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Abstract: Plant pattern recognition receptors (PRRs) are essential for immune responses and
establishing symbiosis. Plants detect invaders via the recognition of pathogen-associated molecular
patterns (PAMPs) by PRRs. This phenomenon is termed PAMP-triggered immunity (PTI).
We investigated disease resistance in Vitis amurensis to identify PRRs that are important for resistance
against downy mildew, analyzed the PRRs that were upregulated by incompatible Plasmopara viticola
infection, and cloned the full-length cDNA of the VaHAESA gene. We then analyzed the structure,
subcellular localization, and relative disease resistance of VaHAESA. VaHAESA and PRR-receptor-like
kinase 5 (RLK5) are highly similar, belonging to the leucine-rich repeat (LRR)-RLK family and
localizing to the plasma membrane. The expression of PRR genes changed after the inoculation
of V. amurensis with compatible and incompatible P. viticola; during early disease development,
transiently transformed V. vinifera plants expressing VaHAESA were more resistant to pathogens than
those transformed with the empty vector and untransformed controls, potentially due to increased
H>0;, NO, and callose levels in the transformants. Furthermore, transgenic Arabidopsis thaliana
showed upregulated expression of genes related to the PTI pathway and improved disease resistance.
These results show that ValHAESA is a positive regulator of resistance against downy mildew
in grapevines.

Keywords: downy mildew; grapevine; PRRs; PTI; VaHAESA

1. Introduction

Downy mildew is caused by the oomycete Plasmopara viticola and is one of the major diseases
affecting grapevines worldwide. However, grapevines possess natural resistance against P. viticola as a
result of disease resistance synergy. These resistance mechanisms involve physiological, ecological,
and morphological changes in the plant [1,2]. An important mode of active defense in plant immunity
is the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors
(PRRs) [3], otherwise known as PAMP-triggered immunity (PTI) [4,5]. PTI comprises a wide array
of responses, including the rapid generation of reactive oxygen species (ROS), deposition of callose,
activation of mitogen-activated protein kinases (MAPKSs), and expression of immune-related genes [3,5].
Consequently, PTI plays a major role in preventing the pathogenic invasion of plants.
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Plant PRRs are either receptor-like kinases (RLKs) or receptor-like proteins (RFLPs), taking
the form of single-pass transmembrane proteins with extracellular domains. While RLKs have an
intracellular kinase domain, RFLPs lack this cytosolic signaling domain [6]. PRRs exhibit both high
sensitivity to and specialization for plant pathogens, where a certain PRR can recognize PAMPs
at nanomolar quantities [4], and conserved functional domains of PAMPs are often recognized by
PRRs. For example, FLS2 is one of the best-studied plant PRRs in Arabidopsis and recognizes bacterial
flagellin via perception of the conserved 22-aminoacid epitope flg22 [7]. However, while FLS2 is highly
conserved in plant species, the FLS2 homolog of tomato (LeFLS2) recognizes the flg15 polypeptide of
Escherichia coli but does not recognize Pseudomonas syringae flg22 [8]. It has been hypothesized that the
ligand-induced endocytosis and degradation of FLS2 may regulate receptor signaling [9]. In addition,
the elongation factor Tu (EF-Tu) receptor (EFR) is a PRR in Arabidopsis that recognizes EF-Tu from
bacteria [10]; however, this kind of PRR exists only in cruciferous species [11]. At present, the complete
genome sequences of plants that contain homologous EFR genes are not well characterized [3].

Although the PAMPs of pathogenic microorganisms have been extensively studied, few of these
studies have focused on the corresponding PRRs in plants. Furthermore, there are relatively few
reports regarding the PRRs of grapevines. With advances in whole-genome sequencing, research
focusing on characterization of resistance genes in grapevines is increasing, and recently published
transient expression assays have been widely used for the characterization of newly discovered genes,
including their functions and metabolic pathways [12-14]. Transcriptomic and proteomic analyses
of grapevines infected with P. viticola are likely to result in the discovery of novel genes involved in
pathways related to resistance against downy mildew, in addition to helping to elucidate the molecular
mechanisms involved in the resistance response.

