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Abstract: Several viruses are recognized as the direct or indirect causative agents of human tumors
and other severe human diseases. Vascular endothelial growth factor (VEGF) is identified as a
principal proangiogenic factor that enhances the production of new blood vessels from existing
vascular network. Therefore, oncogenic viruses such as Kaposi’s sarcoma herpesvirus (KSHV) and
Epstein-Barr virus (EBV) and non-oncogenic viruses such as herpes simplex virus (HSV-1) and
dengue virus, which lack their own angiogenic factors, rely on the recruitment of cellular genes for
angiogenesis in tumor progression or disease pathogenesis. This review summarizes how human
viruses exploit the cellular signaling machinery to upregulate the expression of VEGF and benefit
from its physiological functions for their own pathogenesis. Understanding the interplay between
viruses and VEGF upregulation will pave the way to design targeted and effective therapeutic
approaches for viral oncogenesis and severe diseases.
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1. Introduction

Angiogenesis is an important physiologic process which involves formation of new blood vessels
from already existing vasculature. It plays a vital role during development and wound healing
but also during disease pathology such as tumor growth and progression. Several stimulators are
involved in the angiogenesis process including vascular endothelial growth factor (VEGF), which
plays a crucial role in activating endothelial cells through binding to receptors on the cell surface called
vascular endothelial growth factor receptor (VEGFR) [1]. There are four VEGF isoforms in mammals
(VEGF-A,B,C,D) and the placental growth factor (P1GF) encoded by different but related genes [2].
Most of these isoforms express alternative splice variants or proteolytic cleaved proteins to produce a
range of functional VEGF isoforms and splice variants. Furthermore, VEGF isoforms signal through
different receptors (VEGFR1,R2 and R3) and coreceptors including the neuropilin receptors (Nrpl
and 2), heparan sulfate and integrins [3]. The three VEGFRs are tyrosine kinases and mediate signal
transduction upon ligand binding and dimerization [4]. VEGFR1 binds VEGF-A, VEGF-B and PIGE.
It is also present in a soluble form and therefore expected to play a negative regulatory role in VEGF
signaling [5]. VEGFR2 binds VEGF-A, VEGF-C and VEGF-D and is implicated in most vascular and
endothelial biological processes through phosphorylation activities at several tyrosine residues in its
cytoplasmic tail [6]. VEGFR3 is the receptor for VEGF-D and VEGF-C and expected to play a role in
lymphatic endothelium development [6]. Nonetheless, VEGFR3 was found to additionally play a role
through its kinase activity in sprouting of endothelial cells during blood vessels formation [7,8].
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VEGE-A is the prototype of all VEGFs and by far the most extensively studied isoform and
therefore in some literature is referred to as VEGFE. Seven proangiogenic splice variants exist from
VEGF-A based on the presence of alternative splice site selection in exons 6 and 7 generating a variety
of isoforms partially or completely lacking exons 6, 7 or 8 [9,10]. This family of splice variants is called
VEGE-Axxx, where the triple-x indicates the number of amino acids in the protein. Another family
of VEGEF-A splice variants is produced based on an extra splicing site in exon 8 in addition to the
splicing sites in exon 6 and 7. The involvement of the distal exon 8 splicing site in VEGF-A production
generates VEGF isoforms similar to their VEGF-Axxx counterparts but with six different amino acids
at its carboxy-terminus. This family of splice variants is called VEGF-Axxxb and is believed to have
antiangiogenic properties [9,10].

Human viruses cause a variety of diseases where neither specific successful treatment nor safe and
effective vaccine are available. VEGFs and their receptors have been implicated in the pathophysiology
of many of these diseases. This review discusses the involvement of VEGFs and their receptors in viral
diseases and the possible therapeutic applications. Table 1 and Figure 1 summarize common human
viruses and their diverse mechanism of upregulation of VEGF expression.
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Figure 1. A schematic diagram summarizes how different viruses mediate vascular endothelial growth
factor (VEGF) upregulation.

