pathogens. This goal of getting broad spectrum resistance can be
achieved through several emerging approaches like hostplant immunity, non-host resistance, multigene
varieties, interspecific gene transfer and genome editing, etc.

Plants possess PTI and ETI innate immune systems to withstand different biotic stresses. While,
pathogens are equipped with advanced effector molecules that defeat host plant immunity, many
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importantconclusions have been drawn regardingthe rice–pathogen interactions using different
techniques such as plant breeding, mutation breeding, marker-assisted selection, gene pyramiding,
association studies, genetic engineering with complementation tests, RNAi, miRNA, CRISPR/Cas9, etc.
Several important outcomes related to disease resistance have been discovered, such as hypersensitive
response (HR) by major R gene, ROS generation, PR gene activation, hormone biosynthesis and their
cross talk with other signaling pathways. However, the entire connections and factors engaged in the
plant immune responses employing disease resistance genes are still not clear in rice. The information
provided in this review will help in the understanding ofdifferent rice hostpathosystems that may lead
to the development of sustainable broad spectrum disease-resistant cultivars.
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