The present study describes the novel V. amurensis PRR gene VaHAESA. This gene was identified
by analyzing the transcriptome of the V. amurensis cultivar “Shuanghong” while infected with either
the compatible P. viticola strain “ZJ-1-1"” or the incompatible P. viticola strain “JL-7-2” [13]. Here,
we demonstrate that VaHAESA belongs to the LRR-RLK (leucine-rich repeat receptor-like protein
kinase) family of proteins. Transient expression studies indicate that VaHAESA can trigger a series
of PTI responses, including the accumulation of HyO, and NO as well as the deposition of callose.
This research provides a better understanding of the characteristics and function of a novel PRR gene
in grape.

2. Results

2.1. PRR Expression in Vitis amurensis ‘Shuanghong” Infected with Incompatible and Compatible Strains of
Plasmopara viticola

Quantitative RT-PCR revealed several differences in the expression patterns of PRR genes
in V. amurensis “Shuanghong” (Figures 1 and 2) after inoculation with compatible (“ZJ-1-1") and
incompatible P. viticola (“]L-7-2") strains. After inoculation with either compatible P. viticola “ZJ-1-1"
or incompatible P. viticola “JL-7-2”, clear and consistent trends were observed in the expression
(both up- and downregulation) of some genes. These affected genes included GSVIVT01035611001,
GSVIVTO01014117001, and GSVIVT01014147001. For example, the expression of GSVIVT01014147001
increased 2-fold within 0.5 h after inoculation with the P. viticola strains “Z]J-1-1” and “JL-7-2".
In contrast, some PRRs were upregulated after inoculation with P. viticola “Z]-1-1” but downregulated
after inoculation with incompatible P. viticola “JL-7-2" (i.e., GSVIVT01035304001, GSVIVT01026000001,
GSVIVT01014110001, and GSVIVT01023113001).

However, among the remaining genes, we observed downregulation after inoculation
with “ZJ-1-17 and upregulation after inoculation with ‘JL-7-2" (i.e., GSVIVT01036966001,
GSVIVT01035315001, GSVIVT01014138001, GSVIVT01015298001, and GSVIVT01023369001). Within
0.5 h of inoculation with JL-7-2, the expression of all PRR genes that we evaluated was initially
induced and then decreased. GSVIVT01015298001 was upregulated 4-fold, while GSVIVT01036966001,
GSVIVT01035315001, GSVIVT01014138001, and GSVIVT01023369001 were upregulated 2- to 3-fold.
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In addition, the expression levels of these five genes indicated inhibition within the first 12 h of “Z]J-1-1"
inoculation. According to these results, we hypothesize that GSVIVT01036966001, GSVIVT01035315001,
GSVIVT01014138001, GSVIVT01023369001, and, most notably, GSVIVT01015298001 play an active role
in pathogen resistance during the early phase of resistance against P. viticola infection. Next, based on
the results of expression analyses, we chose the PRRs with the potential to confer stronger resistance
against downy mildew in ‘huanghong’ (i.e., upregulated genes showing significant differences after
inoculation with incompatible P. viticola and downregulated genes showing significant differences after
inoculation with the compatible strain). Thus, we chose GSVIVT01015298001 for further functional
verification of P. viticola resistance in V. amurensis “Shuanghong”, which was expressed at the earliest

post-inoculation time point (0.5 h) and exhibited maximum upregulation.
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Figure 1. Relative expression of the pattern recognition receptors (PRR) genes of Vitis amurensis
“Shuanghong” after inoculation with Plasmopara viticola “ZJ-1-1” (black bars) and P. viticola “JL-7-2"
(gray bars). The values on the vertical axes indicate the fold-changes in gene expression normalized to
the expression level of Vitis elongation factor 1-« (EF1-«), SAND, and ubiquitin-conjugating enzyme
(UBQ). The x-axes represent the time since inoculation. The error bars represent the standard deviation
calculated from three replicates. * indicates significant differences (p < 0.05) as determined with
Student’s t-test. Significant differences were identified by comparing the two gene expression levels at

each time point.
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Figure 2. Relative expression of the PRR genes of Vitis amurensis ‘Shuanghong’ after inoculation with
Plasmopara viticola “ZJ-1-1" (black bars) and P. viticola “JL-7-2" (gray bars). Values on the vertical
axes indicate the fold-change in gene expression, normalized to the expression level of Vitis EF1-«,
SAND, and UBQ. The x-axes represent the time since inoculation. Error bars represent the standard
deviation calculated from three replicates. * indicates significant differences (p < 0.05) as determined
with Student’s ¢-test. Significant differences were identified by comparing the two gene expression
levels at each time point.