2. Upregulation of VEGF Expression in Viral Oncogenesis

2.1. Epstein-Barr Virus (EBV)

EBV is a human herpesvirus that asymptomatically infects the majority of the human population.
EBYV infection has been implicated in many diseases such as infectious mononucleosis after primary
infection and neoplasia including lymphoproliferative disorders and lymphomas such as Burkitt’s
lymphoma, nasal NK/T-cell lymphoma and a subset of Hodgkin’s lymphoma [11]. EBV was also
found to be associated with solid tumors such as nasopharyngeal carcinoma (NPC) and small fraction
of gastric carcinoma [12,13]. During infection, EBV establishes a state of latency where only few viral
proteins are expressed driven by the pressure from the immune system.

VEGEF expression and microvascular density were shown to directly correlate with NPC and
its metastatic progression, indicating the importance of VEGF for NPC growth and progression [14].
Several other studies found a correlation between the severity of NPC or its metastatic progression
and the levels of VEGEF in circulation, saliva or in the tumor itself [15-18]. The EBV latent membrane
protein 1 (LMP1) is one of the proteins expressed during the latency state Il of EBV and is frequently
detected in NPC along with EBNA1, LMP2A and B, and a transcript from BamHI A restriction fragment
(BART) [19]. The overexpression of the oncoprotein LMP1 in transgenic mice led to upregulation of
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VEGEF expression early in life accompanied with hyperplasia and increased vascularization which
progressed spontaneously later to carcinoma [20]. LMP1 is a transmembrane protein and seems to
exert its effect on VEGF expression through other mediators such as the JNKs/c-Jun signaling [21].
Furthermore, LMP1 expression was found to be concomitant with COX-2 expression in NPC.
Overexpression of LMP1 in nasopharyngeal epithelial cell lines increased the expression of COX-2,
which in turn enhanced VEGF expression [22]. EBV-LMP1 expression was also found to be significantly
associated with VEGF expression in diffuse large B cell lymphoma (DLBCL) and their expression was
associated with reduced survival rate [23].

EBNAI1, an EBV nuclear protein, plays an important role in virus persistence and was
demonstrated to be expressed in EBV-associated tumors. EBNA1 seems to play an additional role in
EBV-associated malignancies by indirect enhancement of angiogenesis through the activation of AP-1
transcription factor in NPC [24]. AP-1 expression is enhanced by EBNA1 binding and consequently
leads to increased expression of its downstream targets such as VEGF and IL-8 [24].

EBV is associated with a small fraction of gastric carcinoma cases and was associated with
increased alteration in the PI3K pathway [25]. Several viral sequences were detected in the tumor cells
including EBNA1. VEGF expression is upregulated in EBV-associated gastric cancer and influenced
by the overexpression of hypoxia-inducible factor-1 alpha (HIF-1x) [26]. LMP1 is known to directly
induce the expression of the HIF-1c [27]; however, LMP1 is not expressed in EBV-associated gastric
carcinoma. Whether EBV achieves the upregulation of VEGF through EBNAL1 in gastric carcinoma
needs to be elucidated.

It is obvious that EBV upregulates the expression of VEGEF via its own oncoproteins, LMP1 and
EBNALI, and exploits the VEGF proangiogenic characteristics to promote the growth and progression
of its tumors. EBV is a ubiquitous virus and infects a large proportion of the human population.
The oncoproteins, LMP1 and EBNAI, are expressed in most EBV-infected cells yet and luckily
only a small number of EBV infections progress to tumor. What are the major factors involved
in EBV-associated tumorigenesis are not clearly identified but many host genetic factors and
environmental risk factors are expected to play an additional role.

2.2. Kaposi'’s Sarcoma-Associated Herpesvirus (KSHV)

Kaposi’s sarcoma (KS) is a malignancy characterized by neoangiogenesis and infiltration of
inflammatory cells. It is also characterized by the presence of spindle cells which were all found to
be infected by the Kaposi’s sarcoma-associated herpesvirus (KSHV) [28,29]. KSHV was detected in
all forms of KS and is associated with two other neoplasms, the primary effusion lymphoma and
multicentric Castleman disease. KS lesions express large amounts of VEGF which is important for the
tumor growth, while blocking of the VEGF receptors abolishes tumor growth [28,30,31]. Moreover,
VEGFR2 was shown to be upregulated in the tumor endothelial cells and the stromal vessels in
tumor and tissues surrounding it [32,33]. Animal experiments provided an insight into the role of
KSHYV genes in VEGF upregulation. KSHV-infected endothelial cells when injected into nude mouse
promoted tumor formation with expression of elevated levels of VEGF [34]. In another mouse model,
bone marrow-derived endothelial cells were infected with KSHV-genetically engineered in a bacterial
artificial chromosome (BAC) and injected into severe combined immunodeficiency (SCID) mice [35].
The mice developed tumor reminiscent of KS and expressed increased levels of VEGF [35].

