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Abstract: Mutations of gap junction connexin genes induce a high incidence of nonsyndromic hearing
loss. Pannexin genes also encode gap junctional proteins in vertebrates. Recent studies demonstrated
that Pannexin-1 (Panx1) deficiency in mice and mutation in humans are also associated with hearing
loss. So far, several Panx1 knockout (KO) mouse lines were established. In general, these Panx1 KO
mouse lines demonstrate consistent phenotypes in most aspects, including hearing loss. However,
a recent study reported that a Panx1 KO mouse line, which was created by Genentech Inc., had no
hearing loss as measured by the auditory brainstem response (ABR) threshold at low-frequency
range (<24 kHz). Here, we used multiple auditory function tests and re-examined hearing function
in the Genentech Panx1 (Gen-Panx1) KO mouse. We found that ABR thresholds in the Gen-Panx1
KO mouse were significantly increased, in particular, in the high-frequency region. Moreover,
consistent with the increase in ABR threshold, distortion product otoacoustic emission (DPOAE)
and cochlear microphonics (CM), which reflect active cochlear amplification and auditory receptor
current, respectively, were significantly reduced. These data demonstrated that the Gen-Panx1 KO
mouse has hearing loss and further confirmed that Panx1 deficiency can cause deafness.
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1. Introduction

Gap junctions play a critical role in hearing. It has been found that mutations in the Connexin26
(Cx26, GJB2) gap junctional gene induce a high incidence of hearing loss, accounting for more than 50%
of the cases of nonsyndromic hearing loss [1–5]. The pannexin gene family also encodes gap junctional
proteins in vertebrates. So far, three pannexin isoforms (Panx1, 2, and 3) have been cloned from the
human and mouse genomes [6,7]. Like connexins, pannexins have ubiquitous expression in almost
all tissues. In the mammalian inner ear, pannexins also have extensive expression; all three pannexin
isoforms have expression in the inner ear [8]. Panx1 predominantly expresses at the supporting cells in
the organ of Corti, the interdental cells in the spiral limbus, inner and outer sulcus cells, and fibrocytes
in the cochlear lateral wall. Panx2 predominantly expresses at the basal cells in the stria vascularis, and
Panx3 mainly expresses at the bony structure of the cochlea. However, auditory sensory hair cells have
no expression of pannexins [8]. These distinctive cellular distributions strongly suggest that pannexins
may have important functions in hearing.

Unlike connexins that form intercellular gap junctional channels, pannexins usually function as
undocked gap junctional channels on the plasma membrane to provide an intracellular-extracellular
conduit. Due to the relatively large pore size, Panx1 channels in many organs and tissues act as
conduits that allow small molecules, such as ATP [9–11], to pass through in order to participate in many
physiological functions and pathological processes [12–20]. Our previous study also demonstrated
that Panx1 channels dominate ATP release in the cochlea [20,21]. ATP in the cochlea can mediate hair
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cells’ sound transduction and neurotransmission [22], outer hair cell (OHC) electromotility [23,24],
hearing dynamic range [25], synchronization of auditory nerve activity during development [26,27],
gap junctional coupling [28], K+-sinking [29], and endocochlear potential (EP) generation [21].

It is well-known that mutations in connexin genes can induce hearing loss [1–5]. However, it was
for a long-time undetermined whether Panx deficiency can induce hearing loss, until recent studies
showing that Panx1-deficient mice [21,30] and mutation in humans [31] are associated with deafness.
So far, several Panx1 knockout (KO) mouse lines have been established [15,21,30,32,33]. In general,
these Panx1 KO mice demonstrated consistent phenotypes. However, one Panx1 KO mouse line,
which was created by Genentech Inc. (South San Francisco, CA, USA) [15], was reported to have no
hearing loss, as measured by auditory brainstem response (ABR) recording at low-frequency range
(<24 kHz) [34]. In this study, we re-examined hearing function of this Genentech Panx1 (Gen-Panx1)
KO mouse line using multiple auditory functional tests. We found that the Gen-Panx1 KO mice
have hearing loss, particularly in the high-frequency region, which is consistent with hearing loss
observed in Foxg1-Panx1 conditional knockout (cKO) mice (a line which was created by crossing
with a Foxg1-Cre line) [21], and in Pax2-Panx1 cKO mice (a line which was created by crossing with
a Pax2-Cre mouse line) [30]. These new data further confirmed that Panx1 deficiency can induce
hearing loss.

