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Abstract: The spatiotemporal regulation of calcium (Ca®*) storage in late endosomes (LE) and
lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events,
including endocytosis, exocytosis, and autophagy. Alterations in Ca** homeostasis within the LE/Lys
compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to
neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour
of Ca?*-binding proteins. This also includes Annexins (AnxA), which is a family of Ca?*-binding
proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton
interactions, Ca* signalling, and LE/Lys positioning. Although our knowledge regarding the way
Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys
is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids,
such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol
(4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may
also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys,
AnxAl, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route,
in particular, cholesterol transfer between LE and other compartments, positioning Annexins at
the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms
include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well
as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the
current understanding how Annexins contribute to influence LE/Lys membrane transport and
associated functions.
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1. Introduction

Annexins are a large protein family that is expressed in vertebrates, invertebrates, plants, fungi,
and protists, which bind to biological membranes in a Ca?*-dependent manner [1]. In humans, the 12
different Annexin proteins (AnxA1-A11, A13) [2] all consist of a highly conserved core domain that
comprises four structural repeats, each 70-75 amino acid residues in length, and containing type
I Ca®* binding sites. In addition, providing specificity, each Annexin is endowed with a unique
N-terminal domain of different length. Most likely due to gene duplication, AnxAé6 is the only family

Int. . Mol. Sci. 2018, 19, 1444; d0i:10.3390/ijms19051444 www.mdpi.com/journal/ijms


http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4684-0278
http://www.mdpi.com/1422-0067/19/5/1444?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19051444
http://www.mdpi.com/journal/ijms

Int. ]. Mol. Sci. 2018, 19, 1444 2 of 25

member consisting of two copies of the four-repeat core domains that are connected by a flexible linker
region [3-7].

When considering the miscellany of Ca’*-related events at cellular membranes, Annexins
contribute to a variety of intracellular membrane trafficking steps, but also membrane that are associated
signalling, altogether influencing proliferation, differentiation, and inflammation [2,8-10]. Over the
last few decades, the Ca?*-dependent membrane association of Annexins has been investigated
intensively in endo- and exocytosis, the spatial organization of plasma membrane lipids, in particular,
during membrane repair, as well as in the linkage of membranes to the actin cytoskeleton [1,11-15].
In addition to these properties that are driven by Annexin-lipid interactions, Annexins associate with
a plethora of other proteins, including Ca?*-effectors, and can form Ca%*-permeable ion channels
in artificial membranes [16-23], providing connections to Ca** homeostasis and Ca?*-driven signal
transduction [1,3,24].

Here, we will review the role of Annexins that are localized in the late endosomes (LE)/lysosomes
(Lys) compartment as Ca®* effectors for the regulation of cholesterol transport, signalling,
and homeostasis in vesicular and non-vesicular trafficking pathways.

2. Late Endocytic Compartments

The endocytic compartment is a functional continuity of the plasma membrane, connecting
the extracellular environment with the perinuclear region, where LE fuse with Lys, the endpoint of
the constitutive endocytic pathway. The vast complexity of the endocytic compartment is reflected
by a sophisticated molecular repertoire of proteins and lipids that are in charge of organizing the
characteristic membrane morphology of each compartment, and functioning of membrane and cargo
transport between these different endocytic entities. Moreover, new insights in the transport between
cellular organelles strongly implicate additional non-vesicular pathways to fuel the exchange of
membrane lipids, such as cholesterol and ions, including Ca®* (see Section 6) [25,26].

In the following, we will focus on the late endocytic compartment, which includes LE, multivesicular
bodies (MVB), pre-lysosomes, endolysosomes, autophagosomes, amphisomes, Lys, and autolysosomes.
Most of those late endocytic structures continuously undergo maturation processes before fusion with
Lys, which is considered to be crucial to acquire identity and differential functionality [27].

The concept of maturation from early endosomes (EE) to LE and beyond encompasses an array
of diverse cellular events that eventually generate new morphologically and functionally different
compartments. This heterogeneity among LE structures is reflected in the diversity of ultrastructural
details that were identified by electron microscopy [28]. Critical changes along the maturation from EE
to LE/Lys include: (i) the formation of intraluminal vesicles (ILV), (ii) the acidification and changes
in luminal Ca?* levels, (iii) the conversion of phosphatidylinositol (PI), contributing to alterations in
size and morphology, (iv) changes in fusion specificity and motility, and (v) the gain of degradative
potential by the accumulation of hydrolases [29,30]. In contrast, and occurring simultaneously, there is
a major loss of recycling capacity, most probably as a consequence of decreased membrane extensions
and the eventual acquisition of a vacuolar shape.

Closely interconnected with LE maturation and functioning, LE movement is crucial for fusion
with other endocytic or autophagic structures and determines the position in the cell, which is
now well recognized as highly relevant for cell physiology (see Section 8). Microtubules, but also
actin microfilaments, facilitate LE movement. A myriad of microtubule-associated, actin binding,
and cytosolic proteins, together with Ca?* signals, fine-tune the assembly/disassembly of protein
complexes that associate LE with tubules and fuel the motor proteins to control the directionality of LE
vesicle movement [31,32].

Several protein families represent well-established LE markers, having fundamental tasks for
the proper functioning of this compartment. This includes Rab and SNARE proteins, together with
other tethering protein families, with many excellent reviews that are covering the regulatory role of
these proteins in much detail [33,34]. However, far less well-characterized are the plethora of cytosolic
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proteins, including peripheral membrane components, but also signalling, Ca®* (for example Annexins
or calmodulin), or actin binding proteins that support, regulate, and define these late endocytic
structures (Figure 1).
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Figure 1. Schematic overview of Annexins at the crossroad of late endocytic pathways. Late endocytic
structures (LE), MVBs containing ILV and Lys with associated Annexins are depicted in the centre of
the diagram. The LE compartment dynamically and functionally interacts with several inbound and
outbound routes; (1) maturation of early endosomes (EE); (2) the recycling pathway to the plasma
membrane; (3) the transport route for the biogenesis of lysosomes from Golgi or (4) the retrograde
trafficking to the Golgi membranes. Rab proteins (i.e., Rab5, 7) are critical for these pathways are also
shown. In addition, a subset of cytosolic proteins, such as CaZ* binding proteins (i.e., calmodulin,
CaM; 5100 family; apoptosis-linked gene 2, Alg-2) and signalling proteins (i.e., mammalian target of
rapamycin complex 1, mTORC1), interact with proteins (lipids) at the membrane of LE/Lys, contributing
to the regulation of ion channels, pumps, enzymes or signalling complexes. The close connection with
ER membranes enables membrane contact sites (MCS) to establish metabolic functional platforms for the
exchange of lipids (cholesterol) and ions (Ca®*). Specific proteins, “tethers”, such as AnxA1 and possibly
AnxA®6, or “exchangers”, like StARD3, ORP1L, or ORP5 at the LE/Lys membrane, are attached via two
phenylalanines acid track (FFAT) motifs with vesicle-associated membrane protein-associated proteins
A/B (VAP-A/B) or protrudin at endoplasmic reticulum (ER) membranes. Hence, complex interplay
of vesicular transport with non-vesicular transport through MCS guarantee Ca?* and cholesterol
homeostasis and the positioning of LE/Lys constituents. Although Annexins are commonly considered
cytosolic proteins, they have been identified inside as well as outside LE structures. Ca®*, acidic
phospholipids and cholesterol regulate the recruitment and binding of a subset of Annexins to the LE
surface; Finally, (5) the secretory pathway for constitutive exocytosis and (6) a regulated transport for
the secretion of exosomes, involving ESCRT and Alix from MVBs, are shown. Orange arrows indicated
those pathways modulated by cholesterol. Green arrows indicated recycling pathways and cytoplasmic
proteins interacting with late endocytic compartment. Grey arrows indicate maturation of the late
endocytic structures. Caveolin-1, Cavl; Syntaxin 6, Stx6; StARD3, StAR-related lipid transfer domain
protein 3; ORP1L, oxysterol-binding protein-related protein 1, ESCRT, endosomal-sorting complexes
required for transport, Alix, Alg-2 interacting protein X. See text for further details.
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3. Annexins in Late Endocytic Compartments