Similar to EBV, KSHYV is present in KS spindle cells in a latent form and only few genes are
expressed. The viral FLICE inhibitory protein (vFLIP) encoded by KSHV ORFK13 is one of these genes,
which is responsible for the spindling morphology of KS endothelial cells [36,37]. VFLIP activates the
canonical and noncanonical NF-kB pathways and hence it is responsible for the inflammatory profile
observed in KS lesion [38,39]. The expression of inflammatory mediators and growth factors induced
through vFLIP activation of NF-«B attracts the migration and recruitment of inflammatory cells such
as monocytes and macrophages, which constitute a generous source of VEGF production [40].



Int. ]. Mol. Sci. 2018, 19, 1642 40f18

Other KSHV proteins were implicated in VEGF expression directly such as K1 and viral
interlukin-6 (vIL-6) [41,42]. The viral G-protein coupled receptor (vGPCR) was reported to produce
KS-like lesions with high VEGF levels in transgenic mice [43]. The viral interferon regulatory factor
3 (VIRF3) was found to enhance the stability of HIF-1« to induce VEGF expression [44]. It is worth
noting that all of these proteins are considered proteins of the lytic KSHV replication cycle and not
expressed in KS lesions where KSHYV is mainly latent. However, it was demonstrated that a minor
number of KSHV-infected cells undergoes spontaneous virus lytic replication [45]. This small fraction
of cells provides continuous virus supply to infect new cells and provides a wide spectrum of viral
genes that are involved in inflammatory profile of the KS lesion.

2.3. Human Papillomavirus (HPV)

HPV infects the mucosal and cutaneous tissues and is the common cause of warts on skin and
genitalia. In 1970, HPV was identified in cervical cancer and a decade later in a subset of oropharyngeal
carcinomas (OPC) [46]. Since then, HPV was implicated in the pathogenesis of many human cancers
at variable percentages including cervical cancer, anal cancers, penile cancers, vaginal cancers, vulvar
cancers, head and neck carcinoma, and skin cancer [47]. About 179 genotypes of HPV are known
so far based on variation in their genome sequence [48]. HPV genotypes can be classified into low
risk and high risk based on their malignancy transforming capability. Those genotypes implicated
in HPV-associated malignancies are considered high risk and these are mainly HPV16 and HPV1S;
however, other genotypes such as HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52 and HPV56
are being frequently reported in cancer [48-50]. HPV encodes 10 proteins, three of which (E5, E6 and
E7) are detected in human tumors and considered to be responsible for oncogenesis [51]. E5 protein
on its own has a weak transforming activity in cell culture but it can collaboratively potentiate the
transforming activity of both E6 and E7 [52]. The transforming magnitude of HPV lies in E6 and E7
proteins where both are able to enhance cell proliferation, destabilize the genome and more importantly
abrogate apoptosis [51]. E6 utilizes the cellular ubiquitin ligase E6AP to target p53 for degradation [53].
E7 activity leads to activation of the elongation factor 2 (E2F) and increased expression of the cellular
p16 and ultimately enhance cell proliferation [54]. Further details on the role of E6 and E7 in HPV
oncogenesis can be found in [51].