2. Results

2.1. Panx1 Deletion in the Cochlea in Gen-Panx1 KO Mice

As previously reported [8], Panx1 had predominant expression in the cochlea, including the organ
of Corti and the lateral wall (Figure 1a). In the Gen-Panx1 KO mouse, Panx1 expression at the cochlear
lateral wall was deleted (Figure 1b,d); Panx1 labeling was completely absent at the spiral ligament
(SPL). However, Panx1 labeling at the organ of Corti (OC), the spiral limbus (SLM), and outer sulcus
cells (OSCs) remained intense (Figure 1b–d). This deletion pattern in the Gen-Panx1 KO mice is similar
to Panx1 deletion in the cochlea in the Foxg1-Panx1 cKO mice [21]. This location- and cell-specific
knockout pattern also provided direct evidence for the specificity of the anti-Panx1 antibody used in
this study.

Figure 1. Deletion of Panx1 in the cochlea of Gen-Panx1 knockout (KO) mice. (a): Double
immunofluorescent staining for Panx1 (green) and Cx30 (red) in the wild-type (WT) mouse cochlea.
(b–d): Panx1 expression and deletion in the cochlea of Gen-Panx1 KO mice. White asterisks in panel (b)
indicate the absence of Panx1 labeling at the spiral ligament (SPL) in the lateral wall of the Gen-Panx1
KO mice. OC: organ of Corti; OSC: outer sulcus cell; SLM: spiral limbus. Scale bars: (a,b): 50 µm,
(c,d): 25 µm.
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Co-labeling for Cx30 showed that there was no apparent difference between Gen-Panx1 KO mice
and wild-type (WT) mice (Figure 1). Cx26 expression in the cochlea also appeared normal in the
Gen-Panx1 KO mice (data not shown).

2.2. Hearing Loss in Gen-Panx1 KO Mice

Figure 2a-c shows ABR recording in the Gen-Panx1 KO mice. ABR thresholds at 8, 16, 24,
32, and 40 kHz were 60.0 ± 2.28, 50.0 ± 2.28, 57.1 ± 3.30, 86.4 ± 3.21, and 93.9 ± 0.77 dB SPL,
respectively (Figure 2b). In comparison with WT mice, ABR thresholds at 8, 16, 24, 32, and 40 kHz
in the Gen-Panx1 KO mice were significantly increased by 14.0 ± 2.88, 15.5 ± 2.88, 12.1 ± 3.30,
34.4 ± 3.21, and 38.4 ± 1.77 dB SPL, respectively (p < 0.001, one-way ANOVA with a Bonferroni
correction). In the high-frequency region, ABR thresholds had larger increases in comparison with
those in the low-frequency region (Figure 2b). However, there was no significant difference in ABR
thresholds between male and female Gen-Panx1 KO mice (Figure 2c). Thus, we did not separate
different genders in data analyses in the following experiments.

Figure 2. Hearing loss in Gen-Panx1 KO mice. (a): auditory brainstem responses (ABRs) in Gen-Panx1
KO and WT mice. The ABR was evoked by a 16 kHz tone burst. (b): ABR thresholds measured in
Gen-Panx1 KO and WT mice. ABR thresholds in Gen-Panx1 KO mice were increased. *** p < 0.001 as
determined by one-way ANOVA with a Bonferroni correction. (c): There is no significant difference in
ABR thresholds between different genders in the Gen-Panx1 KO mice.