Accumulating evidence underscores the tight association of Annexins with the functioning
of the endocytic compartment. AnxAl was first identified to be necessary for EE fusion in a
Ca?*-dependent manner [15], followed by evidence for its involvement in the inward vesiculation
of MVBs [35], and more recently, MCS formation between the endoplasmic reticulum (ER) and
LE/MVBs [36] (see Section 6). Likewise, AnxA2, A5, and A6 can bring together EE [37],
autophagosomes/lysosomes [38], and LE/Lys [39], respectively. Annexins are now commonly
believed to drive these fusion events via their ability to function as organizers of membrane domains,
in order to target their interaction partners to specific membrane microdomains and enable the
formation of compartment-specific complexes and activities [1,2,9,13,39,40]. In addition, several
Annexins, including AnxA2 and AnxAS6, also contribute to the segregation of membrane lipids and the
re-arrangement of membrane-cytoskeleton interactions to promote membrane curvature, a prerequisite
for the budding of vesicles [41-44]. The ability of AnxAl and AnxA8 to coordinate the contacts between
membrane lipids and the actin cytoskeleton [45-47] may further contribute to vesicle budding.

The findings that are listed above implicate Annexins to participate in the maturation of the
endocytic pathway. LE structures have a high negative cytosolic surface charge [48,49] and they are
enriched with phospholipids, such as PS, PA, and PI [50,51]. The negative charge suggests that LE/Lys
can serve as a docking site for proteins with PS-binding C2-domains, which include signalling and
fusogenic effectors, but also Annexins [1-3]. This Caz*—dependent binding to phospholipids is a
fundamental property of Annexins, and it provides the basis for reversible Annexin membrane binding
via fluctuation in localized Ca2* concentrations. Thus, AnxA1l, A2, A5, A6 and A8 can all be found in
LE/Lys, yet pools/subpopulations of these Annexins can also interact with biological membranes in
the absence of Ca* [52-55]. This is exemplified by AnxA2-dependent endosome maturation, which
represents an example for cholesterol-driven LE membrane binding. This well-studied contribution of
AnxA?2 in the budding of vesicles from EE to form LE [56] probably occurs ina p11/S100A10-dependent
manner [57], and it requires the phosphorylation of the AnxA2 N-terminal region [58]. In this
scenario, AnxA2, together with the Spire Type Actin Nucleation Factor 1, induces actin patch
formation in EE, which ultimately drives membrane remodelling and budding [58]. Similarly, AnxA1l
phosphorylation [36,52] and the interaction with S100A11 [36,59] contribute to MVB vesiculation
in a cholesterol-sensitive manner. Likewise, and as described in more detail below, the association
of AnxA6 with LE is sensitive to cholesterol levels [3,60,61]. Taken together, this clearly highlights
membrane binding properties, protein interactions with other Ca?* effectors, and signalling events as
drivers for Annexin-dependent endosomal functions (Figure 1).

Further adding to the complexity that determines the LE membrane association of Annexins,
Ca?* can promote vesicle fusion by inducing the local segregation/re-arrangements of lipids, such as
PA or cholesterol [40,62-65]. Given that LE/Lys function as acidic CaZ*-stores, with several integral
Ca?* transporters shuttling Ca?* across the LE/Lys membrane, this would allow for Ca?* fluctuations
to affect phospholipid binding affinity of Annexins, but also the localized availability of cholesterol
for LE/Lys membrane association. In fact, for membrane fusion, local Ca?* is crucial and acidic
intracellular Ca* stores are well integrated in this process. One excellent example for Annexins
linking Ca*-homeostasis with lysosomal function is the interactome of two pore segment channel 1/2
(TPC1/2) proteins, Ca?* channels that contain several members of the Annexin family [66].

Finally, AnxA8, which is similar to AnxA2 in other locations, binds to PIP2 and actin in a
Ca2+—dependent manner in LE [46,47]. As other LE-associated Annexins also interact with actin [1,13],
one can envisage that actin-related recruitment of Annexins to the LE/Lys compartment is not restricted
to AnxA8. Hence, Annexins may contribute to membrane fusion via Ca?*-dependent and -independent
membrane and protein interactions.

One defining feature of Annexins is their capacity to bind to negatively charged lipids of
cellular membranes, in particular, PS, PA, and P, in a Ca2+—dependent manner [1,3]. However,
the fact that Annexins have been located in a variety of organelles in living cells, irrespective of
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Ca?* levels and negatively charged phospholipids [1,3], pointed at additional mechanisms to target
and to modulate the binding of Annexins to membranes. This coincides with the abovementioned
cholesterol-dependent membrane binding of several Annexins [62], which becomes highly relevant in
the context of LE, representing the main sorting compartment for low density lipoprotein (LDL)-derived
cholesterol [67,68]. In fact, pathological settings, such as LSDs, neurological disorders, and many
others, are characterized by cholesterol accumulation in the LE compartment, which drives the LE
membrane association of several Annexins, including the most abundant Annexins in LE, AnxAl,
A2, A5, and A6 [36,38,69,70]. This may point at a direct interaction of Annexins with cholesterol [71],
an observation that is further supported by the identification of Annexins as cholesterol-binding proteins
in a proteome-wide mapping approach in living cells [72]. Likewise, the fact that those Annexins are also
highly enriched in cholesterol-rich lipid rafts [73] further substantiates cholesterol to promote Annexins
association with LE membranes. In favour of this concept, AnxA2 and AnxA6 bind to membranes in
a cholesterol-sensitive manner in vitro [61,63] and in cells [60,62]. Also, a fraction of AnxA2 requires
cholesterol, but not Ca?*, to bind to chromaffin granules [63], mainly regulated by the Annexin core
domain [62]. Similarly, AnxA6 associates with high affinity to lipid monolayers with increased amounts
of cholesterol at acidic pH. This cholesterol-dependent membrane interaction requires the tryptophan
343 residue within the linker region between the two core domains of AnxA6 [61]. Most strikingly,
cell-based studies revealed calcium-insensitive, but cholesterol-dependent, binding properties of a pool
of AnxA®6 proteins to LE membranes [60]. In addition, the structural flexibility of AnxA6 between its
two core domains provides opportunity to bind two membranes simultaneously [1], making AnxA6 a
suitable candidate to tether organelles and to participate in membrane fusion/docking during endocytic
transport, but also MCS formation.