E6 and E7, especially of HPV16 and HPV18 genotypes, also play a role in VEGF upregulation
and therefore by establishing the angiogenic structure of HPV-associated cancers. HPV16 E6 and E7
oncoproteins were demonstrated to upregulate the expression of HIF-1& and VEGF in non-small cell
lung carcinoma and cervical carcinoma cells [55-57]. Using inhibitors that target the ERK1/2 or PI3K
pathways leads to complete inhibition of HIF-1x and VEGF expression, suggesting the involvement of
these signaling pathways in E6- and E7-mediated angiogenesis [56]. E6 seems to have a direct effect on
the VEGF promoter. It binds to a responsive region consisting of four SP-1 sites in the VEGF proximal
promoter region [58]. While E7 exerts its effect on upregulation of VEGF expression through the
telomerase reverse-transcriptase (hNTERT) and telomerase activity [59], E5 also induces the expression
of VEGF. E5 activates the EGFR which in turn leads to the phosphorylation of downstream molecules
PI3K and Akt. These enhance the transcription of COX-2, through increasing its promoter activity,
leading to increase in VEGF expression [60]. This tight controlled upregulation of VEGF by the three
oncoproteins of HPV indicates the importance of VEGF for HPV-associated malignancies and makes it
an attractive target for therapeutic approaches.

2.4. Hepatitis C Viruses (HCV)

HCYV infects a large number of the human population and in the majority of cases the infection
is chronic, leading to frequent inflammation which ends up with cirrhosis in about 20% of cases and
with hepatocellular carcinoma (HCC) in up to 5% of cases [61]. HCV infection constitutes a risk for
development of HCC whose incidence is increasing in many countries [62]. In addition to chronic
inflammation, HCV may also directly potentiate the risk of developing HCC by regulating several
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host pathways including those involved in angiogenesis. HCV proteins (core, NS3, NS5A, NS5B
and E) through interference with cellular factors (Rb, Cyclin D, Cyclin E, RAF/MAP/ERK) stimulate
cell cycle progression, enhance cellular proliferation, and inhibit apoptosis, which are key players in
tumorigenesis [61].

Similar to other tumors, angiogenesis in HCC is critical for tumor growth and progression.
HCV was found to be associated with higher microvessel density in HCC [63]. Several studies have
shown the upregulation of the proangiogenic factor VEGF in HCV-related HCC tissues, patient’s serum
and in cell culture experiments [64-66]. Polymorphisms in the VEGF gene were found to increase
the VEGF expression levels and to be associated with higher risk of HCC [66]. It is also suggested
that VEGF serum levels could be utilized as a prognostic factor of HCC [64,65]. The HCV core protein
seems to be the major moderator of HCV-dependent VEGF upregulation in different mechanisms.
The core protein stabilizes HIF-1c, which automatically upregulates the expression of VEGF [67-69].
Inhibition of the Jak/Stat pathway was found to abrogate the core protein-mediated activation of the
androgen receptor and, thereby, the downregulation of VEGF expression, which suggests a role for
Jak/Stat signaling pathway in HCV-mediated VEGF expression [70]. Recently it was shown that the
core protein also activates the AP-1 transcription factor, which potentiates VEGF expression through
direct binding to its promoter [71].

2.5. Hepatitis B Viruses (HBV)

HBYV is responsible for about half of HCC cases worldwide [72,73]. Contrary to HCV, HBV is
a DNA virus; therefore, it can integrate itself in the cellular genome resulting in deletions and
general instability [74]. Additionally, HBV establishes chronic infection in 15-40% of cases leading to
continuous cycles of necrotic inflammation leading to cirrhosis and eventually to HCC [72]. Similar to
other cancers, VEGF seems be the important angiogenic factor of the HBV-related hepatocarcinogenesis.
The gene expression profile in HBV-related HCC mouse model showed clear induction of VEGF- and
EGF-mediated pathways [75]. VEGF expression was found to be upregulated along with COX-2 in
tissue sections from human HCC with HBV infection and this expression was found to be positively
correlated with microvessel density (MVD) [76,77].

The hepatitis B viral protein x (HBx) is the key inducer of VEGF expression in HBV-related
HCC. VEGEF transcription was found to be induced in HBx stably transfected cells [78]. Similar to
the HCV core protein, HBx stabilizes HIF-1x and enhances the increase in VEGF expression [79-81].
Overexpression of HBx in hepatoma cells leads to induction of mTOR and IKKf, which in turn
enhance cell proliferation and increase the expression of VEGF [82]. Pre-S protein was also reported to
potentiate the expression of VEGF and, by that, augment the angiogenic environment produced by the
virus [83].