2.2. Characterization and Phylogenetic Analysis of VaHAESA

We cloned VaHAESA from the “Shuanghong” subspecies of grape based on the aforementioned
transcriptome data. The VaHAESA gene is 3066 bp long and encodes 1021 amino acids. Further
characterization of the VaHAESA protein sequence using the Pfam and SUPERFAMILY 2 databases
confirmed that VaHAESA belongs to the LRR-RLK protein family, due to the presence of a leucine-rich
repeat N-terminal domain (LRRNT), two LRR_8 domains, and a protein kinase C-terminal domain.
These findings are consistent with a sequence alignment and phylogenetic analysis using putative
VaHAESA and RLK homologs from a variety of plant species (Figure 3). We detected several LRR
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core motifs (Figure 3, Box I-IV); these LRR repeats constitute a novel class of «/3 folds. The LRR core
(LXXLXLXXNXL) motifs, which form an ot/ 3 sheet, are thought to form an exposed face involved in
protein-protein interactions [15]. In addition, we detected the key motifs constituting the catalytic core
of the kinase. These motifs include (i) GXGXXG (Figure 3, box V), which is thought to be an integral
part of many nucleotide-binding proteins; (ii) a highly conserved Lys amino acid (Figure 3, box VI);
and (iii) a DFG(Asp-Phe-Gly) motif (Figure 3, box VII). Finally, the conserved motif G(T/S)PXYXAPE
(Figure3, box VIII) is characteristic of serine/threonine kinases [15].
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Figure 3. Alignment of the putative Vitis amurensis HAESA (VaHAESA) protein sequence with other
HAESA and HAESA-like proteins. Box I-IV: leucine-rich repeat (LRR) core LXXLXLXXNXL motifs;
Box V-VII: motifs involved in the kinase catalytic core.

A phylogenetic analysis revealed that the LRR-RLK that we identified in the present study
(VaHAESA) clustered with HAESA and HAESA homologs from Arabidopsis and five other species
(Figure 4). These results further confirmed that this gene is likely to be the HAESA gene of V. amurensis
‘Shuanghong’. HAESA, which has also been called RLKS, is a critical component required for floral
organ abscission, belonging to LRR XI based on the classification of LRR-RLKs [16]. A homology
matrix for these sequences is provided as supplemental material. In addition, we also established
a model of VaHAESA based on the reported crystal structure for HAESA from Arabidopsis (5IXQ)
(Figure 5). The crystallization data for PDB 5 IXQ are shown in yellow and correspond to the crystal
structure of the Arabidopsis receptor kinase HAESA LRR ectodomain. The crystal structure of VaHAESA
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is shown in magenta and was obtained by Swiss-model homology. The comparison of the alignment
results shows that the overall structures are very similar. The details are shown in Figure 5.
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Figure 4. Phylogenetic tree of LRR-RLKSs. Vitis amurensis HAESA (VaHAESA) is indicated by the
filled triangle.

Figure 5. Alignment of the 3-D structures of VaHAESA and Arabidopsis thaliana HAESA (AtHAESA) (5IXQ).

2.3. Subcellular Location of VaHAESA in Nicotiana benthamiana

Based on the differences in expression observed for the PRRs of V. amurensis, we selected
VaHAESA for further investigation. To study the distribution and cellular localization of VaHAESA
in the mesophyll cells of N. benthamiana, we designed green fluorescent protein-tagged constructs
of VaHAESA downstream of the signal peptide cleavage site. The fusion constructs were expressed
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transiently in N. benthamiana using Agrobacteria infiltration. The results showed that the VaHAESA
protein was only observed in the cytoplasm (Figure 6).

Flurescence DAPI Bright Merged

GFP

VaHAESA

Figure 6. Subcellular localization of the GFP-VaHAESA protein in transiently transformed
Nicotiana benthamiana.