4. Annexins and Cholesterol Homeostasis

Cholesterol can be synthesized by cells, but the majority of cellular cholesterol is supplied by LDL
endocytosis. After internalization, esterified LDL-cholesterol reaches LE/Lys, where it is hydrolysed
to be delivered to other sites via NPC1/2 proteins [67,68]. Up to 30% of LDL-cholesterol moves to
the ER, to regulate feedback control of cholesterol biosynthesis [68,74]. From the ER, cholesterol can
then be delivered to other organelles, such as the plasma membrane or mitochondria. Alternatively,
excess cholesterol can be esterified by acyl-coenzyme A:cholesterol acyltransferase for storage in lipid
droplets [75]. Most relevant to this review, increasing evidence suggests that MCS between endosomes
and the ER also control the cellular distribution of cholesterol [76,77].

The cholesterol-binding properties of Annexins that are described above probably have far
reaching consequences not only for the membrane order of certain membranes, possibly contributing
to stabilize or to create specific microdomains, but also for cellular cholesterol homeostasis. For instance,
the ability of AnxAl to establish membrane contacts between the ER and MVBs not only ensures
the downregulation of EGFR, but also is accompanied by the transfer of cholesterol from the ER to
MVBs. This is an unusual cholesterol transport route, as cells commonly obtain cholesterol through
LDL endocytosis and LDL-derived cholesterol in LE is normally transferred to the ER to downregulate
de novo cholesterol synthesis [67,68]. However, when LDL-derived cholesterol levels in MVBs are low,
this reverse ER to LE route of sterol traffic seems to ensure the presence of cholesterol as an essential
factor for inward vesiculation and ILV formation [36].

In the case of AnxA2, increased association of this Annexin with cholesterol-rich LE was observed [56].
This correlated with an accumulation of EGF ligands in EE upon AnxA2 depletion, suggesting a
cholesterol-dependent role for AnxA?2 in the delivery of transport intermediates to LE [56]. However,
these findings might be restricted to certain cell types [60], and other studies identified AnxA2 knockdown
to not interfere with the degradative pathway, but the recycling of the transferrin receptor [78].

We unravelled several significant cellular alterations due to AnxA6 binding to LE membranes,
all being relevant to the distribution of cholesterol and functionality of other cellular compartments [3].
AnxA6 overexpression led to increased amounts of AnxA6 in the LE compartment, which was
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associated with (i) accumulation of cholesterol in LE/Lys, while cholesterol levels at the plasma
membrane, Golgi, and recycling endosomes were reduced [69,79,80]. (ii) This Niemann-Pick type C1
(NPC1) mutant-like phenotype triggered the sequestration of caveolin-1 in the Golgi, leading to reduced
numbers of cholesterol-rich caveolae at the cell surface [79]. (iii) AnxA6-induced changes in cellular
cholesterol distribution also interfered with the trafficking of cholesterol-dependent SNARE proteins
(e.g., syntaxin 4, syntaxin 6, SNAP23) and integrins, compromising their critical functions in cell
adhesion and migration [69,80,81]. The latter findings might be indirectly linked with a potential role
for SNARE proteins in cellular cholesterol trafficking. First, SNARESs represent cholesterol-sensitive
components of membrane fusion and vesicular transport, and their function and localization is
influenced by the cholesterol levels in the endocytic compartment [67,82]. Second, several SNAREs
directly interact with cholesterol [67,72,83]. These observations might extend to other Annexins,
as AnxA2 translocates to SNARE proteins during exocytosis [84]. Hence, the influence of Annexins on
SNARE-mediated membrane fusion and docking may not only deliver cargo to specific destinations,
but also serve to transport cholesterol between cellular compartments.

The molecular means how the recruitment of AnxA6 to LE alters LE-cholesterol transport is not
fully understood, but it probably involves specific protein-protein interactions that enable AnxA6 to
block LE-cholesterol egress (see Sections 4 and 6). However, AnxA6 membrane binding to trigger the
remodelling of cholesterol-rich microdomains, as shown to occur at the plasma membrane, should also
be considered [61,73,85]. These lipid-binding features of AnxA6 may cause similar domain changes in
the LE compartment, thereby modulating the spatial distribution of cholesterol, and consequently other
lipids, in LE membranes, creating specific microenvironments, such as membrane rafts [61,85,86]. These
highly ordered and cholesterol-rich domains may influence cholesterol transporter activity, including
NPC1, provide the platform for proteins to establish MCS (see Section 6), or contribute to control the
formation of signal transduction platforms that are linked to Ca?* homeostasis, LE-cholesterol egress,
LE maturation, or other LE/Lys functions, such as growth factor receptor signal termination.

Finally, in addition to AnxA6, AnxA8 also controls LE-cholesterol homeostasis [87]. Yet, strikingly
opposite to the requirement of AnxA6 upregulation for LE-cholesterol accumulation, only AnxA8
depletion caused the blockage of LE-cholesterol egress, suggesting a possible counter-balance of
these two Annexins in this context. Taken together, several Annexins impact on cholesterol transport
at various steps along the endocytic pathway, and their up- and downregulation is differentially
contributing to the intricate network of feedback mechanisms that are associated with cellular
cholesterol homeostasis.

5. Annexins and Signalling in Late Endocytic Compartments

The endocytic pathway is characterized by compartment-specific microdomains that (1) ensure
compartment identity and directional trafficking, and (2) enable diversity of signal transduction either
from multiple or localized endocytic entities.

The maturation of endosomes along endocytic pathways is orchestrated by compartment-specific
Rab proteins. Different members of these small monomeric GTPases are found in specific endosomal
subpopulations regulating endosomal position, movement, and fate [33,34]. The subcellular
distribution of Rab proteins within the endocytic membrane network is closely connected to signalling
platforms that control the location and the activation status of receptors along the degradative pathway,
but also signalling events along the recycling of receptors and ligands [33,34]. In most cases, signalling
cascades are triggered by receptor activation at the cell surface. The classical example is the epidermal
growth factor receptor (EGFR)-induced activation of the Ras/mitogen-activated protein kinase (MAPK)
pathway, which is initiated at the plasma membrane, and it continues to signal throughout the
endocytic pathway as all components, including EGFR, Ras, Raf-1, and MAPK traffic through EE and
LE compartments [88].
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On the other hand, very localized and endosome-specific signalling complexes exist, such as the
mammalian target of rapamycin complex 1 (mTORC1). This protein complex drives energy metabolism
in cells and it is specifically recruited to LE/Lys upon activation [89].