The availability and accessibility of safe and effective recombinant HBV vaccine will markedly
decrease the number of new HBV cases and thereby the HBV-related HCC. According to the World
Health Organization (WHO), HBV vaccine was incorporated in the infant immunization programs of
95% of countries and about 50% of countries had adopted the recommended dose at birth [84].

3. Upregulation of VEGF Expression in Non-Oncogenic Viral Infections

3.1. Herpes Simplex Virus-1 (HSV-1)

HSV type 1 infects more than half of the human population and the rate of infection may reach
up to 90% in some geographical areas [85]. It causes Herpes labialis (cold sores) after primary infection
and then establishes a lifelong infection residing latently in the trigeminal ganglia. HSV-1 may also
cause ocular infection called herpetic stromal keratitis (HSK), where the cornea loses transparency due
to neovascularization, which results in impaired vision and blindness [86]. VEGF and its VEGFR2
receptor are involved in the pathogenesis of HSK through the induction of lymphatic neoangiogenesis
in the cornea and the underlying stromal tissue [87]. HSV-1 infection of the cornea triggers VEGF
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expression in the cornea and the stromal cells despite the absence of HSV-stromal cells infection [88].
It is believed that VEGF expression in the stroma is mediated by a paracrine effect of the IL-6 cytokine,
which is also induced by HSV-1 infection of the cornea [89]. The infection cellular protein-4 (ICP4)
seems to be the major player in HSV-mediated VEGF expression. ICP4 binds directly to the proximal
promoter of the VEGF gene and drives the transcription of VEGF mRNA in collaboration with other
early viral proteins [90]. HSV-1 infection of the cornea does not only upregulate VEGF expression,
but also disrupts the balance with its soluble neutralizing receptor (soluble vascular growth factor
receptor-1, sVEGFR1) by facilitating the sVEGFR1 degradation via the metalloproteases enzymes which
are produced by the infiltrating inflammatory cells as a result of infection [91]. HSV-1 additionally
exploits host factors such as the host microRNA-132 and the cytokine IL-17A to disturb the balance
between VEGF and its neutralizing receptor sVEGFR1 and render the immune-privileged corneal
tissue accessible to inflammatory cells and mediators and induces neovascularization [92,93]. It was
recently observed that the fibroblast growth factor-2 (FGF-2), whose expression is also upregulated after
HSV-1 infection, sustains the VEGF-mediated neovascularization of the cornea even after resolving of
HSV-1 infection [94].

3.2. Dengue Virus (DENV)

Dengue virus is an arthropod-borne virus transmitted to human through the Aedes mosquito
vector. There have been four serotypes identified (DENV1 to DENV4). DENV causes a mild feverish
disease called Dengue fever (DF). However, the disease may develop into severe complications called
dengue hemorrhagic fever (DHF), which is characterized by increased capillary permeability and
plasma leakage [95]. Continuous plasma leakage may lead to decreased intravascular volume and
hypotensive shock (dengue shock syndrome, DSS). VEGF was previously called vascular permeability
factor (VPF) as it caused increase permeability of capillaries [96]. Many studies have shown the
presence of elevated serum levels of VEGF in patients with DHF but not DF [97-101]. Other studies
have demonstrated that DENV infection of pulmonary endothelial cell lines upregulates the expression
of VEGF along with many Th1 and Th2 cytokines [102,103]. For this reason, it is believed that immune
preparedness is a major determinant of disease severity [95].

3.3. Hantaviruses

The Hantavirus genus belongs to the family Bunyaviridae and comprises a group of zoonotic
viruses (such as Andes virus, Hantaan virus, Seoul virus, and others), which transmit from the primary
reservoir to human through inhalation of aerosols from rodents’ feces, urine or saliva [104]. Rodents
have been identified as the primary reservoir for several Hantaviruses from different geographical
regions [105]. Hantaviruses cause serious diseases called Hantavirus Pulmonary Syndrome (HPS) and
Hemorrhagic Fever with Renal Syndrome (HFRS) with fatality rate of up to 40% [104,105]. Disease
manifestations are overlapping and characterized by increased permeability and vasodilatation which
leads to extravasation of inflammatory mediators and blood in the affected organs. High levels of
VEGF were implicated in the pathogenesis of many Hantaviruses [106,107].