2.3. Reduction of Distortion Product Otoacoustic Emission in Gen-Panx1 KO Mice

Consistent with increases in ABR threshold (Figure 2), distortion product otoacoustic emission
(DPOAE) in the Gen-Panx1 KO mouse was significantly reduced (Figure 3a-d). DPOAEs at f 0 of
20 kHz in the Gen-Panx1 KO mice and WT mice were 25.6 ± 2.76 and 37.1 ± 1.83 dB SPL, respectively
(Figure 3c). In comparison with WT mice, DPOAEs in the Gen-Panx1 KO mice at f 0 = 4, 8, 16, and
20 kHz were reduced by −1.32 ± 0.63, −4.43 ± 2.18, −8.71 ± 2.76, and −11.5 ± 2.73 dB, respectively
(Figure 3b). As shown in our previous publication [30], the reduction was increased as sound intensity
was increased (Figure 3c,d). In I-O plot (Figure 3c), DPOAEs in the Gen-Panx1 KO mice at the stimulus
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intensity range from 40 to 60 dB SPL were significantly reduced. In comparison with WT mice,
the reduction was ≥10 dB SPL (p < 0.001, one-way ANOVA with a Bonferroni correction) (Figure 3d).
However, at the stimulus intensity lower than 40 dB SPL, DPOAEs in the Gen-Panx1 KO mice and WT
mice were not apparently different (Figure 3c,d).

Figure 3. Distortion product otoacoustic emission (DPOAE) reduction in Gen-Panx1 KO mice.
(a): Evoked spectra of acoustic emission in Panx1 KO mice and in WT mice. Inset: High-magnification
plot of 2f 1 − f 2 and f 1 peaks. (b): Reduction of DPOAE in frequency responses in the Panx1 KO mice.
Magnitudes of 2f 1 − f 2 in the Panx1 KO mice ware normalized to those in WT mice. (c,d): I-O function
of DPOAE in Panx1 KO and WT mice. DPOAEs in panel (d) were normalized to those in WT mice.
* p < 0.05, ** p < 0.01, and *** p < 0.001 as determined by one-way ANOVA with a Bonferroni correction.

2.4. Reduction of Auditory Receptor Potential in Gen-Panx1 KO Mice

Cochlear microphonics (CM) is the auditory receptor current/potential. Figure 4 shows that
the CM in the Gen-Panx1 KO mice was reduced. CM in WT mice was 40–60 µV, while CM in the
Gen-Panx1 KO mice was 10–30 µV, thus showing a reduction by more than 50% (p < 0.001, one-way
ANOVA with a Bonferroni correction).

Figure 4. Cochlear microphonics (CM) reduction in the Gen-Panx1 KO mouse. (a): CM waveforms
recorded from Gen-Panx1 KO and WT mice. (b): Reduction of CM in the Panx1 KO mouse. *** p < 0.001
as determined by one-way ANOVA with a Bonferroni correction.
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2.5. No Apparent Hair Cell Loss in Gen-Panx1 KO Mice

Figure 5 shows that there was no substantial hair cell loss in Gen-Panx1 KO mice. The loss of
hair cells in the Gen-Panx1 KO mice was less than 5%. There was no significant difference of hair cell
loss between WT and Gen-Panx1 KO mice. This is consistent with the previous report that there is no
significant hair cell loss in Foxg1-Panx1 cKO mice [21].

Figure 5. No apparent hair cells in Gen-Panx1 KO mice. (a,b): The cochlear sensory epithelia of
the Gen-Panx1 KO mice in whole-mounting preparation with staining of phalloidin-Alexa Fluor-488
(green) and propidium iodide (red). OHCs: outer hair cells; IHCs: inner hair cells. Scale bars: 20 µm.
(c): There is no apparent hair cell loss in the Gen-Panx1 KO mice.

3. Discussion

In this study, we found that the Gen-Panx1 KO mouse had hearing loss. ABR thresholds were
significantly increased, and DPOAE and CM were significantly reduced (Figures 2–4). These data
are consistent with previous findings that Panx1-deficient mice have hearing loss [21,30] and are also
consistent with the fact that Panx1 mutation in humans can cause deafness [31].