As outlined below, several Annexins appear to modulate various aspects of endosome trafficking
and signalling along the degradation pathway in LE, MVBs, autophagosomes, and Lys.

5.1. Regulation of Endosomal Fate: Rab Proteins

Major advances in the understanding of endocytic membrane transport have come from the
identification of Rab GTPases as markers for different endosomal compartments [33,34]. The large
Rab GTPase family comprises approximately 70 members in humans, with the majority of these
Rab proteins (~75%) acting alongside endocytic trafficking routes. Each Rab protein is localized in
membrane microdomains of a specific endocytic compartment to organize a collection of specific
effectors that enable endosome maturation, receptor trafficking, and signal transduction. For instance,
the maturation of endocytic vesicles down the degradative route is ensured by the progressive
substitution of particular Rab GTPases by others decorating the endosomal membrane.

The coordination of these so-called Rab cascades is complex, and is based on Rab GTPases that are
acting as molecular switches that alternate between active GTP-bound and inactive GDP-bound
states. This is facilitated by their specific, cognate guanine nucleotide exchange factors (GEFs)
and GTPase-activating proteins (GAPs), which regulate RabGTP/GDP levels of a specific Rab
protein in response to environmental changes, ultimately policing other Rabs acting up- and/or
downstream. This multifactorial machinery thereby establishes the identity of organelles, determines
compartmentalization of early, late, lysosomal, and recycling routes, allows for vesicle budding and
fusion, and integrates signalling cascades.

While Rab5 critically determines EE functionality, the LE/MVB/Lys compartment is defined
by Rab7, Rab9, and Rab24, which control lysosome biogenesis, autophagosomal maturation, and
vesicle transport through the interaction with multiple effector proteins [34,90]. During the maturation
from EE to LE, the EE marker Rabb is progressively substituted by Rab?7. In brief, the current models
favour Rab5 and PIP2 to recruit the protein complex MON1A /B-CCZ1, which reduces Rab5 activity.
Rabb is then released from the membrane, enabling MON1A /B-CCZ1 to recruit and activate Rab7 [29].
Alternatively, the budding and fission of Rab7 domains present on Rab5-positive endosomes may also
contribute to EE maturation [91]. Progressing from LE to Lys entails further regulatory steps, requiring
other Rab proteins, in particular, Rab9, which mediates the sorting of lysosomal enzymes and lipids
from the trans-Golgi-network to Lys and autophagosomes [92,93].

Besides PIP2 and PS contributing to regulate the association and function of Rab proteins in
LE/Lys, cholesterol has also been identified to modulate Rab behaviour in LE/Lys. Hence, the ability
of AnxA1l, A2, A6, and A8 to influence cholesterol transport within endosomal compartments (see
Section 4) is likely to affect Rab-GTPase activities in EE and LE/Lys. How AnxAl-mediated cholesterol
transport from the ER to MVB [36] or AnxA2-dependent formation of cholesterol-rich platforms in
EE for the onset of degradation [56] could affect Rab functionality is unclear, but several studies
addressing Rab activity after LE-cholesterol accumulation provides some insight into the possible
alterations of Rab-GTP/GDP cycles in LE/Lys upon AnxA6 overexpression or AnxA8 depletion.
For instance, in NPC1 mutant cells, LE-cholesterol accumulation sequesters Rab9 and disrupts LE
function, as judged by the missorting of mannose 6-phosphate receptor to Lys for degradation. At the
molecular level, this involves impaired Rab9 protein turnover, as increased cholesterol in NPC1
mutant membranes interfered with the extraction of inactive Rab9 protein via GDP dissociation
inhibition proteins (GDIs) [94]. Likewise, LE-cholesterol accumulation also impairs the GTP/GDP
cycle of Rab7a [95], thus reducing LE motility. In these earlier studies, increased LE-cholesterol was
proposed to interfere with GDI-dependent removal of inactive Rab7 from LE membranes [95]. Based
on these studies, up- or downregulation of AnxA6 and AnxAS, respectively, could act similarly to
cause detrimental effects on the Rab9 and the Rab7 GTP/GDP cycle. However, the results from
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our laboratories may provide an alternative explanation for the latter observation. Similar to the
scaffolding function of AnxA6 at the plasma membrane, where AnxA6 reduces Ras-GTP levels via
the recruitment of a Ras-GAP family member, p120GAP, we recently identified AnxA6 upregulation
to reduce Rab7-GTP levels in NPC1 mutant cells, possibly via the recruitment of a Rab7-GAP to
cholesterol-rich LE. Taken together, and revisiting models that are proposed in earlier studies [96-100],
these findings implicate regulatory roles of several Annexins, through modulation of cholesterol
transport or direct protein interactions, for Rab proteins in LE/Lys, key players in the endpoint of the
endocytic pathway.

5.2. The Coordination of EGFR Signalling and Trafficking

The regulation of EGFR activity is probably the best-studied example for the tight coordination of
signalling and trafficking along the endocytic pathway. Upon ligand binding at the cell surface, EGFR
dimerization and activation triggers the binding of adaptors, which activate multiple signalling
cascades that regulate cell proliferation, migration, and many other cellular activities [101,102].
To avoid constitutive signalling, ligand binding simultaneously stimulates rapid EGFR internalization,
targeting active EGFR and its downstream effectors through the endocytic system for degradation
in the LE/Lys compartment. While EGFR signalling was initially considered to exclusively occur
at the plasma membrane, it is now well documented that EGFR signal output is overseen by
compartmentalization, providing opportunity for signal specificity, and that EGFR trafficking down
the degradative route relies on signalling outcomes. Indeed, numerous studies have provided evidence
that within EE, Rab5 and its effectors are critical for the proper targeting of activated EGFR to the
LE/Lys compartment, but also for EGFR signalling magnitude in the EE compartment [103]. Likewise,
the Rab7 interactome ensures EGFR downregulation in lysosomes, which is critical for EGFR signal
termination [30]. On the other hand, EGFR phosphorylation improves the interaction with assembly
polypeptide 2 complex for endocytosis [101,104,105], and phosphorylation of EGFR substrate 15 is
decisive for EGFR internalisation [106].

Interestingly, cells are able to modify the magnitude of EGFR activation via different internalization
routes. Low amounts of EGF trigger clathrin-mediated endocytosis that target EGFR to Rab5-positive
EE, which are then destined to the perinuclear region. The simultaneous increase of EGFR phosphatase
activity in this compartment ultimately promotes EGFR recycling to the plasma membrane. In contrast,
high amounts of EGF induce substantial EGFR phosphorylation, but also EGFR ubiquitination,
which favours clathrin-independent endocytosis and trafficking towards Lys via Rab7-positive LE
for degradation. In fact, in Rab7-positive LE, ubiquitinylated EGFR is directed into ILVs in order to
sequester ligand-bound EGFR away from the limiting membrane and terminate signalling [30].