2.4. Expression of VaHAESA Promoted Resistance against Plasmopara viticola in Grapevine

The transient expression analysis showed that 3 d after inoculation, grape leaves transiently
transformed with the VaHAESA construct exhibited smaller infected areas than those transformed with
the empty vector and untransformed V. vinifera “Thompson Seedless” (Figure 7). The number of spores
on the VaHAESA-expressing plants was 0.18 x 10°, whereas those on the empty vector-transformed
plants and untransformed controls were 1.45 x 10° and 1.38 x 10°, respectively. These results show
that disease resistance was improved accordingly in the transient grape leaves. However, five days
after inoculation, the differences in the infected areas and spore concentrations on the leaves from all
groups decreased (Figure 7).
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Figure 7. Phenotypes of leaves from Vitis vinifera after infection with Plasmopara viticola. (A) V. vinifera
expressing VaHAESA; (B) V. vinifera transformed with the empty vector (pBI121); (C) untransformed
V. vinifera “Thompson Seedless”. The representative images were taken three and five days
post-infection (dpi) with Plasmopara viticola.

Three days after inoculation, the density of sporophores and spores in grape leaves transiently
transformed with VaHAESA was lower than that in leaves transformed with the empty vector
(Figure 8A1,B1). In addition, we observed necrosis in the guard cells of grape leaves transiently
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transformed with the VaHAESA gene (Figure 8A2), whereas the leaves transformed with the empty

vector did not present similar necrosis (Figure 8B2).

1

Figure 8. Microscopy examination of Vitis vinifera after infection with Plasmopara viticola. (A) V. vinifera
expressing VaHAESA; (B) V. vinifera transformed with the empty vector (pBI121). Representative
images were taken 3 days after inoculation with Plasmopara viticola. Sp: Sporophore; Zp: Zoospore;
St: Stomata; Ne: Necrosis.

2.5. Measurements of HyO,, NO, and Callose in Vitis vinifera Transiently Expressing VaHAESA

We observed that 24 h after infection in V. vinifera, the H,O, and NO contents of leaves
transformed with VaHAESA were higher than those of leaves transformed with the empty vector or
the untransformed control (Figure 9).
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Figure 9. Analysis of H,O, and NO levels in Vitis vinifera after inoculation with Plasmopara viticola.

Microscopic observations indicated that after inoculation with P. viticola, callose formation at
6 hpi and 12 hpi was much greater in the VaHAESA-expressing leaves than in leaves transformed with
empty vector and untransformed V. vinifera (Figure 10). In addition, we observed few sporophores on
leaves transformed with VaHAESA at 24 hpi, while a mass of sporophores was observed on the leaves
transformed with the empty vector and wild Thompson Seedless (untransformed control).
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Figure 10. Microscopic assessment and statistics of callose deposition in the leaves of Vitis vinifera after
inoculation with Plasmopara viticola. (A) V. vinifera expressing VaHAESA; (B) V. vinifera transformed
with the empty vector (pBI121); (C) untransformed V. vinifera “Thompson Seedless’. Representative
images were taken 6, 12, 24, and 48 h post-infection (hpi). Ca: Callose, Sp: sporophore.

2.6. Identification and Analysis of Disease Resistance in Transgenic Arabidopsis thaliana

To characterize the physiological functions of VaHAESA involved in disease resistance, ten
transgenic lines of Arabidopsis were obtained, and three transgenic lines exhibiting stable expression and
improved disease resistance, designated “line2, line3, and line4” (confirmed through PCR and qRT-PCR,
Figure 11A,B), were selected for further experiments. The results show that the expression level of
VaHEASA was up to 40-fold higher than that of the AtActingene in transgenic Arabidopsis. To determine
the resistance of the transgenic plants, wild-type and transgenic A. thaliana plants were inoculated
with Hyaloperonospora arabidopsidis. After infection, we analyzed the expression patterns of key genes
in the PTI pathway. Our results showed that after 5 days of inoculation, H. arabidopsidis was abundant
on wild-type leaves, while transgenic A. thaliana did not harbor the pathogen (Figure 11CLCII).
As key genes in the PTI pathway, the expression of MPK3 (mitogen-activated protein kinase 3), MPK6
(mitogen-activated protein kinase 6), SCD1 (stomatal cytokinesis-defective 1), BAK1 (BRI1 associated
receptor kinase 1), and BIK1 (Botrytis-induced kinase 1) in the transgenic plants was substantially
higher than in wild-type plants. These results showed that the expression of MAPKs and receptor-like
cytoplasmic kinases (RLCKs) was 5-fold higher in transgenic plants than in wild-type plants at 2 h to
8 h after infection. The expression of these genes in wild-type A. thaliana was only slightly increased
at 8 h after inoculation. These results clearly show that compared to wild-type plants, the transgenic
plants exhibited an enhanced ability to defend against the invading pathogen.
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Figure 11. Identification of disease resistance in transgenic Arabidopsis thaliana and the expression
patterns of related genes. (A) qRT-PCR analysis of VaHAESA expression levels in transgenic
Arabidopsis thaliana; (B) PCR detection of positive transgenic Arabidopsis thaliana; (C) phenotypic
identification of Arabidopsis thaliana after inoculation with H. arabidopsidis: 1. wild type; II, transgenic
Arabidopsis thaliana; (D) the expression patterns of related genes in the pathogen-associated molecular
patterns (PAMP)-triggered immunity (PTI) pathway. Values on vertical axes indicate the fold-change
in gene expression, normalized to the expression levels of AtACTIN, AtSAND, and AtUBQ. The x-axes
represent the time since inoculation. Error bars represent the standard deviation calculated from
three replicates.