In this experiment, in addition to the increases in ABR threshold, we found that DPOAE in the
Gen-Panx1 KO mice was reduced (Figure 3). This finding is consistent with our previous findings
of DPOAE reduction and hearing loss in Pax2-Panx1 cKO mice [30]. DPOAE reflects the activity
of active cochlear amplification, which can increase hearing sensitivity and is required for normal
hearing. DPOAE reduction suggests that active cochlear amplification is impaired, which can induce
hearing loss and increase ABR threshold (Figure 2). Moreover, in line with the observed reduction
of CM in the Foxg1-Panx1 cKO mice [21], CM in this Gen-Panx1 KO mouse line was also reduced
(Figure 4). CM is the auditory receptor current/potential. CM reduction can consequently decrease
active cochlear amplification, thereby eventually leading to hearing loss. Thus, consistent with ABR
recordings, these auditory function tests also demonstrated hearing loss in the Gen-Panx1 KO mice.

However, these findings are inconsistent with a recent report that the Gen-Panx1 KO mice had no
hearing loss in ABR recordings [34]. Several factors could contribute to this discrepancy. First, ABR in
that report [34] was recorded at frequency range <24 kHz. However, as shown in Figure 2 and in our
previous reports [21,30], the Panx1 deficiency-induced hearing loss was most severe at high-frequency
(>24 kHz). By recording at these low frequencies, hearing loss at higher frequencies may have been
missed by the authors. Second, the study used C57BL/6 mice rather than WT littermates as control.
Although the Gen-Panx1 KO mice have similar genetic backgrounds with C57BL/6 mice, this still could
produce significant differences in hearing functional tests. In particular, hearing loss in the Gen-Panx1
KO mice in the middle- and low-frequency range is not as large as that in the high-frequency range
(Figure 2b). Third, unlike in the previous report [34], which only considered ABR recordings, in the
present study, we also recorded CM and DPOAE (Figures 3 and 4). All of these auditory functional
tests demonstrated hearing loss in the Gen-Panx1 KO mouse.



Int. J. Mol. Sci. 2018, 19, 1332 6 of 11

In the previous report [34], the susceptibility of the Gen-Panx1 KO mouse to noise was also
examined. Mice were exposed to a high intensity tone (12 kHz, 115 dB SPL, 1 h), and there was no
significant difference in ABR thresholds between the Panx1-deficient mice and WT mice measured
at the post-exposure day 7 [34]. However, since both WT and KO mice had large ABR threshold
shifts for this high-intensity exposure, the susceptibility of Panx1 KO mice to noise could not be
assessed. In order to assess susceptibility, low- or moderate-intensity noise exposure could be used
to test whether the Panx1-deficient mice have larger threshold shifts than WT mice. In addition,
only recording ABR thresholds at the seventh day after noise exposure [34] may have been too short
a time to assess a permanent threshold shift (PTS).

Recently, another Panx1 KO mouse line (B6;129-Panx1tm1.Fam/Cnrm, European Mouse Mutant
Archive (EMMA): E11476) [32] has also been reported to have no hearing loss [35]. However, it has
been reported that the brain tissues of this EMMA Panx1 KO mouse line showed no negative reaction
to Panx1 in Western blotting using several anti-Panx1 antibodies [36], including a chicken anti-human
Panx1 antibody used in this study, whose specificity was widely validated in previous experiments
by multiple assays in different Panx1 KO mouse lines [8,9,21,30,37,38]. This suggests that this EMMA
Panx1 KO mouse line may have a hypomorphic phenotype. As shown in our immunofluorescent
staining in this study (Figure 1) and also in previous studies in other Panx1 KO mouse lines [21,30],
the location- and cell-specific deletion of Panx1 is clearly visible in the cochlea. This cell-specific deletion
pattern also provides direct and unequivocal evidence that the used chicken anti-human antibody
is specific to Panx1. Indeed, a hypomorphic phenotype has been found in the KOMP (Knockout
Mouse Project, University of California, Davis, CA, USA) Panx1 KO mouse line, in which Panx1 is
not completely deleted [33]. Finally, Panx1 deficiency-induced hearing loss is progressive [20,30];
the increase in ABR threshold is small at postnatal day 30 (P30) and becomes large and apparent
after P60 [20,30]. The ABR threshold in the previous report [35] was averaged from P30 to P90.
This could also attenuate the potential difference. Thus, as suggested by these inconsistent results and
reports, Panx1 function including characterization of Panx1 KO mice and the specificity of anti-Panx1
antibodies still needs to receive further study in the future.