Andes virus for example infects pulmonary endothelial cells in vitro and induces VEGF expression
which leads to abnormal increased permeability [108]. VEGF expression in Andes-infected endothelial
cells was found to be preceded by production of virus progeny [109]. Andes virus and Hantaan virus
disturb the assembly of adherence junction of vascular endothelial cells by internalizing cadherins of
endothelial cell junction and dysregulating (33-integrin and therefore allow extravasation of blood and
inflammatory mediators [107,110]. Several other studies showed the upregulation of the VEGF by one
or another virus from the Hantavirus genus [111,112].

4. Viral VEGF Homolog Proteins

Some viruses encode their own proangiogenic homolog such as the VEGF-E encoded by orf virus
(ORFV). ORFV belongs to the genus Parapox of the family Poxviridae. It infects keratinocytes and causes
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pustular skin disease in sheep and goats which may transmit to human through direct contact [113].
Tissue sections from the ORFV skin lesions show high vascularization and infiltration of inflammatory
components [114]. Considering the vascularized and edematous nature of the ORFV lesion, it was
tempting to imagine the involvement of VEGF in ORFV pathogenesis. In 1994, it was discovered that
ORFV encodes a homolog of the human VEGEF later called VEGF-E and was found to be responsible
for the virus-associated angiogenesis [113,115]. ORFV lacking functional VEGF-E gene causes lesions
without dermal swelling and vascular proliferation [116,117]. VEGF-E shares about 25% homology
with VEGF-A and binds with strong affinity to VEGFR2 [118,119]. VEGF-E lacks hairpin-binding
domain and, therefore, cannot bind and engage the coreceptor heparan sulfate, whereas the VEGF-E
variant encoded by the ORFVyzz was found to bind to the coreceptor neuropilin-1 (NRP-1) through the
RPPR peptide in its carboxyterminus and to induce the assembly of VEGFR2-NRP-1 complex [120-122].
VEGF-E can induce a strong angiogenic response comparable to VEGF-A, however, without the
hemorrhagic effect and without disturbing the endothelial junctions which are considered adverse
side effects of VEGF-A angiogenic properties [118]. This favorable angiogenic property of VEGF-E
makes it a good candidate for proangiogenic therapy in clinical practice (discussed below).

Table 1. Summary of viruses exploiting vascular endothelial growth factor (VEGF) upregulation in
human diseases.

Virus Disease Mechanism of VEGF Upregulation References
LMP1 upregulates the expression of VEGF through the [20,21]
phosphorylation of J]NKs/c-Jun signaling pathways 4
Nasopharyngeal carcinoma LMP1 upregulate;s COX-2 expression which leads to the upregulation [22]
EBV of VEGF expression
EBNAL activates the AP-1 transcription factor which enhances the [24]
transcription of VEGF
Gastric carcinoma Overexpression of HIF-1« leads to the upregulation of VEGF expression [26]
VFLIP activates the transcription factor NF-«B which induce [38-40]
inflammatory response leads to upregulation of VEGF :
KSHV Kaposi’s sarcoma Viral K1 and vIL-6 directly implicated in expression of VEGF [41,42]
vGPCR enhances the upregulation of VEGF [43]
VIRE3 stabilizes HIF-1ot to enhance VEGF expression [44]
E6 binds to a responsive region consisting of four SP-1 sites in the 58]
VEGF promoter region :
. E7 upregulates VEGF expression through the telomerase =
HPV Cervical cancer, head and reverse-transcriptase (W\TERT) and telomerase activity (591
neck carcinoma
E5 activates the EGFR which in turn leads to the phosphorylation of
PI3K and Akt, enhancement of the transcription of COX-2 leading to [56,60]
increase in VEGF expression
Core protein stabilizes HIF-1x which automatically upregulates the [67-69]
) expression of VEGF 7
HCV Hepatocellular carcinoma
Core protein activates the AP-1 transcription factor which potentiates 71]
VEGF expression through direct binding to its promoter
HBx protein stabilizes the HIF-1a and enhances VEGF expression [79-81]
HBV Hepatocellular carcinoma HBx induces mTOR and IKK which in turn induces VEGF expression [82]
Pre-S protein potentiates the expression of VEGF [83]
ICP4 binds directly to the proximal promoter of VEGF gene and drives [90]
. . its transcription
HSV-1 Herpetic stromal keratitis
HSV-1 disturbs the balance between VEGF and its neutralizing receptor [91]
sVEGFR1
DENV Dengue hemorrhagic fever, ;o 1 tion of Thi and Th2 cytokines and VEGE [102,103]

dengue shock syndrome

Hantavirus Pulmonary
Hantaviruses Syndrome, Hemorrhagic Mechanism jet to be elucidated
Fever with Renal Syndrome