3. Discussion

In recent years, it has become apparent that PRRs exist in the plasma membrane within intricate
protein complexes resembling supramolecular structures and require numerous regulators to initiate
and fine-tune plant immune responses [17-19]. In plants, the RLKs have been implicated in the
prevention of self-pollination, pathogen responses, hormone perception, signal transduction, and plant
development. These functions are divided into two categories [20]. One category consists of
kinases involved in cell growth and development. For instance, some studies have shown that
in Arabidopsis, LRR-RLK HAESA (HAE) and the peptide hormone IDA (inflorescence deficient in
abscission) control floral organ abscission [21-23]. HAESA is a plasma membrane-associated protein
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with serine/threonine protein kinase activity. The other category includes RLK proteins involved
in plant-pathogen interactions and defense responses [7]. However, the functional classification of
RLK on the basis of structure may actually be more complex due to cross talk between disease and
developmental pathways or due to recognition of multiple ligands by a signal receptor [24,25].

Our analysis of the conserved domain of VaHAESA, which contains an intracellular kinase domain,
revealed that it belongs to the LRR-RLK family. These PRRs contain extracellular domains that allow
MAMP /DAMP(microbe/damage—associated molecular patterns) perception [26]. LRR-type PRRs
localize to the cell membrane and bind to proteins or peptides such as bacterial flagellin, EF-Tu,
or endogenous PEP peptides [27]. Our results regarding the subcellular location of VaHAESA were
consistent with the findings of previous studies. Interestingly, FLS2 forms a complex with the regulatory
LRR-RLK BAKI1 quasi-instantaneously upon flg22 perception, suggesting that FLS2 and BAK1 already
exist in proximity to each other in the plasma membrane [28]. The paradigm of signaling activation
by receptor kinases implies that ligand binding via the extracellular domain causes activation of
the intracellular kinase domain and phosphorylation of substrates that contribute to intracellular
signal transduction.

Therefore, VaHAESA could receive the signal through the extracellular LRR domain structure and
transmit that signal with the help of the intracellular protein kinase domain. Recent transcriptome
analysis of abscission zones from wild-type and hae mutants indicate that the IDA-HAE signaling
module triggers cell wall-degrading and cell wall-remodeling genes that are necessary for the abscission
process, in addition to genes commonly related to defense against bacteria and fungi [29]. Finally,
the observed oxidative burst could also trigger the activation of pathogen defense genes because
shedding exposes a fresh cell surface, which may be highly susceptible to pathogen infection.