Our previous study demonstrated that the Panx1 deficiency reduced ATP release and EP
generation in the cochlea [21]. Positive EP in the cochlear endolymph is generated in the cochlear lateral
wall [21,39] and a driving force for K+-ions passing through the mechano-transduction channels in hair
cells to produce CM [39], although hair cells have neither connexin [40,41] nor pannexin expression [8].
EP reduction can reduce CM, thereby leading to the reduction of active cochlear amplification and
eventually hearing loss. In this study, we did not measure EP and ATP release in the Gen-Panx1
KO mice. However, CM and DPOAE were reduced in the Gen-Panx1 KO mice (Figures 3 and 4).
Thus, the Gen-Panx1 KO mice may share the same mechanism to reduce CM and active cochlear
amplification, thereby leading to hearing loss.

4. Materials and Methods

4.1. Panx1 KO Mice and Genotyping

Gen-Panx1 KO mice were created by Vishva Dixit at Genentech Inc. with the loxP-Cre
technique [15]. In this transgenic mouse strain, Exon2 of Panx1 was floxed with FLP recombinase
and was deleted by crossing to the C57BL/6-Gt(ROSA)26Sortm16(Cre) Arte Cre deleter strain (Taconic
Artemis, Rensselaer, NY, USA). Mice were genotyped by tail genomic DNA with PCR primers: 5′-TGA
CCA CAG ACA GCA CTTAAG-3′ and 5′-CGT CTG AGA GCT CCC TGG CG-3′, which yield a 651-bp
WT band and a 335-bp knockout band [15]. WT littermates served as control. All recordings were
performed under anesthesia with Ketamine and Xylazine (8.5 mL saline + 1 mL (100 mg/mL) Ketamine
+ 0.55 mL (20 mg/mL) Xylazine, 0.1 mL/10 g body weight, ip) to minimize suffering. The experimental
procedures were approved by the University of Kentucky’s Animal Care and Use Committee (Protocol
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No. 00902M2005, May 9, 2010) and conducted according to the standards of the NIH Guidelines for
the Care and Use of Laboratory Animals.

4.2. Data Processing and Statistical Analysis

A total of 16 Gen-Panx1 KO mice (4 females and 12 males) were used in this study. Littermate WT
(6 females and 8 males) mice were used as control. Mouse ages were between P60 to P90. For ABR,
DPOAE, and CM recordings, 14 (4 females and 10 males), 16 (4 females and 12 males), and 16 (4 females
and 12 males) of Gen-Panx1 KO mice were used, respectively. Exact numbers of mice used in each
experiment were also indicated in the corresponding figures. Since there was no significant difference
in ABR threshold between different genders in Gen-Panx1 KO mice (Figure 2c), we did not do gender
analyses in other experiments.

The statistical analyses were performed by SPSS v18.0 (SPSS Inc., Chicago, IL, USA) using one-way
ANOVA with a Bonferroni correction. The level of statistical significance was set at p < 0.05. Data were
presented as mean ± SEM and plotted by SigmaPlot v10 (SPSS Inc., Chicago, IL, USA). All sample size
and P values were reported in the figures or the figure legends.

4.3. ABR, CM, and DPOAE Recordings

As described in our previous publications [21,42–46], ABR was recorded by a Tucker-Davis ABR
& DPOAE workstation with ES-1 high frequency speakers (Tucker-Davis Tech., Alachua, FL, USA).
Mouse body temperature was maintained at 37–38 ◦C. ABR was measured by clicks (rate: 20/s) in
alternative polarity and series tone pips (5 ms duration with 1 ms up and down ramp, rate: 20/s) from
80 to 10 dB SPL in a 5-dB step at 8, 16, 24, 32, and 40 kHz. The signal was amplified (50,000×), filtered
(300–3000 Hz), and averaged by 500 times. The lowest level at which the ABR could be recognized
was defined as the threshold. The high levels of acoustic stimuli (100 to 70 dB SPL) were used if the
threshold was >75 dB SPL.