Hence, the tight coupling of EGFR signalling and trafficking provides multiple opportunities to
modulate EGFR signal output in space and time. As Annexins regulate endosomal transport, and can
provide the scaffold to create and establish localized signal protein complexes, a substantial amount
of studies have described roles for several Annexins in the EGFR/Ras/MAPK signalling pathway.
We have previously summarized the numerous protein-protein interactions that are regulated by
Annexins that impact on EGFR signalling and trafficking [10,107]. It would go beyond the scope of
this review to discuss all of these in detail, but the most prominent examples of Annexins altering
EGER trafficking and signalling are mediated by their scaffolding function, facilitating the recruitment
of negative regulators of EGFR and Ras [108,109], or enabling the complex formation of EGFR with
phosphatases [35].

At the plasma membrane, the work from our laboratory identified AnxA6 to promote
protein kinase Co-mediated EGFR threonine (T654) phosphorylation, which inhibits EGFR tyrosine
phosphorylation and downstream activation of effector pathways [109]. These studies revealed that
AnxAG6 acts as a scaffold to enable plasma membrane targeting of PKCo and EGFR/PKC«x complex
formation. AnxA6-dependent EGFR inactivation was associated with reduced EGFR internalization
and activation. In addition, we previously demonstrated that AnxA6 also recruits p120GAP, a GTPase
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activating protein, to the plasma membrane to inhibit Ras signalling downstream of activated
EGFR [110]. As AnxA®6 is located in EE and LE, one can speculate that AnxA6 might serve as a
scaffold to recruit PKCax and p120GAP to endocytic compartments, thus further contributing to
downregulate EGFR and Ras activity.

Exemplifying the diversity of how Annexins can modulate EGFR activity, AnxAl inhibits EGFR
signalling through phosphatases, which facilitate EGFR tyrosine dephosphorylation. Protein-tyrosine
phosphatase 1B (PTB1B) is one of the phosphatases that can promote EGFR downregulation. However,
PTBI1B is located in the ER and trafficking of endocytosed EGFR to the ER had not been observed.
Yet, ER-MVB contacts were recently identified as sites for PTB1B-mediated EGFR downregulation,
preceding sorting of inactive EGFR onto ILVs for degradation [111]. Follow-up studies revealed that
ER-MVB contacts were tethered by AnxA1 and its Ca?*-dependent ligand, SI00A11. AnxA1 is known
to associate with EGFR and a well-known substrate for EGFR tyrosine kinase [35,52], indicating that
EGFR-mediated AnxA1 phosphorylation might contribute to establish contacts between EGFR-positive
endosomes and the ER. Interestingly, the AnxAl-induced microenvironment that enables this EGFR
trafficking route is coupled to cholesterol transfer from the ER to MVBs [36] (Figure 1). Moreover,
the subsequent step in EGFR downregulation, its removal from the cytoplasm via inward vesiculation
in MVBs, requires cholesterol delivery from the ER. While the association of EGFR downregulation
with cholesterol transport may only occur when LDL-cholesterol levels in MVBs are low, this clearly
highlights the potential of this Annexin to translate nutritional status into the regulation of growth
factor receptor activity.

In contrast to the potential of AnxAl and AnxA6 affecting the localization and activity of
EGEFR and its effector pathways via direct protein-protein interactions, AnxA2 and AnxA8 probably
impact on EGFR within the endocytic pathway indirectly. This includes AnxA2 to modulate
cholesterol distribution during EE to LE maturation (see above), and AnxA8 modifying LE morphology
and motility [45]. AnxA8 overexpression caused LE/MVB clustering in the perinuclear region,
while AnxA8 depletion induced the localization of LE/MVBs in the cell periphery. The latter correlated
with impaired EGF-induced EGFR degradation. The underlying cause may involve changes in the actin
cytoskeleton [45,46] or LE-cholesterol homeostasis [87], both of which are known to affect LE/MVBs
positioning and functioning.

Taken together, several Annexins contribute to fine-tune EGFR activity along the endocytic
pathway. Depending on the cell-type or the tissue analysed, their diverse involvement in the
regulation of EGFR trafficking, often involving LE-cholesterol, and various scaffolding functions,
provide opportunity to differentially regulate EGFR signalling outcomes in growth, differentiation,
and many other biological activities.

5.3. mTORC1 Signalling from the LE/Lys Compartment

In contrast to the multitude of EGFR signalling events originating from different endocytic sites,
other protein complexes only signal from the LE/Lys compartment. This includes the mammalian
target of rapamycin complex 1 (mTORC1), which is a critical signalling hub that regulates cell growth
and metabolism in response to the availability of nutrients, in particular, amino acids, glucose,
and growth factors or the energy status of the cell [112].

Together with mTORC2, mTORC1 enables adaptation to changes in the microenvironment
through the upregulation of biosynthetic pathways. This is achieved through mTORC1-mediated
phosphorylation of substrates that increase ribosome biogenesis, gene transcription, mRNA
translation, carbohydrate and amino acid metabolism, autophagy, as well as microtubule and
actin dynamics [113,114]. In addition, mTORC1 activation has significant consequences for lipid
metabolism, promoting de novo cholesterol and fatty acid synthesis, ensuring membrane biosynthesis
for proliferation, and generating lipid stores as energy source for the future synthesis of sterol and
fatty acid derivates [115]. Hence, the LE/Lys compartment is not only a sorting station for exogenous
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cholesterol and other lipids, but mTORC1 activation in LE/Lys also drives anabolic pathways in
lipid metabolism.

A great advance in the understanding of mTORC1 activity came from the identification of several
Rag GTPases, RagA and B, together with RagC and D, which convert nutrient signals from amino
acids and glucose into the recruitment of mTORC1 to Rab7-positive LE/Lys [116,117]. Once at the
LE/Lys compartment, the Rheb GTPase then triggers mTORC1 kinase activation [118], followed by
the phosphorylation of key regulators that control cell growth.

Although the LE/Lys compartment coordinates sorting of exogenous lipids, the majority of studies
in this field have focused on amino acid- and glucose-induced mTORC1 activation, and revealed
plenty of consequences for anabolic cholesterol and fatty acid metabolism [115]. Alternatively, it was
hypothesized that active mTORC1 in LE/Lys could sense the availability of incoming cholesterol and
other lipids through the diet. In support of this model, increased dietary uptake of lipids in mice
upregulated mTORCT1 activity [119,120]. In addition, LDL uptake is increased in proliferating cells [75,121],
which would raise cholesterol content in the LE/Lys compartment. These observations coincide with
other studies that demonstrated the changes in the LE/Lys microenvironment, indicating an altered
membrane order and function of integrated LE proteins, to influence mTORC1 activity [115,122,123].
Indeed, NPC1 depletion or drug-induced LE-cholesterol accumulation was associated with the inhibition
of mTORC1 activity in endothelial cells [124]. In addition, the NPC1-mutant phenotype is associated with
defects in endosomal/lysosomal Ca?* homeostasis and thapsigargin, which releases Ca?* from the ER,
can correct cholesterol accumulation in NPC1 mutants [125]. This exciting association of Ca%* homeostasis
with cholesterol transport in LE/Lys appears to be highly relevant for mTORCI, as thapsigargin
restored cholesterol export in LE-cholesterol-rich endothelial cells and reversed the inhibition of mTORC1
signalling [124]. Hence, LE-associated proteins regulated by Ca?* and LE-cholesterol, including Annexins,
are attractive candidates that could be responsible for these observations.