Plant receptor kinases ectopically expressed in plant cells can be expected to be processed and
localized correctly. RLK involved in signaling mainly recognize exogenous elicitor complexes that
activate defense-related pathways. Recognition results in the formation of ROS, changes in ion flux,
and rapid phosphorylation of the kinase domains. These effects all invoke the activation of the
MAPK cascade and activation of defense-related genes [30]. It is also highly likely that the adaptors
and coreceptors required for the activation of downstream signaling are present in heterologous
cells and allow a functional signal output upon stimulation with appropriate ligands. There are
indications that the signaling pathways involved in defense and development exhibit common
features, for example, sharing MAPKSs signaling components [31,32]. Many RLCKs serve as the
core of PRRs and downstream defense systems [33]. In these RLCKSs, BIK1 (Botrytis-induced kinase 1)
is an important central component [34]. When plants are induced by PAMPs, the complex of BAK1
and PAMP phosphorylates BIK1, after which BIK1 dissociates from the complex and activates the
downstream signal. Subsequently, the downstream reaction is accomplished by the MAPK signaling
pathway [35]. Early research on parsley cells showed that the activation of elicitor-responsive MAPK,
a homolog of AtMPK3, by a fungal elicitor results in the translocation of MAPK into the nucleus [31].
In Arabidopsis, AtMPKG is activated by the bacterial flagellin peptide or by xylanase from the fungus
Trichoderma viride [36]. These results suggested that MAPK might phosphorylate transcription factors
that are involved in the plant defense response. Numerous studies have shown that PTI occurs in the
early phase of plant defense [3]. Most PRRs are present at low concentrations in the plasma membrane,
where the expression of these PRRs does not show any obvious changes in response to challenge
by pathogenic bacteria. However, some studies have shown that PRRs may be upregulated after
pathogenic invasion, thereby enhancing plant resistance [37]. Our qRT-PCR results indicated that
VaHAESA expression was upregulated in the early stages of invasion after inoculation with a P. viticola
strain, which is consistent with early immune responses to pathogenic challenge.

Previous research has shown that H,O; is one of the earliest measurable indicators of PTI activity,
representing a stable measure of the ROS produced in plants in response to pathogenic infection
and PAMPs. This production of H,O; is typically apoplastic but is subsequently associated with
intracellular immunity-related pathways that regulate disease resistance, such as systemic acquired
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resistance (SAR) and PTI [38,39]. The transient expression of VaHAESA in the V. vinifera “Thompson
Seedless’ variety resulted in a decrease in disease incidence, accumulation of H,O,, increased NO
levels, and deposition of callose. These results indicate that VaHAESA enhances resistance to P. viticola
in grapevines via the induction of resistance signaling and other molecular and cell wall modifications.
Moreover, our results indicate that these phenomena, which occurred at the very early stages of
infection in the leaves, were caused by the transient expression of ValHAESA after inoculation with
P. viticola. Our observations of increased HyO, levels further suggest a close relationship between ROS-
and NO-signaling during the responses to pathogenic attacks [40,41]. Concerning the lag phase of
NO generation, cryptogein, and chitosan (a deacylated derivative of chitin) induce NO production
within two minutes, and specifically in the case of chitosan, NO production was shown to increase
constantly until the last measured time point [42]. The ultimate outcome of PTI is the induction of
resistance responses that prevent microbial colonization. Callose deposition is typically one of the late
defense responses to pathogen invasion, with accumulation beginning approximately 16 h after the
initiation of PTI [3]. Callose deposition is an important feature of plant immunity and is thought to
reinforce the cell wall at fungal penetration sites to impede further infection [39,43,44]. In the present
study, we showed that VaHAESA expression increased the deposition of callose in transgenic V. vinifera
inoculated with P. viticola, suggesting that callose plays an important role in the PTI resistance of
grapevines to downy mildew.

In conclusion, there is a large genotypic component in the resistance of grapevines to downy
mildew, and defense reactions occur with variable timing and intensity. Several studies have indicated
that increased production of ROS (superoxide radicals, 4 to 6 hpi) is followed by a hypersensitive
response (6 to 8 hpi); subsequent increased activity of peroxidase in cells flanking the infection area
and in the vascular tissue (10 to 12 hpi); and finally, increased production, accumulation, or conversion
of phenolic compounds (12 to 15 hpi) [45,46]. The present study shows that VaHAESA acts as a
PRR in grapevines that could initiate responses against pathogenic attacks; however, more detailed
characterization of the genes and pathways involved is necessary to improve our understanding of the
role of VaHAESA in the resistance of grapevines to downy mildew.