CM was recorded with the same electrode configuration as the ABR recording, i.e., one electrode
was inserted at the vertex, one electrode was ventrolaterally inserted to the right or left ear, and the
ground needle electrode was inserted in the right leg [42,46]. However, the signal evoked by tone
bursts was amplified (50,000×), filtered (3–50 kHz), and averaged by 250 times, as described in our
previous publications [42,46].

For DPOAE recording, an ear-plug that contained a small microphone and two small tubes was
plugged into the outer ear cannel. Two-testing sounds were separately induced into the ear through
two-small tubes [30,44–46]. The frequencies of two-testing sounds were determined by a geometric
mean of f 1 and f 2 (f 0 = (f 1 × f 2)1/2) at f 0 = 4, 8, 16, and 20 kHz with f 2/f 1 = 1.22. The intensity of f 1 (I1)
was set at 5 dB SPL higher than that of f 2 (I2). The distortion product was recorded with an average of
150 times. A cubic distortion product of 2f 1 – f 2 was measured as DPOAE.

4.4. Cochlear Preparation and Immunofluorescent Staining

The detailed methods and procedures of immunofluorescent staining can be found in our previous
reports [8,41]. After decapitation, the cochlea was isolated and fixed with 4% paraformaldehyde for
0.5–1 h. After decalcification with 10% EDTA for 2 days, the cochlea was embedded with OCT
(Cat # 4583, Sakura Finetek USA Inc., Torrance, CA, USA), and cut into 10-µm thick sections at
−22~ 24 ◦C by a cryostat (Thermo Electron Corp., Waltham, MA, USA). For immunofluorescent
staining, the sections were incubated in a blocking solution, which was composed of 10% goat serum
and 1% bovine serum albumin, with 0.1% Triton X-100 for 30 min, and then reacted with chicken
anti-human Panx1 antibody (1:500; #4515, a gift from Gerhard Dahl at the University of Miami Medical
School) and polyclonal rabbit anti-Cx30 antibody (1:400, #71-2200, Invitrogen, Carlsbad, CA, USA) or
monoclonal mouse anti-Cx26 (1:400, # 33-5800, Invitrogen, CA) at 4 ◦C overnight. The specificity of
this Panx1 antibody was verified in previous publications by Western blotting and Panx1 KO mouse
tissues in our laboratory and other laboratories [8,9,21,30,37,38]. After washout with PBS for three
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times, the sections were incubated with corresponding secondary antibodies (Alexa Fluor 488- and
568, 1:500, Molecular Probes, Eugene, OR, USA) at room temperature (23 ◦C) for 2 h to visualize the
staining. The staining was observed under a fluorescence microscope (Nikon 2000, Nickon, Melville,
NY, USA).

4.5. Cochlear Epithelium Whole-Mounting and Hair Cell Loss Accounting

As reported in our previous publications [21,44,45], the cochlear epithelia were isolated and
stained with phalloidin-Alexa Fluor-488 and propidium iodide in the whole-mounting preparation.
Hair cells were accounted under a 20× lens.

5. Conclusions

Our present study demonstrated that Gen-Panx1 KO mice have hearing loss. These data are
consistent with previous observations from other Panx1 KO mouse lines [21,30] and the known
occurrence of Panx1 mutation-induced hearing loss in humans [31]. These new data further confirm
that Panx1 deficiency can induce hearing loss. However, Panx1 function in hearing still remains largely
undetermined and needs to be further studied in the future. Also, as demonstrated by this study,
multiple auditory function tests, careful characterization of Panx1-deficient mice, and specificity of
anti-Panx1 antibody are important and required for assessing the role of Panx1 in hearing and other
Panx1 functions.
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Abbreviations

ABR auditory brainstem response
CM cochlear microphonics
cKO conditional knockout
DPOAE distortion product otoacoustic emission
EMMA European Mouse Mutant Archive
EP endocochlear potential
KO knockout
OC organ of Corti
OHC outer hair cell
OSC outer sulcus cell
PTS permanent threshold shift
SLM spiral limbus
WT wild-type
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