Recent studies have further substantiated the ability of mTORC1 to sense LE/Lys-cholesterol
levels. In fact, LDL-cholesterol transport to LE/Lys, but not oxysterols or fatty acids, and independent
of amino acids, led to the recruitment and activation of mTORC1 [126] (Figure 1). The mode of action
involves LE-cholesterol to bind SLC38A9, which is a lysosomal amino acid transporter that is implicated
in mTORCT activation [127,128], translating elevated LE-cholesterol levels into mTORC1 activation.
Strikingly, NPC1 interacts with SLC38A9 to control mMTORCT1 activation and NPC1 depletion resulted
in constitutively active mTORC1 activity that could not be stimulated by the addition of LDL [126].
Taken together, these studies strongly indicate that the transport of LDL-derived cholesterol across LE
membranes provides a feedback mechanism to control the master growth regulator mTORC1. Although
the involvement of Annexins in these settings is yet unknown, we speculate that LE-associated Annexins,
in particular, AnxA6 upregulation or AnxA8 depletion, leading to cholesterol accumulation in the
LE/Lys compartment, are likely to have an impact on mTORC1 activity.

These observations would provide exciting opportunities to identify novel functions of
LE-associated Annexins in cell metabolism and the energy status in health and disease.

6. Annexins and Membrane Contact Sites: Close Encounters at the Interface of LE and the ER

In eukaryotic cells, the communication between organelles is fundamental to the cell’s coordinated
response to physiological and pathological stimuli. For decades, vesicular membrane trafficking was
considered to facilitate the exchange of molecules and information between different organelles.
However, this classical view has recently been challenged by the identification of direct physical
contacts between organelles as another important and widespread means for cargo exchange [76,77].
MCS are defined as regions of close proximity (10-30 nm) between membranes from two different
cellular organelles [129] that allow for the exchange of small molecules, such as lipids and ions. These
contact sites do not form randomly, but are transiently established via very specific protein-protein
interactions between two organelles. It is generally believed that MCS are built by proteins that are
residing in the membrane of organelles. In addition, the recruitment and/or the participation of
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cytosolic proteins to these domains, which can establish connections or act as tethers, may also
contribute to this process. Strikingly, although these interactions can be maintained over time,
the fusion between the membranes at these contact sites of different organelles never occurs [130].

MCS exist predominantly between the ER and different endocytic or non-endocytic
organelles [111,131-133]. In regards to endosomes, MCS contribute to endosome positioning within
the cell [134-137], coordination of endosome motility to control the timing and subcellular location of
fission events [138], endosome maturation [139], lipid and Ca?* transfer [77,140,141], and to establish
platforms for protein interactions across organelle membranes [36,111,142].

Although NPC1/2 is central to LE-cholesterol egress [67,68], the cholesterol transport routes
exiting the LE compartment are still not well defined. This includes the formation of MCS,
which transfer cholesterol between LE and the ER [76,77,143,144] (Figure 1). In LE membranes, several
proteins are believed to contribute to cholesterol transfer to the ER, including NPC1, oxysterol-binding
protein-related protein 1 (ORP1L), StAR-related lipid transfer domain protein 3 (StARD3) and
StARD3NL. In addjition, the activation of Rab7 (Rab7-GTP) to promote the motility and re-positioning
of LE is also critical for MCS formation and cholesterol transfer [76,77]. In the ER, vesicle-associated
membrane protein-associated proteins A/B (VAP-A/B), protrudin, and ORP5 are considered as
MCS core elements [77,141,145,146]. Current models favour NPC1, together with ORP1L and Rab?7,
to establish MCS with VAP proteins for LE-ER cholesterol transfer [77,147]. On the other hand, StARD3,
together with VAP proteins, also contributes to MCS-mediated cholesterol transfer from the ER to
LE [148] (Figure 1).

Despite the greatly improved knowledge on the MCS core elements listed above that enable
cholesterol transfer between LE and the ER, there is still a major gap of knowledge, as the feedback
loop that allows for dietary LDL-cholesterol uptake to control cholesterol synthesis in the ER would
implicate very effective on/off mechanisms that coordinate MCS formation for cholesterol transfer.
However, regulatory factors that allow or inhibit core MCS elements to interact for cholesterol transfer
are still unknown.

In this context, the transient and reversible membrane binding behaviour of Annexins could
provide a regulatory means to transiently bring LE and ER membranes together. Indeed (see also
Section 4), the AnxA1-5100A11 complex can tether subpopulations of endocytic organelles with the
ER via ORP1L and VAP-A when the LDL-cholesterol levels in MVBs are low, enabling cholesterol
transfer from the ER to MVBs and ensuring ILV formation [36]. It is tempting to speculate that, similar
to AnxA1-S100A11-induced LE-ER contact formation, the interaction of other Annexins with members
of the S100 protein family [149,150] may also contribute to the establishment of MCS. Given that
Annexins form heterotetramers with S100 proteins, which have been proposed to interact with two
different membranes simultaneously and allow for membrane fusion [40,150,151], these AnxA-S100
complexes may also have the ability to induce the formation of MCS and allow for the exchange of
ions and lipids, including cholesterol.