4. Materials and Methods

4.1. Plant Materials, Plasmopara viticola Strains, and Pathogen Infection

One-year old V. amurensis grapevines of the “Shuanghong” variety were maintained in a
greenhouse under a 16:8 h light:dark cycle at 25 °C, with 85% relative humidity. The Plasmopara
viticola strains “Z]J-1-1” and “JL-7-2” [13] were subcultured on V. amurensis leaf discs every 10 d at 22 °C
under a 16:8 h photoperiod. The third to fifth unfolded leaves from the shoot apex of V. amurensis were
inoculated with a suspension of 10° P. viticola sporangia-mL~!. Three leaves were pooled to represent
one replicate, and three independent replicates were collected from each sample. Infected leaves were
collected at 0, 0.5, 1,2, 4, 6, 8,12, 24, 48, 72, and 96 h post-infection (hpi). These samples were used for
subsequent reverse transcription polymerase chain reaction (RT-PCR) experiments.

4.2. gqRT-PCR

We measured the expression patterns of PRRs in the leaves of “Shuanghong” at different time
points post-inoculation with P. viticola strains “ZJ-1-1” and “JL-7-2”. Total RNA was extracted from
leaves using a modified CTAB method [47]. One microgram of total RNA was reverse transcribed
into first-strand cDNA using a cDNA Synthesis Kit (TaKaRa Biotechnology, Dalian, China). The PRR
genes were identified through transcriptome analysis [13]. Primers for gRT-PCR were designed using
Beacon Designer ver. 8.10 (Premier Biosoft, Palo Alto, CA, USA). Vitis elongation factor 1-« (EF1-x),
ubiquitin-conjugating enzyme (UBQ), and SAND family protein (SAND) were used as internal controls
to normalize all data [48,49]. The fold-change in gene expression was estimated based on threshold
cycles via the 2-AACT method [50].
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4.3. Cloning, Sequencing, and Phylogenetic Characterization of VaHAESA

The full open reading frames of VaHAESA genes were amplified from cDNA isolated from
V. amurensis leaves inoculated with P. viticola “Z]-1-1” using gene-specific primers (forward:
5'-ATGTCGAAAACACCCCCACCTTCTG-3/, reverse: 5-TCACACATTGGACGCAAAATTC-3'). PCR
amplification was performed in a final volume of 50 puL under the following conditions: initial
denaturation at 98 °C for 3 min; followed by 34 cycles of 98 °C for 30 s, 55 °C for 30 s, and 72 °C for
1 min; with a final extension at 72 °C for 5 min (Phusion High-Fidelity PCR Kit; NEB). The amplification
products were cloned into the expression vector pBI121. The putative VaRLK protein sequences were
submitted to Pfam (available online: http://pfam.xfam.org) and SUPERFAMILY 2 (available online:
http:/ /supfam.org) to further characterize this gene.

Phylogenetic analyses were performed using 27 known LRR-RLKSs from Arabidopsis and several
HAESA or HAESA-like proteins from five different plants. Mega 5.05 software (Koichiro Tamura,
et al., 2011) was employed to infer and align protein sequences with the default parameters [51].
A phylogenetic tree was constructed using the maximum-likelihood method, the JTT substitution
model, and the “G + I rates among sites” model. Bootstrapping with 500 replicates was performed
to assess the reliability of internal branches, and the nodes with bootstrap values greater than
50 were marked.

4.4. Agrobacterium-Mediated Transient Expression in Plants

To explore the function of the VaHAESA gene in disease resistance in grapevines, we transiently
transformed Vitis vinifera variety “Thompson Seedless” plants with the expression vector carrying
VaHAESA and the empty vector and then inoculated the transgenic plants with compatible P. viticola
to test the effect of ValHHAESA on resistance. The constructs and empty vectors were transformed into
Agrobacterium tumefaciens “GV3101” according the manufacturer’s instructions (BC304-01, Biomed,
Beijing, China). Agrobacterium-mediated transient expression in Nicotiana benthamiana was performed
as previously described to assess localization [52], and Agrobacterium-mediated transformation of
Vitis vinifera “Thompson Seedless” was performed using vacuum infiltration according to previously
published methods [53].

4.5. Analysis of the Subcellular Localization of VaHAESA and Its Effect on Pathogen Infection

To verify that the expression of VaHAESA improved disease resistance in V. vinifera, we performed
a microscopic examination of the leaves three days after inoculation. To analyze the subcellular
localization of VaHAESA in N. benthamiana, the leaves were immersed in PBS buffer containing
5 mg-L~! 4,6-diamidino-2-phenylindole (DAPI) for 10 min to stain the nuclei. Subsequently, leaf
patches were mounted on microscope slides and observed using a Nikon C1 Si/TE2000E confocal
laser-scanning microscope (Nikon, Minato, Tokyo, Japan).