Orf virus Pustular skin disease Encodes VEGF homolog called VEGF-E [113,115]
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Other viruses from the Parapox genus were found also to express VEGF homolog such as
the Bovine papular stomatitis virus (BPSV) and Pseudocowpox (PCPV), which may also infect
human [123,124]. A VEGF homolog was also detected in the Parapoxviruses of red deer in New
Zealand (PVNZ); however, this virus was not reported to infect human [125].

5. Therapeutic Applications of Targeting VEGF in Viral Diseases

Apparently, targeting the molecular modulators of angiogenesis, in particular VEGF, is an
attractive area of research and tempting approach for drug design to treat viral oncogenesis and
other viral diseases when angiogenesis is involved. Lack of specific treatment and effective vaccination
for most virus diseases adds more significance to this approach.

A bulk of evidence shows that the inhibition of VEGF function in viral oncogenesis and viral
diseases leads to very promising outcome [126,127]. The encouraging results from inhibition of
VEGF-mediated angiogenesis in tumors led to testing anti-VEGF antibody in phase II multicenter
clinical trial [128]. It was found that addition of anti-VEGF monoclonal antibody (Bevacizumab)
to the traditional chemoradiation treatment of NPC apparently delayed the progression of distant
metastasis [128]. The use of rapamycin and other mTOR inhibitors clearly reduced the secretion
of VEGF and led to inhibition of KS growth and formation of neovasculature [129]. Recently two
clinical phase II trials were performed to test the efficiency of targeting VEGF in cervical neoplasia and
NPC. The first study investigated the use of celecoxib on cervical intraepithelial neoplasia 3 (CIN 3)
and found that histologic regression rate was only observed in patients with high levels of serum
VEGEF [130]. On the other hand, testing cetuximab and pemetrexed in combination with radiation
therapy showed a promising efficacy with the expected toxicity from these two drug combinations
regardless of HPV positivity status [131]. Furthermore, the reduction of VEGF levels by melatonin
enhanced the therapeutic potency of the HPV DNA vaccine through potentiating the immune response
and production of HPV-E7-specific CD8+ cells [132].

The high vascular nature of HCC made the anti-angiogenic therapies an attractive approach for
treatment. Sorafenib, for example, was one of the first anti-angiogenic drugs, which showed improved
survival of patients with advanced HCC. Sorafenib is an inhibitor of several tyrosine kinases including
the VEGF receptors and was shown to induce apoptosis in cell lines from HCC and inhibit angiogenesis
in HCC mouse model [133]. The promising therapeutic effects of sorafenib lead to development of
other anti-angiogenic agents that were tested in phase II and III clinical trials alone or in combination
and showed promising success in reduction of tumor growth and improving survival in the presence
or absence of HCV [134]. Interestingly, sorafenib has an additional inhibitory effect on multiple steps of
HCV replication [135,136]. In HBV-related HCC treated with sorafenib, high HBV load was associated
with poor prognosis unless an anti-viral therapy was added to the therapy [137].

Targeting VEGF and its receptors in herpetic stromal keratitis by local application of siRNA
or with a delivery vehicle in mouse models markedly reduced neovascularization and proved a
useful therapy approach for angiogenesis-related ocular diseases [138]. The use of anti-VEGF such as
bevacizumab or ranibizumab, along with other therapy techniques including surgery and the use of
immunosuppressive drugs, enhanced the restoration of the cornea in herpetic keratitis [139].