Another possible mechanism how Annexins might contribute to MCS formation emerges from
the ER-transmembrane proteins VAP-A and VAP-B. VAP-A /B establish MCS via recognition of FFAT
motifs (two phenylalanines (FF) in an acidic track) in proteins residing in endosomes, the Golgi
apparatus or peroxisomes. Thereby, the ER can establish contact with LE via ORP1L [133,152,153],
StARD3 [154], or protrudin [135]. Interestingly, AnxA6 sequence analysis revealed the presence of two
potential FFAT motifs (Figure 2); one FFAT homology (aa 603-604) was found in the C-terminal
repeat 8, which is located in an inner zone of AnxA6, with low accessibility, and unless large
conformational changes occur, it is unlikely to interact with other proteins. However, the second
FFAT homology (aa 331-332) is located in the AnxA®6 linker region with opportunities for protein
interactions, when considering that this region has been predicted to be away from the plane of the
membrane in the presence of Ca?* [5,6]. It should be noted that the algorithm that was designed
to identify FFAT motifs [155] only indicated a weak potential of the FF sequence within the AnxA6
linker region to interact with VAP-A (Dr. Tim Levine, personal communication). However, this is not
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uncommon, as other proteins that are known to interact with VAP-A /B, such as StARD2, ORP10, and
ORP11, are also characterized by weak scores when applying the abovementioned algorithm.
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Figure 2. Putative two phenylalanines (FF) in an acidic track (FFAT) motifs in AnxA6; (A) Protein
structure of bovine AnxA6 (1AVC [5]), showing alpha helixes (tubular structures), Ca?* ions (green)
and putative FFAT motifs (red). N- and C-terminus are indicated; (B) Amino acid sequence of the
FFAT motif-containing regions of AnxA6, highlighting the phenylalanine (FF) residues (red) within the
FFAT motif and the negatively-charged amino acids (blue) in the flanking region; ClustalO sequence
comparison of (C) the AnxA®6 linker region and (D) repeat eight amino acid sequences of the putative
FFAT motifs in different vertebrates. The relative amino acid position is indicated. Symbols represent
fully conserved residues (*), conservation between groups of strongly similar properties (:) and
conservation between groups of weakly similar properties (.). Green frame highlights putative FFAT
motif sequence.

In addition, the main discrepancy between the published FFAT consensus [155] and the AnxA6
FFAT motif in the linker region include (i) the three spacer residues AAG separating the acidic (DDD)
and FF residues, and (ii) a P residue separating FF from the acidic EAAQ sequence (Figure 2). The AAG
spacer with its small side chains may provide sufficient flexibility for the acidic residues, which could
then still interact with the FF pair as in a normal FFAT motif. Likewise, the P residue separating FF and
EA causes a turn that might similarly permit the approximation of the FF and EA residues (Reginald
Morgan, personal communication). Thus, future studies should address the potential of the FFAT
motifs in AnxA6 for their ability to support membrane contact formation between LE and the ER,
possibly via interaction with ER-resident proteins, or via NPC1 [79,156], which interacts with ORP5 to
form MCS structures for cholesterol transfer between the LE and ER [157-159].

7. Annexins and Biogenesis of Exosomes

The LE compartment is not only central to the cellular distribution of cholesterol, and the
delivery of membrane and cargo to Lys along the endocytic pathway, but also in the generation
of exosomes, nanovesicles that are secreted by cells, and are increasingly recognized as new mediators
for intercellular communication. Exosome biogenesis occurs in LE/MVBs, and their precursors
(ILVs) are generated by inward budding. This is followed by the trafficking of MVBs to the plasma
membrane, and finally, the secretion of ILVs, then becoming exosomes [160]. For further reading,
we refer to excellent reviews on exosome biogenesis [161]. Below, we will highlight links that connect
LE-associated Annexins with the biogenesis and secretion of exosomes.

Interestingly, exosomes do not only carry proteins, RNA, and lipid second messengers, but also
cholesterol [162]. In fact, exosomes are known for their high cholesterol content and can contribute
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to cholesterol accumulation that can modify lipid homeostasis in recipient cells [163]. Importantly,
cholesterol is required for several steps in the biogenesis of exosomes. This is a complex process,
because ILV formation needs to be coordinated with the loading of ILV with a variety of molecules,
including signalling proteins, nucleic acids, or cytoplasmic material [161]. Adding another level
of complexity, subsets of ILVs coexist even within a single MVB, with each being characterized by
different lipids and size. This is probably due to a diversity in the mechanisms that can trigger
ILV formation [164-166], which is still not well understood. The sequential action of different
components of the endosomal-sorting complexes that are required for transport (ESCRT), together
with ubiquitination, is the best-described machinery that drives ILV formation [167,168]. In addition,
tetraspanins (CD63, CD81, CD82) [169-171], ceramide [172], and lysobisphosphatidic acid (LBPA) [173]
contribute to different MVB subpopulations that are destined for either lysosomal degradation or
exosomal release [174].

Several of the mechanisms that are listed above are interrelated to cholesterol. ILVs accumulate
cholesterol [175,176], and ESCRT complexes generate cholesterol-rich microdomains [177] that
contribute to the trafficking of the tetraspanin CD82. The LBPA-interacting protein Alix controls
the MVB cholesterol content [178], and most intriguingly, in certain cell types, drug (U18666A)-
or NPCl-induced LE-cholesterol accumulation favours cholesterol secretion via exosomes [179].
Hence, exosome secretion can bypass cholesterol accumulation, possibly contributing to maintain
cholesterol homeostasis.

In addition, and related to AnxA6-induced LE-cholesterol accumulation and its functional
consequences for cholesterol-dependent cellular events at the plasma membrane [79,80], a recent
study deciphered the mechanisms that contribute to exosome secretion [180]. MVBs are equipped with
specific SNARE proteins that enable fusion with the plasma membrane to stimulate exosome release.
At the plasma membrane, this fusion process requires syntaxin 4 and SNAP23, which correlates with
findings from our laboratories, demonstrating the mislocalization and dysfunction of these two SNARE
proteins upon AnxA6-mediated alteration of cellular cholesterol distribution [80].

Taken together, and although a distinct role for Annexins in the formation/assembly or the
secretion of exosomes has yet to be demonstrated, the latter findings strongly associate the impact
of LE-associated Annexins AnxA6 and AnxA8 on LE-cholesterol export [79,87] with exosome
biogenesis. Also, the contribution of AnxAl and AnxA2 in the regulation of trafficking of MVB
subpopulations [36,52,56,58,111] is likely to determine ILV destiny along degradative or secretory routes.

Besides cholesterol, exosomes contain substantial amounts of negatively charged phospholipids,
including PS, PI, and PA [162]. This correlates with the proteomic analysis of isolated exosomes,
identifying a repertoire of phospholipid-binding Annexins, including AnxA1l, A2, A4, A5, A6, and
All, being among the 100 most abundant proteins found in exosomes [181]. In certain situations,
such as LE enlargement due to cholesterol accumulation, some Annexins have also been observed
inside LE/Lys, for example, AnxA2 [182] and AnxA6 [183,184], enabling the putative location of these
Annexins in the outer leaflet of exosomes.

Interestingly, increasing numbers of reports have identified Annexins to associate with RNAs.
This interaction is particularly relevant for miRNA loading of exosomes and may contribute to the
targeting of Annexins to the lumen of exosomes. Up to date, evidence exists for AnxA2 to influence
sequence-independent loading of miRNAs into extracellular vesicles [185]. These features are probably
not related to the Ca2*- or cholesterol-dependent membrane association that is discussed above,
yet greatly extend the diversity of Annexin-related functions. Thus, the ability of AnxA2 and possibly
other LE-associated Annexins to recruit miRNAs as well as other proteins into exosomes implicates
them in control of cell-cell communication in health and disease [186].