To observe the development of P. viticola after leaf inoculation, V. vinifera “Thompson Seedless’
leaves from untransformed wild-type plants transiently expressing VaHAESA were collected at the
corresponding time points. The leaves were stained with lactophenol-trypan blue (10 mL of lactic
acid, 10 mL of glycerol, 10 g of phenol, and 10 mg of trypan blue dissolved in 10 mL of distilled
water) following Keogh et al. [54]. For the analysis of callose, the leaves were treated according to
the KOH-aniline blue fluorescence method [55]. Callose deposits were visualized under a UV filter
using a fluorescence microscope and were counted using Image] 1.43U software (available online:
https:/ /imagej.nih.gov/ij/index.html).

The number of deposits was expressed as the mean of three different leaf areas. Under the
microscope at a constant magnification, five fields of view were selected for each leaf, and the number
of calli was counted. The average value was calculated for the final statistics.
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4.6. Analysis of HyO, and NO Levels in Transgenic Vitis vinifera Expressing VaHAESA

The detection of H,O, was performed using a Hydrogen Peroxide Assay Kit (S0038, Beyotime,
Shanghai, China). Each sample was ground to powder with liquid nitrogen, and 100 mg of the sample
was then transferred to a 1.5 mL screw-cap tube containing 1.5 mL of lysate solvent. The tubes were
shaken at a speed of 12,000 rpm at 4 °C for 5 min, after which the suspension was placed on ice.
The lysate was used to dilute HyO, to concentrations of 1, 3, 10, 30, and 100 uM, which were employed
as standards. Then, 50 uL of the samples or standard products was added to a 96-well plate, and 100 uL
of the peroxide detection reagent was added. After a mild shock, the 96-well plate was placed at room
temperature for 30 min. The absorbance was detected at A560. The content of H,O, in the sample was
calculated according to the standard curve. The detection of NO was performed using the Total Nitric
Oxide Assay Kit (50023, Beyotime, Shanghai, China) according to the manufacturer’s instructions.
First, 1 g of frozen leaf tissue was ground and then added to 50 uL of Griess Reagent 1. The mixture
was then heated for 5 min in a boiling water bath to denature the proteins, followed by centrifugation
for 5 min at 12,000 g. The supernatants were subsequently collected, and 5 uL of 20 mM NADPH,
10 pL of FAD and 5 pL of nitrate reductase were added. After mixing, the samples were incubated at
37 °C for 30 min. Next, 10 uL LDH buffer and 10 uL LDH were added to the mixture, followed by
incubation at 37 °C for 30 min. Finally, 50 uL of Griess Reagent I and Griess Reagent II were added to
the mixture. A540 was determined after incubation for 10 min at room temperature (20-30 °C).

4.7. Screening and Identification of Transgenic Arabidopsis thaliana

To identify the function of the VaHAESA gene, the transformation vector 355::VaHAESA-pBI121
was transformed into Agrobacterium tumefaciens “GV3101”. Using the floral dip transformation
method [56], these strains were transferred to wild-type Arabidopsis thaliana. Transgenic plants
were selected using 1/2 MS media containing 50 mg-L~! kanamycin and then transferred to soil
(24 °C; 16/8 h light/dark). Screening was performed until stable homozygous T3 lines were obtained,
and transgenic plants were subsequently tested for VaHAESA expression via PCR and qRT-PCR.
Disease resistance in wild-type and transgenic A. thaliana was monitored through inoculation with
H. arabidopsidis, and the detection of related genes was performed via qRT-PCR. A. thaliana was
inoculated with a suspension of 10° H. arabidopsidis sporangia-mL~!. Three independent lines were
collected from each sample. Infected leaves were collected at 0, 2, 4, 8, 12, 24, 48, and 72 h post-infection
(hpi). These samples were used for subsequent qRT-PCR experiments. AtACTIN, AtUBQ, and AtSAND
were employed as internal controls to normalize all data. The phenotypic observation of disease
resistance was conducted at 5 dpi.
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