The late appearance of the symptoms in Hantavirus Pulmonary Syndrome (HPS) makes antiviral
treatment such as interferon and ribavirin ineffective against the disease [140,141]. Therefore, treatment
strategies stabilizing endothelial cell permeability and tissue vasculature seem the potential approach
to reduce disease severity and mortality [140]. In line with this suggestion, it was observed that
the angiopoietin 1 (Ang-1) and sphingosine 1-phosphate (S1P) inhibit endothelial cell permeability
induced by Hantavirus [107]. Using the VGEFR2 inhibitor (pazopanib) in addition to the src kinase
inhibitor (dasatinib) dramatically inhibited endothelial cell permeability induced by ANDV [142].
Similarly, the use of vandetanib as an inhibitor of VEGFR2 phosphorylation reduced VE-cadherin
degradation and modestly increased the survival in HPS animal model [143].
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It is worth noting that despite the initial expectation of successful anti-angiogenic therapies,
limitation appeared quickly represented by initial response then quick development of resistance.
Therefore, and as shown by other studies, anti-angiogenic therapeutic approaches should be used in
combination with other drugs that target additional pathway in the disease pathology. Furthermore,
studies on therapeutic applications of VEGF and other angiogenic factors in viral malignancies and
viral severe diseases should be directed against the viral protein which enhances the production of
VEGEF rather than cellular VEGF itself and other modulator of angiogenesis. Such viral targets are
limited in number, provide good selective targeting approach, and avoid the disturbance of the normal
physiologic functions of cellular protein. For example, the use of an LMP1 antibody in combination
with the classical chemotherapy showed a marked reduction in VEGF and apoptosis and inhibited
NPC xenograft growth in nude mice [144].

VEGEF therapeutic applications may extend beyond the inhibition of angiogenesis to promotion of
angiogenic effects in clinical practice. The favorable prongiogenic properties of the VEGF-E without
enhancement of inflammation and vascular permeability which are common characters of other VEGFs
suggest a possible application for VEGF-E in pro-angiogenic therapies [145]. A chimeric protein
consisting of VEGF-E and the human PIGF-enhanced vascularization in ischemic tissue [146]. Animal
experiments in equine found that the use of Orf virus VEGF-E and IL-10 promotes wound healing and
reduces inflammation but has no effect on the speed of wound closure process [147].

6. Summary and Conclusions

VEGEF seems to be an important player in the pathogenesis of many viral diseases. Therefore,
many viruses seek the upregulation of VEGF by several means and some viruses bring their VEGF
homolog with them to the infected host (Figure 1). HIF-1a, COX-2 and AP1 appear to be the most
common target pathways for virus-mediated upregulation of VEGF. However, some other viruses
activate certain inflammatory mediators which end up by the upregulation of VEGF expression.
Other viruses directly activate the VEGF promotor to enhance its expression by their own effector
proteins (Figure 1). Therefore, major research efforts are required for a very good understanding of
the role of viral gene products in upregulation of VEGF expression and are essential for designing
novel therapeutic protocols and discovering new chemicals that selectively target viral genes and spare
cellular physiologic functions.
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AP-1 Activator protein 1

COX-2 Cyclooxygenase-2

DENV Dengue virus

E5, E6, E7 HPYV early proteins 5, 6 and 7
EBNA1 EBV nuclear antigen 1

EBV Epstein-Barr virus

EGFR Epidermal growth factor receptor
HBV Hepatitis B virus

HBx HBV-x protein

HCV Hepatitis C virus

HIF-1x Hypoxia inducible factor-1 alpha
HPV Human papilloma virus

HSV-1 Herpes simples virus-1

hTERT Human Telomerase reverse transcriptase
ICP4 Infected cell protein 4

JNK c-Jun N-terminal kinases
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KSHV Kaposi’s sarcoma-associated herpesvirus

LMP1 latent membrane protein 1

NF-«B Nuclear factor kappa B

NPC Nasopharyngeal carcinoma

Npr Neuropilin receptor

PI3K Phosphatidylinositol 3-kinase

PIGF Placental growth factor

SP-1 Specificity protein 1

VEGF Vascular endothelial growth factor

VEGFR Vascular endothelial growth factor receptor

vFLIP Viral FLICE inhibitory protein

vGPCR Viral G-protein coupled receptor

vIRF3 Viral interferon regulatory factor 3
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