8. Annexins and LE/Lys Positioning

It is now well believed that LE maturation and LE/Lys function is highly dependent on the
distribution of LE/Lys within cells. LE motility determines the position of LE/Lys, and it reflects the
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response to a variety of stimuli. Markedly, alterations in this regulation seem to be associated with
different pathologies related to cell adhesion and motility, as well as autophagy [187,188]. Thus, an
evolving theme of interest in the field is how LE/Lys function may be influenced by LE/Lys positioning.

LE/Lys move bi-directionally on the microtubule network by dynein and kinesin motors.
The microtubule-organizing center is the minus-end, and in general, in non-polarized cells, is located
between the Golgi and the nucleus, whereas the microtubule plus-ends are located at the cell periphery
(plasma membrane). Therefore, minus-end directed microtubule motors, such as dynein, move
LE/Lys from the periphery to the cell centre, while the plus-end directed microtubule motors, kinesins,
promote the scattering of LE/Lys throughout the cytoplasm. These opposing forces determining
LE/Lys movements are connected to the energy and dietary status of cells, as starvation promotes
autophagosomes and LE/Lys to move towards the cell centre for fusion and subsequent degradation
of the autophagosomal content [189,190]. On the other hand, the redistribution of LE/Lys towards
the cell periphery appears vital for growth, migratory, and invasive properties of cells, ensuring
the rapid delivery of membrane and secretory components to the cell surface. Indeed, plus-end
(anterograde) transport facilitates lysosomal exocytosis, leading to the secretion of acidic hydrolases
and metalloproteinases that degrade the extracellular matrix to promote the migration and invasion of
cancer cells [191-193].

Several protein complexes have been implicated in the regulation of LE/Lys positioning, and have
been described in detail [194,195]. Most relevant here, this also includes Rab7, together with
different effectors to either promote plus-end or minus-end (retrograde) directed LE/Lys movement.
Active Rab7, together with PIP2 and the FYVE and coiled-coil domain containing 1 (FYCO1) adaptor
protein in LE, binds the ER-resident protein protrudin. This complex recruits kinesin-1, which promotes
plus-end trafficking [76,77,135,196]. On the other hand, Rab7 and its effector Rab-interacting lysosomal
protein (RILP) enable retrograde movement. RILP interacts with the p150-glued subunit of dynactin,
which then recruits the minus-end directed microtubule motor dynein to LE/Lys [134,197,198].

These opposing Rab7 activities must be coordinated, and reflect the yet limited knowledge
on factors that modulate the diversity of Rab7 functions [199,200]. The factors that determine
Rab7 to interact with either kinesin or dynein motor proteins to influence LE motility and LE/Lys
positioning are still unknown. However, insights from LE-cholesterol homeostasis provide striking
mechanistic details, as LE move to microtubule plus-ends (cell periphery) when LE-cholesterol
levels are low, whereas high LE-cholesterol levels promote LE to move towards the minus-end (cell
centre) [76,77]. Hence, in cholesterol-rich LE of NPC1 mutant cells, Rab7 together with the dynein
machinery may ensure positioning of large, cholesterol-rich LE/Lys at the cell centre. Under these
conditions, low Rab7-GTP levels would not allow formation of Rab7-GTP /PIP2/FYCO1 complexes
and interaction with protrudin, thereby blocking recruitment of kinesin-1 for endosome trafficking.
On the other hand, low LE-cholesterol levels correlate with elevated Rab7-GTP, reduced LE size,
elevated LE/Lys motility, indicating Rab7, protrudin, and kinesin-1 dependent LE/Lys trafficking
to the periphery. Thus, LE-cholesterol accumulation induced by up- or downregulation of AnxA6
and AnxAS, respectively [79,87], and AnxA6-mediated downregulation of Rab7-GTP levels, could be
decisive factors that determine the ability of Rab7 to influence LE/Lys positioning.

Extending these observations further, and given that Rab?7 is pivotal for the cholesterol-dependent
establishment of MCS (see Section 6), one can envisage that MCS formation between LE/Lys and the
extensive ER network [130,201] could contribute to LE/Lys repositioning.

Although the scenarios that are described above provide attractive models of how LE-associated
Annexins might affect the distribution of LE/Lys in cells, the picture is still incomplete and several
other players and pathways need to be considered. This also includes a possible indirect role of
the actin cytoskeleton influencing cargo transport from EEs to LEs [31], sorting and vesicle fission
in the recycling pathway, and cargo transport to the trans-Golgi-network and lysosomes [202-204].
We and others have extensively reviewed how Annexins interact and re-arrange membrane-actin
interactions [13,40], in particular, at endosomal membranes [45,58]. Possibly complexed with 5100
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proteins, these links to the cytoskeleton may thus provide tethering between vesicles and/or contribute
to the repositioning of LE/Lys.

Finally, the possibility that LE-associated Annexins may influence integral LE/Lys proteins
that could provide coupling to motor proteins for retrograde lysosomal transport should also be
mentioned. Interestingly, this includes proteins that are associated with cholesterol export from
LE/Lys, such as lysosomal-associated membrane protein 1 and 2 [205,206] and many others, [207-209],
but also Ca?* channels and Ca?*-binding proteins [210]. Along these lines, several Annexins
interact with the proton pump H*-ATPase subunit VOa2 [211] and the TPC1/2 Ca?* channels [66].
These latter interactions might influence how Ca?* is provided for membrane fusion between
LE/Lys and other compartments, including the plasma membrane. In this context, Ca?* sensors,
including Annexins, may allow for lysosomal Ca* release to regulate the distinct steps of lysosomal
trafficking [212]. As cholesterol accumulation in NPC1-mutant cells blocks endosomal/lysosomal Ca?*
release [125], these Ca?*-regulatory circuits to alter LE/Lys positioning are likely to be connected to
LE-cholesterol levels.

9. Concluding Remarks and Future Perspectives

In this review, we have summarized some of the current knowledge that implicates Annexins
in a variety of processes in the LE/Lys compartment that are linked to LE-cholesterol transport and
the impact on endosomal membrane traffic, endosome maturation, signal transduction, cholesterol
homeostasis, tethering and MCS formation, and LE/Lys positioning. Our knowledge is still incomplete,
but a subset of Annexins seems to converge and sense Ca’* and cholesterol alterations in LE/Lys
to perform a variety of cellular functions. AnxAl is required to tether endocytic vesicles with the
ER, which allows transfer of cholesterol to MVBs, ensuring ILV formation. AnxA2-dependent and
cholesterol-driven endosome maturation ascertains the onset of degradation. Increased AnxA6
expression and recruitment to LE membranes induces LE-cholesterol accumulation. On the other
hand, AnxA8 depletion blocks LE-cholesterol egress. The molecular mechanisms that are involved
in this regulation is closer to being clarified. As discussed, these diverse modes of action mediated
by the various Annexins and affecting LE-cholesterol homeostasis have multiple consequences for a
variety of cellular activities. Given the involvement of Annexins in all of these regulatory circuits that
modulate LE/Lys function, including the possibility of gene defects, Annexins could contribute to
disease-related phenotypes that are observed in LSD, neurodegeneration, or cancer.
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